(bivariate probability distributions)

43
統計學(一) 第六章 雙變量機率函數 (Bivariate Probability Distributions) 授課教師:唐麗英教授 國立交通大學 工業工程與管理學系 聯絡電話:(03)5731896 e-mail[email protected] 2013 ☆ 本講義未經同意請勿自行翻印 ☆ 統計學(一)唐麗英老師上課講義 1

Upload: donga

Post on 05-Jan-2017

252 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: (Bivariate Probability Distributions)

統計學(一)

第六章 雙變量機率函數

(Bivariate Probability Distributions)

授課教師:唐麗英教授

國立交通大學 工業工程與管理學系

聯絡電話:(03)5731896

e-mail:[email protected]

2013

☆ 本講義未經同意請勿自行翻印 ☆

統計學(一)唐麗英老師上課講義 1

Page 2: (Bivariate Probability Distributions)

本課程內容參考書目

• 教科書

– Mendenhall, W., & Sincich, T. (2007). Statistics for engineering and the sciences, 5th Edition. Prentice Hall.

• 參考書目

– Berenson, M. L., Levine, D. M., & Krehbiel, T. C. (2009). Basic business statistics: Concepts and applications, 11th Edition. Upper Saddle River, N.J: Pearson Prentice Hall.

– Larson, H. J. (1982). Introduction to probability theory and statistical inference, 3rd Edition. New York: Wiley.

– Miller, I., Freund, J. E., & Johnson, R. A. (2000). Miller and Freund's Probability and statistics for engineers, 6th Edition. Upper Saddle River, NJ: Prentice Hall.

– Montgomery, D. C., & Runger, G. C. (2011). Applied statistics and probability for engineers, 5th Edition. Hoboken, NJ: Wiley.

– Watson, C. J. (1997). Statistics for management and economics, 5th Edition. Englewood Cliffs, N.J: Prentice Hall.

– 林惠玲、陳正倉(2009),「統計學:方法與應用」,第四版,雙葉書廊有限公司。

– 唐麗英、王春和(2013),「從範例學MINITAB統計分析與應用」,博碩文化公司。

– 唐麗英、王春和(2008),「SPSS 統計分析 14.0 中文版」,儒林圖書公司。

– 唐麗英、王春和(2007),「Excel 2007統計分析」,第二版,儒林圖書公司。

– 唐麗英、王春和(2005),「STATISTICA6.0與基礎統計分析」,儒林圖書公司。

– 陳順宇(2004),「統計學」,第四版,華泰書局。

– 彭昭英、唐麗英(2010),「SAS123」,第七版,儒林圖書公司。

統計學(一)唐麗英老師上課講義 2

Page 3: (Bivariate Probability Distributions)

間斷型與連續型雙變量機率函數 (Bivariate Probability Distributions for

Discrete & Continuous Random Variables)

統計學(一)唐麗英老師上課講義 3

Page 4: (Bivariate Probability Distributions)

Bivariate Probability Distributions

• Def: Random Vector

– Suppose that 𝐒 is the sample space associated with an experiment.

– Let 𝐗 = 𝐗(𝛚) and 𝐘 = 𝐘(𝛚) be two functions each assigning a real

number to every point 𝛚 of 𝐒. Then (𝐗, 𝐘) is called a two-dimensional

random vector (or we say that 𝐗, 𝐘 are jointly distributed random

variables).

• Remark

– If 𝐗𝟏 = 𝐗𝟏 𝛚 ,𝐗𝟐 = 𝐗𝟐 𝛚 ,… , 𝐗𝐧 = 𝐗𝐧 𝛚 are n functions each

assigning a real number to every outcome, we call (𝐗𝟏, 𝐗𝟐, … , 𝐗𝐧) an

n-dimensional random vector (or we say 𝐗𝟏, 𝐗𝟐, … , 𝐗𝐧 are jointly

distributed random variables).

統計學(一)唐麗英老師上課講義 4

Page 5: (Bivariate Probability Distributions)

Bivariate Probability Distributions

• Def: Joint Probability Mass Function for Discrete Random

Variables

– Suppose that X and Y are discrete random variables defined on the same

probability space and that they take on values x1, x2, … , and y1, y2, … , respectively.

– Their joint probability mass function 𝐏(𝐗, 𝐘) is

– The joint probability mass function must satisfy the following conditions:

1) 𝐏 𝐗 = 𝐱, 𝐘 = 𝐲 ≥ 𝟎 . ∀(𝐱, 𝐲) ∈ 𝐑

2) 𝐏 𝐗 = 𝐱, 𝐘 = 𝐲𝐚𝐥𝐥 𝐲𝐚𝐥𝐥 𝐱 = 𝟏

𝐏 𝐱, 𝐲 = 𝐏(𝐗 = 𝐱, 𝐘 = 𝐲)

統計學(一)唐麗英老師上課講義 5

Page 6: (Bivariate Probability Distributions)

Bivariate Probability Distributions

• How to find the joint probability mass function for the

discrete 𝐗 and 𝐘 ?

– Construct a table listing each value that the R.V. 𝐗 and 𝐘 can assume.

Then find 𝐩(𝐱, 𝐲) for each combination of 𝐏(𝐗, 𝐘).

• Example 1 :

– Toss a fair coin 3 times. Let 𝐗 be the number of heads on the first toss

and 𝐘 the total number of heads observed for the three tosses.

– What is the joint probability mass function of (𝐗, 𝐘)?

統計學(一)唐麗英老師上課講義 6

Page 7: (Bivariate Probability Distributions)

Bivariate Probability Distributions

Y P(X=x)

0 1 2 3

X 0 1/8 2/8 1/8 0 4/8

1 0 1/8 2/8 1/8 4/8

P(Y=y) 1/8 3/8 3/8 1/8 1

S = { HHH , HHT ,… , TTT }

Note:

Each entry represents a P(x, y). e.g.,

• P(0, 2) = P(X=0, Y=2) = 1/8

• P(1, 0) = P(X=1, Y=0) = 0

Sometimes we are interested in only the probability mass function for X or for Y.

i.e., PX x = P X = x or PY y = P(Y = y)

For instance, in example 1,

In general, the marginal functions can be found by

PY 0 = P Y = 0 = P X = 0, Y = 0 + P X = 1, Y = 0 =1

8+ 0 =

1

8

PY 1 = P Y = 1 = P X = 0, Y = 1 + P X = 1, Y = 1 =2

8+1

8=3

8

PX x = P X = x = P(X = x, Y = y)𝑦

PY y = P Y = y = P(X = x, Y = y)𝑥

統計學(一)唐麗英老師上課講義 7

Page 8: (Bivariate Probability Distributions)

Bivariate Probability Distributions

• How to find the Marginal Probability function from the

table?

1) To find PY y , sum down the appropriate column of the table.

2) To find PX x , sum across the appropriate row of the table.

• Note

– Since PY(y) and PX(x) are located in the row and column “margins”,

these distributions are called marginal probability functions.

統計學(一)唐麗英老師上課講義 8

Page 9: (Bivariate Probability Distributions)

Bivariate Probability Distributions

• Example 2 :

– In example1, find the marginal probability functions for X and Y.

Y P(X=x)

0 1 2 3

X 0 1/8 2/8 1/8 0 4/8

1 0 1/8 2/8 1/8 4/8

P(Y=y) 1/8 3/8 3/8 1/8 1

PY 0 = P Y = 0 =1

8

PY 1 = P Y = 1 =3

8

PY 2 = P Y = 2 =3

8

PY 3 = P Y = 3 =1

8

PX x =4

8 , for x = 0,1

統計學(一)唐麗英老師上課講義 9

Page 10: (Bivariate Probability Distributions)

Bivariate Probability Distributions

• Def: Joint Probability Density Function for Continuous

Random Variables

– Suppose that 𝐗 and 𝐘 are jointly distributed continuous random variables.

Their joint density function is a piecewise continuous function of two

variables, f(x, y), such that for any “ reasonable ” two-dimensional set A

• The joint probability density function must satisfy the

following conditions

1) f(x, y) ≥ 𝟎 . ∀(𝐱, 𝐲) ∈ 𝐑

2) f(x, y)dxdyall xall y= 𝟏

P 𝐗, 𝐘 ∈ 𝐀 = f x, y dydxA

統計學(一)唐麗英老師上課講義 10

Page 11: (Bivariate Probability Distributions)

Bivariate Probability Distributions

• The marginal density function for X and Y are

1) fX x = f x, y dyall y

2) fY y = f x, y dxall x

• Note

– In the discrete case, the marginal mass function was found by

summing the joint probability mass function over the other

variable; in the continuous case, it is found by integration.

統計學(一)唐麗英老師上課講義 11

Page 12: (Bivariate Probability Distributions)

Bivariate Probability Distributions

• Example 3 :

– Assume (X, Y) is a 2-dimensional continuous random vector with the

following joint density function

fXY x, y = c if 5 < 𝑥 < 10, 4 < 𝑦 < 9

= 0 otherwise

a) Find c.

b) Find the marginal density functions for X and Y.

統計學(一)唐麗英老師上課講義 12

Page 13: (Bivariate Probability Distributions)

Bivariate Probability Distributions

• Solution

統計學(一)唐麗英老師上課講義 13

Page 14: (Bivariate Probability Distributions)

Bivariate Probability Distributions

• Example 4 :

if f x, y = 2 if 0 < 𝑥 < 𝑦, 0 < 𝑦 < 1 = 0 otherwise

• Solution

a) Find fX x b) Find fY y c) P(X<1, Y<1) d) P(X < Y)

統計學(一)唐麗英老師上課講義 14

Page 15: (Bivariate Probability Distributions)

Bivariate Probability Distributions

• Example 5 :

– Suppose that the joint p.d.f. of X and Y is specified as follows:

• Solution

<

<

統計學(一)唐麗英老師上課講義 15

Page 16: (Bivariate Probability Distributions)

Bivariate Probability Distributions

• Example 6 : The density function of X and Y is given by

a) Find fX x b) P( X > 1, Y < 1 ) c) P( X < a )

• Solution

, a > 0

統計學(一)唐麗英老師上課講義 16

Page 17: (Bivariate Probability Distributions)

Bivariate Probability Distributions

• Solution

c)

(a > 0)

統計學(一)唐麗英老師上課講義 17

Page 18: (Bivariate Probability Distributions)

雙變量機率函數之期望值與共變異數 (The Expected values and Covariance for

Jointly Distribution Random Variables)

統計學(一)唐麗英老師上課講義 18

Page 19: (Bivariate Probability Distributions)

Expected values and Covariance

• Recall: The Expected value of a Random variable

– E X = x‧P(x)X if X is a discreate random variable.

– E X = xX ‧f x dx if X is a continuous R. V.

• Remark: In general

– E[g x ] = g(x)‧P(x)X if X is a 𝐝𝐢𝐬𝐜𝐫𝐞𝐚𝐭𝐞 random variable.

= g(x)X‧f x dx if X is a 𝐜𝐨𝐧𝐭𝐢𝐧𝐮𝐨𝐮𝐬 random variable.

統計學(一)唐麗英老師上課講義 19

Page 20: (Bivariate Probability Distributions)

Expected values and Covariance

• Theorem: If X and Y are independent , then

統計學(一)唐麗英老師上課講義 20

Page 21: (Bivariate Probability Distributions)

Expected values and Covariance

• Recall

• Def: The Covariance of any two variable X and Y is

• Example 1: Show that Cov(X,Y)=E(XY)-E(X)E(Y)

統計學(一)唐麗英老師上課講義 21

Page 22: (Bivariate Probability Distributions)

Expected values and Covariance

• Theorem

– If X and Y are independent , then Cov(X,Y)=0

• Question

– If Cov(X,Y)=0, X,Y are independent?? NO!!

• Remark

– If Cov(X,Y)=0, X and Y may not be independent.

統計學(一)唐麗英老師上課講義 22

Page 23: (Bivariate Probability Distributions)

Expected values and Covariance

• Example 2: (Counterexample)

– Let X,Y be discrete random variable with P(X=x, Y=y) as follows:

a) Find Cov(X,Y)

b) Are X and Y independent?

X Y -1 0 1 PX(x)

-1 1/8 1/8 1/8 3/8

0 1/8 0 1/8 2/8

1 1/8 1/8 1/8 3/8

PY(y) 3/8 2/8 3/8 1

統計學(一)唐麗英老師上課講義 23

Page 24: (Bivariate Probability Distributions)

Expected values and Covariance

• Solution

a)

b)

統計學(一)唐麗英老師上課講義 24

Page 25: (Bivariate Probability Distributions)

雙變量機率函數之獨立性與相關性

(Independence and Conditional

Distributions)

統計學(一)唐麗英老師上課講義 25

Page 26: (Bivariate Probability Distributions)

Independence and conditional Distributions

• Def: Independent random variables

– X and Y are independent random variables if and only if

P(X∈A, Y∈B)= P(X∈A)‧P(Y∈B)

• Theorem

– X and Y are independent random variables if and only if

FXY X, Y = FX X ‧FY Y

• Corollary

1) If X and Y are independent discrete random variables, then

P(X=x, Y=y)= P(X=x)‧P(Y=y)= PX x ‧PY y

2) If X and Y are independent continuous random variables, then

f(x,y)= fX x ‧fY y

統計學(一)唐麗英老師上課講義 26

Page 27: (Bivariate Probability Distributions)

Independence and conditional Distributions

• Example 1 :

Are X and Y are independent?

• Solution

統計學(一)唐麗英老師上課講義 27

Page 28: (Bivariate Probability Distributions)

Independence and conditional Distributions

• Example 2 : Let X and Y be continuous random variables with

Are X and Y are independent?

• Solution:

統計學(一)唐麗英老師上課講義 28

Page 29: (Bivariate Probability Distributions)

Independence and conditional Distributions

• Example 3 : Let X and Y be continuous random variables with

Are X and Y are independent?

• Solution:

0 < x < 1

統計學(一)唐麗英老師上課講義 29

Page 30: (Bivariate Probability Distributions)

Independence and conditional Distributions

• Conditional Distributions

Recall: P(A B)= P(A∩B)

P(B)

統計學(一)唐麗英老師上課講義 30

Page 31: (Bivariate Probability Distributions)

Independence and conditional Distributions

• Example 4 :

– Let X,Y be discrete random variable with P(X=x, Y=y) as follows, find

the conditional probability function of X given Y=1.

• Solution

X Y 0 1 2 3 PX(x)

0 1/8 2/8 1/8 0

1 0 1/8 2/8 1/8

3/8

統計學(一)唐麗英老師上課講義 31

Page 32: (Bivariate Probability Distributions)

Independence and conditional Distributions

• Example 5 : The density function of X and Y is given by

• Solution

統計學(一)唐麗英老師上課講義 32

Page 33: (Bivariate Probability Distributions)

雙變量機率函數之共變異數與相係數

(Covariance and Correlation)

統計學(一)唐麗英老師上課講義 33

Page 34: (Bivariate Probability Distributions)

Covariance and Correlation

Two measures of association between two random variables:

1) Covariance

Theorem 1 : 𝐂𝐨𝐯 𝐗, 𝐘 = 𝐄 𝐗𝐘 − 𝛍𝐗𝛍𝐘

=

統計學(一)唐麗英老師上課講義 34

Page 35: (Bivariate Probability Distributions)

Covariance and Correlation

2) Correlation

統計學(一)唐麗英老師上課講義 35

Page 36: (Bivariate Probability Distributions)

Covariance and Correlation

FIGURE 6.4

Linear relationships between X and Y

統計學(一)唐麗英老師上課講義 36

Page 37: (Bivariate Probability Distributions)

Covariance and Correlation

• Theorem 2

– If X and Y are independent, then 𝐂𝐨𝐯 𝐗, 𝐘 = 𝛒 𝐗, 𝐘 = 𝟎.

• Proof

統計學(一)唐麗英老師上課講義 37

Page 38: (Bivariate Probability Distributions)

Covariance and Correlation

• Example 1: Dependent but Uncorrelated Random Variables

– Suppose that the random variable X can take only the three values -1, 0

and 1, and that each of these three values has the same probability. Also,

let Y = X2.

a) Find COV(X, Y)

b) Are X and Y independent?

統計學(一)唐麗英老師上課講義 38

Page 39: (Bivariate Probability Distributions)

Covariance and Correlation

• Solution

統計學(一)唐麗英老師上課講義 39

Page 40: (Bivariate Probability Distributions)

Covariance and Correlation

• Theorem 3:

– Suppose that X is a random variable such that 0 ≤ σX2 ≤ ∞, and that

𝐘 = 𝐚𝐗 + 𝐛 for some constants a and b, where a ≠ 0. If a > 0, then ρ X, Y = +1. If a < 0, then ρ X, Y = −1.

(That is, if Y is a linear function of X, then X and Y must be correlated

and 𝛒 𝐗, 𝐘 = 𝟏)

統計學(一)唐麗英老師上課講義 40

Page 41: (Bivariate Probability Distributions)

Covariance and Correlation

• Theorem 4: If X and Y are random variables, then

– Var X + Y = Var X + Var Y + 2Cov X, Y

(provide that Var X < ∞ 𝑎𝑛𝑑 𝑉𝑎𝑟 Y < ∞)

統計學(一)唐麗英老師上課講義 41

Page 42: (Bivariate Probability Distributions)

Covariance and Correlation

• Remark

1) Cov aX, bY = ab ∙ Cov X, Y .

2) Var aX + bY + c = a2Var X + b2Var Y + 2ab ∙ Cov X, Y .

3) Var X − Y = Var X + Var Y − 2Cov(X, Y)

• Theorem 5

– If X1, X2, ⋯ , Xn are random variables and Var Xi < ∞,

for i = 1,⋯ , n, then

Var Xi = Var(X)

n

i=1

+ 2 Cov Xi, Yji<𝑗

統計學(一)唐麗英老師上課講義 42

Page 43: (Bivariate Probability Distributions)

本單元結束

統計學(一)唐麗英老師上課講義 43