beta integrals

44
Beta Integrals Euler Beta Integral Selberg Integral An Selberg Integral Beta Integrals S. Ole Warnaar Department of Mathematics and Statistics

Upload: ngoquynh

Post on 31-Dec-2016

227 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

An SelbergIntegral

Beta Integrals

S. Ole Warnaar

Department of Mathematics and Statistics

Page 2: Beta Integrals

Beta Integrals

Euler BetaIntegral

Wallis formula

Gamma function

Euler betaintegral

Orthogonalpolynomials

Selberg Integral

An SelbergIntegral

Euler Beta Integral

Wallis formula (1656)

π

2=

22

1 · 3 · 42

3 · 5 · 62

5 · 7 · · ·

=∞∏

n=1

(2n)2

(2n − 1)(2n + 1)

Page 3: Beta Integrals

Beta Integrals

Euler BetaIntegral

Wallis formula

Gamma function

Euler betaintegral

Orthogonalpolynomials

Selberg Integral

An SelbergIntegral

Gamma function (Euler 1720s)

Γ(x) = limn→∞

n!nx−1

x(x + 1) · · · (x + n − 1)x 6= 0,−1,−2, . . .

=

∫ ∞

0

tx−1e−tdt Re(x) > 0

Page 4: Beta Integrals

Beta Integrals

Euler BetaIntegral

Wallis formula

Gamma function

Euler betaintegral

Orthogonalpolynomials

Selberg Integral

An SelbergIntegral

Since

1

4Wallis’ formula is equivalent to

2

∫ 1

0

1 − x2 dx = Γ(1/2)Γ(3/2)

or, by x2 = t, to

∫ 1

0

t1/2−1(1 − t)3/2−1dt = Γ(1/2)Γ(3/2).

This led Euler to the discovery of a more general integral.

Page 5: Beta Integrals

Beta Integrals

Euler BetaIntegral

Wallis formula

Gamma function

Euler betaintegral

Orthogonalpolynomials

Selberg Integral

An SelbergIntegral

Euler beta integral (1730s)

∫ 1

0

tα−1(1 − t)β−1dt =Γ(α)Γ(β)

Γ(α + β)

for Re(α) > 0, Re(β) > 0.

Replacing (β, t) → (ζ, t/ζ) with ζ ∈ R and letting ζ → ∞ usingStirling formula returns the integral representation of the gammafunction.

Replacing (α, β, t) → (ζ2 + 1, ζ2 + 1, 1/2 − x/(2ζ)) and lettingζ → ∞ yields the Gaussian integral

1√π

∫ ∞

−∞

e−x2

dx = 1.

Much more on this later . . .

Page 6: Beta Integrals

Beta Integrals

Euler BetaIntegral

Wallis formula

Gamma function

Euler betaintegral

Orthogonalpolynomials

Selberg Integral

An SelbergIntegral

For those with poor eyesight . . .

Let β = n + 1 with n = 0, 1, 2, . . . .

∫ 1

0

tα−1(1 − t)ndt =n

k=0

(−1)k(

n

k

) ∫ 1

0

tk+α−1dt

=n

k=0

(−1)k

k + α

(

n

k

)

=n!

α(α + 1) . . . (α + n)

Page 7: Beta Integrals

Beta Integrals

Euler BetaIntegral

Wallis formula

Gamma function

Euler betaintegral

Orthogonalpolynomials

Selberg Integral

An SelbergIntegral

Orthogonal polynomials

Set t = (1 − x)/2 in the Euler beta integral and replace

(α, β) → (α + 1, β + 1).

Then

∫ 1

−1

(1 − x)α(1 + x)βdx = 2α+β+1 Γ(α + 1)Γ(β + 1)

Γ(α + β + 2).

The distribution dw(x) on [−1, 1] given by

dw(x) = (1 − x)α(1 + x)βdx

is that of the Jacobi (orthogonal) polynomials P(α,β)n (x).

Page 8: Beta Integrals

Beta Integrals

Euler BetaIntegral

Wallis formula

Gamma function

Euler betaintegral

Orthogonalpolynomials

Selberg Integral

An SelbergIntegral

∫ 1

−1

P(α,β)m (x)P(α,β)

n (x)dw(x)

= δmn

2α+β+1Γ(α + n + 1)Γ(β + n + 1)

n!(2n + α + β + 1)Γ(α + β + n + 1).

Proof of the orthogonality and norm-evaluation follows immediatelyfrom the Rodrigues formula

(1 − x)α(1 + x)βP(α,β)n (x) =

(−1)n

2nn!

dn

dxn

[

(1 − x)α+n(1 + x)β+n]

(which may be taken as the definition of the Jacobi polynomials) andthe Euler beta integral.

Page 9: Beta Integrals

Beta Integrals

Euler BetaIntegral

Wallis formula

Gamma function

Euler betaintegral

Orthogonalpolynomials

Selberg Integral

An SelbergIntegral

The one proof that all (good?) talks are supposed to have . . .

To leading order the Rodrigues formula gives

xα+βP(α,β)n (x) “=”

1

2nn!

dn

dxnxα+β+2n

so that

P(α,β)n (x) =

n∑

k=0

cnk xk

with

cnn =(α + β + n + 1) · · · (α + β + 2n)

2nn!.

Page 10: Beta Integrals

Beta Integrals

Euler BetaIntegral

Wallis formula

Gamma function

Euler betaintegral

Orthogonalpolynomials

Selberg Integral

An SelbergIntegral

Without loss of generality assume that m ≤ n.

Then

∫ 1

−1

P(α,β)m (x)P(α,β)

n (x)dw(x)

=

m∑

k=0

cmk

(−1)n

2nn!

∫ 1

−1

xk dn

dxn

[

(1 − x)α+n(1 + x)β+n]

dx

(Rodrigues)

=

m∑

k=0

cmk

2nδkn

∫ 1

−1

(1 − x)α+n(1 + x)β+ndx

(k times integration by parts)

= δnm

2α+β+1Γ(α + n + 1)Γ(β + n + 1)

n!(2n + α + β + 1)Γ(α + β + n + 1)

(Euler beta integral & cnn)

Page 11: Beta Integrals

Beta Integrals

Euler BetaIntegral

Wallis formula

Gamma function

Euler betaintegral

Orthogonalpolynomials

Selberg Integral

An SelbergIntegral

Of course you should all care about the Jacobi polynomials since theGegenbauer polynomials Cλ

n (x) are nothing but

C (λ)n (x) =

(2λ)(2λ + 1) · · · (2λ + n − 1)

(λ + 1/2)(λ + 3/2) · · · (λ + n − 1/2)P(λ−1/2,λ−1/2)

n (x).

The fabulous Leopold Gegenbauer, Austria’s favourite mathematician.

Page 12: Beta Integrals

Beta Integrals

Euler BetaIntegral

Wallis formula

Gamma function

Euler betaintegral

Orthogonalpolynomials

Selberg Integral

An SelbergIntegral

In fact, even non-Austrian’s care (like the French and Russians) . . .

Tn(x) =22n(n!)2

(2n)!P(−1/2,−1/2)

n (x) Chebyshev I

Un(x) =22n+1((n + 1)!)2

(2n + 2)!P(1/2,1/2)

n (x) Chebyshev II

Pn(x) = P(0,0)n (x) Legendre

L(α)n (x) = lim

β→∞P(α,β)

n (1 − 2x/β) Laguerre

Page 13: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

Selberg integral

Macdonald’sconjectures

An−1Bn and DnI2(m)

Exceptionalgroups

An SelbergIntegral

Selberg Integral

Selberg integral (1944)

[0,1]n

n∏

i=1

tα−1i (1 − ti)

β−1∏

1≤i<j≤n

|ti − tj |2γdt

= n!

n−1∏

i=0

Γ(α + iγ)Γ(β + iγ)Γ(γ + iγ)

Γ(α + β + (n + i − 1)γ)Γ(γ)

for Re(α) > 0, Re(β) > 0, Re(γ) > · · · .

Page 14: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

Selberg integral

Macdonald’sconjectures

An−1Bn and DnI2(m)

Exceptionalgroups

An SelbergIntegral

Macdonald’s conjectures (1982)

Let G be a finite reflection group or finite Coxeter group.That is, G is a finite group of isometries of Rn generated byreflections in hyperplanes through the origin.

x1

x2

The reflection group B2 of order 8 (isomorphic to the signedpermutations of (1, 2)), with 4 reflecting hyperplanes.

Page 15: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

Selberg integral

Macdonald’sconjectures

An−1Bn and DnI2(m)

Exceptionalgroups

An SelbergIntegral

Normalise (up to sign) so that each hyperplane is of the form

a1x1 + · · · + anxn = 0

witha21 + · · · + a2

n = 2.

Form the polynomial

P(x) =

N∏

α=1

(

a(α)1 x1 + · · · + a(α)

n xn

)

,

N being the number of hyperplanes.

Geometrically, P(x) gives the product of the distances of the pointx = (x1, . . . , xn) to the hyperplanes (up to a factor 2N/2).

Page 16: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

Selberg integral

Macdonald’sconjectures

An−1Bn and DnI2(m)

Exceptionalgroups

An SelbergIntegral

By its action on Rn the reflection group G acts on polynomials inx = (x1, . . . , xn).

The G -invariant polynomials form an R-algebra R[f1, . . . , fn]generated by n algebraically independent polynomials f1, . . . , fn.

The f1, . . . , fn are not unique but their degrees d1, . . . , dn are.

Page 17: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

Selberg integral

Macdonald’sconjectures

An−1Bn and DnI2(m)

Exceptionalgroups

An SelbergIntegral

Let ϕ be the Gaussian measure on Rn:

dϕ(x) =e−|x |2/2

(2π)n/2dx .

Macdonald conjectured in 1982 that for every finite reflection group

Rn

|P(x)|2γ dϕ(x) =n

i=1

Γ(diγ + 1)

Γ(γ + 1).

For the trivial group A0 of order 1 (mapping R to R by the identitymap; i.e., no reflecting hyperplanes), P(x) = 1 and the conjecturecorresponds to the Gaussian integral

R

dϕ(x) = 1.

Page 18: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

Selberg integral

Macdonald’sconjectures

An−1Bn and DnI2(m)

Exceptionalgroups

An SelbergIntegral

The reflection group An−1

An−1 is the symmetry group of the (n − 1)-simplex.

The 3-simplex or tetrahedron.

It is a group of order n! (isomorphic to the symmetric group Sn)generated by the

(

n2

)

hyperplanes

xi − xj = 0 1 ≤ i < j ≤ n.

The polynomial P(x) is given by the Vandermonde product

P(x) =∏

1≤i<j≤n

(xi − xj).

Page 19: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

Selberg integral

Macdonald’sconjectures

An−1Bn and DnI2(m)

Exceptionalgroups

An SelbergIntegral

The G -invariant polynomials are the symmetric polynomials in x ,generated by the elementary symmetric functions e1, . . . , en:

er (x) =∑

1≤i1<i2<···<ir≤n

xi1xi2 · · · xir

Hence the degrees are given by (d1, d2, . . . , dn) = (1, 2, . . . , n).

Macdonald’s conjecture for An−1 is thus

Rn

1≤i<j≤n

|xi − xj |2γ dϕ(x) =

n∏

i=1

Γ(iγ + 1)

Γ(γ + 1)

better known as Mehta’s integral.

This follows from the Selberg integral by taking

(α, β) = (ζ + 1, ζ + 1) ti =1

2

(

1 − xi√2ζ

)

ζ → ∞.

Page 20: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

Selberg integral

Macdonald’sconjectures

An−1Bn and DnI2(m)

Exceptionalgroups

An SelbergIntegral

The reflection groups Bn and Dn

In these two cases the Macdonald conjecture is

Rn

n∏

i=1

|xi |2γ∏

1≤i<j≤n

|x2i − x2

j |2γ dϕ(x) =

n∏

i=1

Γ(2iγ + 1)

Γ(γ + 1)

and

Rn

1≤i<j≤n

|x2i − x2

j |2γ dϕ(x) =Γ(nγ + 1)

Γ(γ + 1)

n−1∏

i=1

Γ(2iγ + 1)

Γ(γ + 1)

and follows again from the Selberg integral:

Bn : (α, β) = (γ + 1/2, ζ + 1) ti =x2i

2ζζ → ∞

Dn : (α, β) = (1/2, ζ + 1) ti =x2i

2ζζ → ∞

Page 21: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

Selberg integral

Macdonald’sconjectures

An−1Bn and DnI2(m)

Exceptionalgroups

An SelbergIntegral

The dihedral group I2(m)

I2(m) is the symmetry group of a regular m-gon,

The 3-gon, 4-gon and pentagon.

It is a group of order 2m generated by the m lines of reflection

√2x sin

( iπ

m

)

−√

2y cos( iπ

m

)

= 0 0 ≤ i ≤ m − 1.

The polynomial P(x , y) is given by

P(x , y) =

m−1∏

i=0

[√2y cos

( iπ

m

)

−√

2x sin( iπ

m

)]

= −21−m/2(−r)m sin(mφ).

Page 22: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

Selberg integral

Macdonald’sconjectures

An−1Bn and DnI2(m)

Exceptionalgroups

An SelbergIntegral

For I2(4) (symmetry group of the square) the invariant polynomialsare of the form

i ,j

cij(xy)2i (x2j + y2j)

generated by x2 + y2 and x2y2 of degree 2 and 4.

More generally, for I2(m) the invariant polynomials are generated by

x2 + y2

and

xm∑

i≥0

(

−y2

x2

)i(

m

2i

)

so that the degrees are 2 and m.

Page 23: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

Selberg integral

Macdonald’sconjectures

An−1Bn and DnI2(m)

Exceptionalgroups

An SelbergIntegral

Macdonald’s conjecture for I2(m) (in polar coordinates) is thus

22γ−mγ−1

π

∫ ∞

0

r2mγ+1e−r2/2dr

∫ 2π

0

|sin(mφ)|dφ

=Γ(2γ + 1)Γ(mγ + 1)

Γ2(γ + 1)

which is (almost) trivially true.

Page 24: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

Selberg integral

Macdonald’sconjectures

An−1Bn and DnI2(m)

Exceptionalgroups

An SelbergIntegral

The exceptional reflection groups

For E6, E7, E8, F4 the proof is hard but follows from a uniform prooffor all crystallographic reflection groups due to Opdam.

For the non-crystallographic groups H3 and H4 the proof is hard(Opdam, Garvan).

Page 25: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

An SelbergIntegral

An−1 versusA1The root systemAn

An Selbergintegral

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem II

q-BinomialTheorem III

Open Problems

An Selberg Integral

An−1 versus A1

We have seen that the Vandermonde product

∆(t) =∏

1≤i<j≤n

(ti − tj)

and hence also the Selberg integral

[0,1]n

n∏

i=1

tα−1i (1 − ti )

β−1∏

1≤i<j≤n

|ti − tj |2γdt

are connected to the reflection group An−1.

In the following we are going to depart from this point of view andwill label the Selberg integral by the Lie algebra or root system A1 asexplained below.

Page 26: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

An SelbergIntegral

An−1 versusA1The root systemAn

An Selbergintegral

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem II

q-BinomialTheorem III

Open Problems

The root system An

Recall that the reflection group An is generated by the(

n+12

)

hyperplanesxi − xj = 0 1 ≤ i < j ≤ n + 1.

Let ǫi be the ith standard unit vector in Rn+1.The normals ±(ǫi − ǫj) for 1 ≤ i < j ≤ n + 1 are known as roots andform the root system An.

The roots ai = ǫi − ǫi+1 for 1 ≤ i ≤ n form a basis in the root systemand are known as simple roots.

Page 27: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

An SelbergIntegral

An−1 versusA1The root systemAn

An Selbergintegral

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem II

q-BinomialTheorem III

Open Problems

ǫ1 − ǫ2

ǫ1 − ǫ3ǫ2 − ǫ3

−(ǫ1 − ǫ2)

−(ǫ2 − ǫ3)−(ǫ1 − ǫ3)

The root system A2 with simple roots in pink.

Page 28: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

An SelbergIntegral

An−1 versusA1The root systemAn

An Selbergintegral

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem II

q-BinomialTheorem III

Open Problems

The Cartan matrix C of An is given by

(

ai · aj

)

1≤i ,j≤n=

2 −1

−1 2 −1

−1. . .

. . . −1

−1 2

The An Dynkin diagram encodes the adjaceny matrix 2I − C :

1 2 n

Page 29: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

An SelbergIntegral

An−1 versusA1The root systemAn

An Selbergintegral

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem II

q-BinomialTheorem III

Open Problems

To each simple root as attach a set of variables

t(s) = (t(s)1 , . . . , t

(s)ks

)

such that 0 ≤ k1 ≤ k2 ≤ · · · ≤ kn.

Set k0 = kn+1 = 0 and let α, β1, . . . , βn, γ ∈ C subject to several mildrestrictions, such as

Re(α) > 0, Re(β1) > 0, . . . , Re(βn) > 0.

Set(α1, . . . , αn−1, αn) = (1, . . . , 1, α).

t(1) t(2) t(n)

α1=1 α2=1 αn=α

β1 β2 βn

Page 30: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

An SelbergIntegral

An−1 versusA1The root systemAn

An Selbergintegral

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem II

q-BinomialTheorem III

Open Problems

Define the generalised Vandermonde product

∆(u, v) =∏

i ,j≥1

(ui − vj)

and letC k1,...,kn [0, 1] ⊆ [0, 1]k1+···+kn

be an integration domain, somewhat too technical for a talk.

Page 31: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

An SelbergIntegral

An−1 versusA1The root systemAn

An Selbergintegral

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem II

q-BinomialTheorem III

Open Problems

An Selberg integral

C k1,...,kn [0,1]

n∏

s=1

ks∏

i=1

(

t(s)i

)αs−1(1 − t

(s)i

)βs−1

×n−1∏

s=1

∣∆(

t(s), t(s+1))∣

−γn

s=1

∣∆(

t(s))∣

2γdt(1) · · · dt(n)

=∏

1≤s≤r≤n

ks−ks−1∏

i=1

Γ(βs + · · · + βr + (i + s − r − 1)γ)

Γ(αr + βs + · · · + βr + (i + s − r + kr − kr+1 − 2)γ)

×n

s=1

ks∏

i=1

Γ(αs + (i − ks+1 − 1)γ)Γ(iγ)

Γ(γ).

Page 32: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

An SelbergIntegral

An−1 versusA1The root systemAn

An Selbergintegral

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem II

q-BinomialTheorem III

Open Problems

The q-binomial theorem I

For k ∈ N and z ∈ C the q-Pochhammer symbols are

(a; q)k = (1 − a)(1 − aq) · · · (1 − aqk−1)

(a; q)∞ = (1 − a)(1 − aq)(1 − aq2) · · ·

and

(a; q)z =(a; q)∞

(aqz ; q)∞.

Then the q-binomial theorem is given by

∞∑

k=0

(b; q)k(q; q)k

zk =(bz; q)∞(z; q)∞

.

Page 33: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

An SelbergIntegral

An−1 versusA1The root systemAn

An Selbergintegral

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem II

q-BinomialTheorem III

Open Problems

Let∫ 1

0

f (x)dqx = (1 − q)

∞∑

i=0

f (qi )qi

be the Jackson or q-integral.

f (1)f (q)

f (q2)

. . .

f (x)

x1qq2q3. . .0

Page 34: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

An SelbergIntegral

An−1 versusA1The root systemAn

An Selbergintegral

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem II

q-BinomialTheorem III

Open Problems

Then the q-binomial theorem with z = qα and b = qβ may bewritten as the q-beta integral

∫ 1

0

tα−1(tq; q)β−1 dqt =Γq(α)Γq(β)

Γq(α + β),

where Γq is the q-gamma function:

Γq(x) = (1 − q)1−x(q; q)x−1.

In the q → 1− limit the q-binomial theorem thus yields the Eulerbeta integral.

Page 35: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

An SelbergIntegral

An−1 versusA1The root systemAn

An Selbergintegral

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem II

q-BinomialTheorem III

Open Problems

Macdonald polynomials

Let x be an n-letter alphabet with letters x1, x2, . . . , xn and letλ = (λ1, . . . , λn) be a partition

λ =

The q-shift operator Tq,xiis defined as

Tq,xi

(

f (x))

= f (x1, . . . , xi−1, qxi , xi+1, . . . , xn).

and Macdonald’s commuting family {Dr}nr=0 of q-difference

operators is given by

Dr = t(r2)

I⊆[n]|I |=r

i∈Ij 6∈I

txi − xj

xi − xj

i∈I

Tq,xi.

Page 36: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

An SelbergIntegral

An−1 versusA1The root systemAn

An Selbergintegral

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem II

q-BinomialTheorem III

Open Problems

Defining the generating series of the Dr as

D(u; q, t) =

n∑

r=0

Drur

the Macdonald polynomials Pλ(x ; q, t) are the eigenfunctions ofD(u; q, t) with eigenvalue

n∏

i=1

(1 + utn−iqλi ).

For q = t the Macdonald polynomials simplify to the well-knownSchur functions

Pλ(x ; t, t) = sλ(x) =det1≤i ,j≤n(x

λj+n−j

i )

det1≤i ,j≤n(xn−ji )

.

Page 37: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

An SelbergIntegral

An−1 versusA1The root systemAn

An Selbergintegral

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem II

q-BinomialTheorem III

Open Problems

Cauchy identity

Given a partition λ, each of its squares s is assigned four integers,known as the arm-length a(s), leg-length l(s), arm-colength a′(s)and leg-colength l ′(s).

The arm-length of is 4. The leg-length of is 3.The arm- and leg-colengths of are both 2.

Page 38: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

An SelbergIntegral

An−1 versusA1The root systemAn

An Selbergintegral

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem II

q-BinomialTheorem III

Open Problems

The Cauchy identity for Macdonald polynomials is

λ

Pλ(x ; q, t)Pλ(y ; q, t)∏

s∈λ

1 − qa(s)t l(s)+1

1 − qa(s)+1t l(s)

=∏

i ,j≥1

(txiyj ; q)∞(xiyj ; q)∞

.

When q = t this reduces to the well-known Cauchy determinant

det1≤i≤j≤n

( 1

1 − xiyj

)

=∆(x)∆(y)n

i ,j=1

(1 − xiyj)

.

Page 39: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

An SelbergIntegral

An−1 versusA1The root systemAn

An Selbergintegral

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem II

q-BinomialTheorem III

Open Problems

The q-binomial theorem II

The power sums pr are given by p0 = 1 and

pr (x) =∑

i≥1

x ri .

The map ǫb,t — acting on symmetric functions of y — is defined byits action on the pr :

ǫb,t

(

pr (y))

=1 − br

1 − tr.

A theorem of Macdonald states that

ǫb,t

(

Pλ(y ; q, t))

=∏

s∈λ

t l′(s) − b qa′(s)

1 − qa(s)t l(s)+1.

Page 40: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

An SelbergIntegral

An−1 versusA1The root systemAn

An Selbergintegral

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem II

q-BinomialTheorem III

Open Problems

It may also be shown that

ǫb,t

(

i ,j≥1

(txiyj ; q)∞(xiyj ; q)∞

)

=∏

i≥1

(b xi ; q)∞(xi ; q)∞

.

Applying the map ǫb,t to the Cauchy identity we thus obtain ann-dimensional analogue of the q-binomial theorem:

λ

Pλ(x ; q, t)∏

s∈λ

t l′(s) − b qa′(s)

1 − qa(s)+1t l(s)=

n∏

i=1

(b xi ; q)∞(xi ; q)∞

If n = 1 then x = (x1), λ = (k) and

P(k)(x ; q, t) = xk1 ,

s∈λ

t l′(s) − b qa′(s)

1 − qa(s)+1t l(s)=

(b; q)k(q; q)k

so that we recover the classical q-binomial theorem (with z → x1).

Page 41: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

An SelbergIntegral

An−1 versusA1The root systemAn

An Selbergintegral

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem II

q-BinomialTheorem III

Open Problems

Taking

xi = qα+γ(n−i) for 1 ≤ i ≤ n

t = qγ

b = qβ

in the n-dimensional q-binomial theorem yields an n-dimensionalq-integral, generalising the q-beta integral.

In the q → 1− limit this gives the Selberg integral.

To prove the An Selberg integral we need a further generalisation ofthe q-binomial theorem!

Page 42: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

An SelbergIntegral

An−1 versusA1The root systemAn

An Selbergintegral

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem II

q-BinomialTheorem III

Open Problems

The q-binomial theorem III

One may prove a q-binomial theorem of the form

λ(1),...,λ(n)

Pλ(1)(x (1); q, t) · · ·Pλ(n)(x (n); q, t)

×(

stuff with arms and legs)

= infinite product

with x (s) = (x(s)1 , . . . , x

(s)ks

) and k1 ≤ k2 ≤ · · · ≤ kn.

⇒ A (k1 + · · · + kn)-dimensional q-integral

⇒ The An Selberg integral.

Page 43: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

An SelbergIntegral

An−1 versusA1The root systemAn

An Selbergintegral

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem II

q-BinomialTheorem III

Open Problems

Open problems

Can we evaluate the integral

Z

Ck1,...,kn [0,1]

nY

s=1

ksY

i=1

`

t(s)i

´αs−1`

1 − t(s)i

´βs−1

×

n−1Y

s=1

˛

˛∆`

t(s)

, t(s+1)

´˛

˛

−γn

Y

s=1

˛

˛∆`

t(s)

´˛

˛

2γdt

(1)· · · dt

(n)

when(α1, . . . , αn−1, αn) 6= (1, . . . , 1, α)?

Can we remove the ordering

0 ≤ k1 ≤ k2 ≤ · · · ≤ kn ?

Can we generalise to other root systems and/or reflectiongroups?

Page 44: Beta Integrals

Beta Integrals

Euler BetaIntegral

Selberg Integral

An SelbergIntegral

An−1 versusA1The root systemAn

An Selbergintegral

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem I

q-BinomialTheorem II

q-BinomialTheorem III

Open Problems

The End