断熱材の熱特性 ~熱伝導率および比熱測定~ · 2011-05-09 · with the corrected...

32
断熱材の熱特性 断熱材の熱特性 ~熱伝導率および比熱測定~ ~熱伝導率および比熱測定~ ニチアス㈱ 浜松研究所 大村 高弘

Upload: others

Post on 06-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 断熱材の熱特性断熱材の熱特性~熱伝導率および比熱測定~~熱伝導率および比熱測定~

    ニチアス㈱浜松研究所

    大村 高弘

  • 講演内容講演内容

    l熱伝導率測定における問題点とそれに対する取り組み

    l各種熱伝導率測定方法と測定結果の比較

    l熱伝導率の推定式

    l断熱材の比熱測定

  • 断熱材の熱伝導率測定に関する問題点断熱材の熱伝導率測定に関する問題点

    l標準物質がない→装置間の誤差

    精度確認ができない。

    l広い温度領域における断熱材の熱伝導率や比熱が正確に示されていない。

    特に800℃以上の高温や真空下のデータ。

  • 300 400 500 600 700 800-15

    -10

    -5

    0

    5

    10

    15

    20

    Temperature [K]

    (λob

    s-λ

    calc

    )×10

    0/λ

    calc

    Fig. 1 Deviations of thermal conductivity round-robin test results from values calculated with the corrected equation for fibrous almina-

    silica.

    300 400 500 600 700 800-25-20-15-10

    -505

    1015

    Temperature [K]

    (λob

    s-λ

    calc)×

    100/λ

    calc

    Fig. 2 Deviations of thermal conductivity round-robin test results from values

    calculated with the corrected equation for calcium silicate.

  • 熱伝導率の測定精度向上にた取り組み熱伝導率の測定精度向上にた取り組み

    1. 各種測定法が可能な装置の開発:定常法と非定常法の比較 定 常 法:保護熱板法保護熱板法

    非定常法:非定常熱線法、周期加熱法、ホットディスク法非定常熱線法、周期加熱法、ホットディスク法

    2. 2. 精度の高い推定式の提案精度の高い推定式の提案::温度と嵩密度の関数温度と嵩密度の関数

    1. 異種測定法による結果を比較

    2. 測定結果と推定式による結果との比較

  • 間接加熱法

    直接加熱法

    定常法 軸方向定常熱流 絶対法

    比較法

    経方向定常熱流

    縦型絶対法

    平板絶対法

    可動間隙法

    絶対法 同心円筒法

    縦型比較法

    平板比較法

    同心球法

    比較法 同心円筒法

    軸方向非定常熱流非定常法

    経方向非定常熱流

    パルス状加熱法

    ステップ状加熱法

    波面分割干渉法

    周期加熱法

    光音響法

    強制レーリー散乱法(パルス状加熱)

    ラプラス変換法(平板)(任意加熱)

    定速昇温法

    熱線法(ステップ状加熱)

    ラプラス変換法(円筒)

    定常法

    非定常法

    軸方向熱流

    軸方向熱流

    径方向熱流

    (Kohlrausch法, 積分法)

    (Angell法)

    (物性値同時測定法)

  • Fig. 3 Schematic of the Guarded Hot Plate method (GHP method)

    (a) Solid figure of Double-side mode of operation

    Guard heater

    Specimen

    Specimen

    Cooling heater

    Cooling heater

    Gap

    Metering sectionheater

    Specimen

    Guard heater

    Cooling heater

    Cooling heater

    Heat flow

    Metering section

    SpecimenGuard heater

    Auxiliary heater

    Cooling heater

    Heat flow

    InsulationMetering section

    heater heaterHeat flow

    (b) Single-side mode of operation (c) Double-side mode of operation

    Q =λ θ1-θ2

    d

  • Hot Wire

    Thermocouple

    Specimen

    Fig. 4 Schematic of the Hot Wire method

    Polyimide sheet

    Nickel

    Heating part

    Electrode

    Fig. 5 Schematic of sensor in Hot Disk method.

    Specimen

    λ=4π

    Q

    θ2-θ1

    ln t2/t1

    λ=π3/2a

    Q

    ΔT τ

    D τ

  • Specimen cross section

    Tem

    pera

    ture

    (℃) 1010

    1000

    990

    Time (hour)

    5~10℃

    3~6℃

    Thermal sensor1

    Thermal sensor2

    Thermal sensor3

    Heat waves

    Top half of specimen

    Bottomhalf of specimen

    Thermal sensor2

    Thermal sensor1

    Thermal sensor3

    20

    20

    φ:time lag, T:period, κ:thermal diffusivity, ρ:densityλ:thermal conductivity.

    φ=argsinhkL 1+isinhkx 1+i

    A=As

    Aj=

    cosh2kL-cos2kL

    cosh2kx-cos2kx

    κ=2k2ω

    ω=2πT

    λ=ρcκ

  • 熱伝導率測定装置

  • 測定装置(測定装置(GHPGHP法)法)Water tank

    Thermal insulation

    Specimen

    Auxiliary heater

    Metering

    Guard heater

    Cylindricalheater

    Cooling unit

    Bell glass

    Vacuum pump

    Temperature controller

    Scanner

    Digital multimeter

    Computer

    heatersection

    Thermal insulation

    Thermal insulation

    120

    200

    250

    Water tank

  • 測定装置(周期加熱法、非定常熱線法)

    Water tank

    Insulation

    Specimen

    InsulationAuxiliary heater

    Cylindricalheater Cooling unit

    Insulation

    BellGlass

    Vacuum pumpScanner

    Digital Multimeter

    Computer

    Temperature Controller

    Function Generator

    Cyclic heaterSpecimen

    Hot Wire

  • Table 2-3 Developped measuring apparatus. Apparatus Property Principle of measurement Temperature

    range [℃] C 170 Thermal conductivity

    Thermal diffusivity Specific heat

    Transient hot-wire method Cyclic heat method Hot Disk method

    -170~40

    H1000 Thermal conductivity Thermal diffusivity

    Transient hot-wire method Cyclic heat method

    100~1000

    HV1000 Thermal conductivity Thermal diffusivity

    Transient hot-wire method Cyclic heat method

    100~1000

    H1300 Thermal conductivity Thermal diffusivity

    Guarded hot plate method Cyclic heat method

    100~1300

    S1000 Specific heat Drop caloriemeter method 100~1000

    Table 2-4 Measurment error of each method Method of

    measurement Error [%]

    Guarded hot plate method

    6

    Transient hot-wire method

    5

    Cyclic heat method Under 10 (depending on specimen)

    Hot Disk method

    Thermal conductivity :3 Thermal diffusivity :7 Specific heat :3

    Drop caloriemeter method

    8

  • 0 200 400 600 800 10000

    0.1

    0.2

    0.3

    0.4

    Temperature [℃]

    Ther

    mal

    con

    duct

    ivity

    [W/(m

    K)]

    ・:Transient hot-wire method:Cyclic heat method

    +10%

    -10%

    Least squares approximation by a quadratic equation

    ρ=393 kg/m3

    Fig. 6 Thermal conductivity of lightweight insulation with bulk

    density ρ=393 kg/m3.

    Al2O3:SiO2:Fe2O3=27:32:6

    0 200 400 600 800 10000

    0.1

    0.2

    0.3

    0.4

    Temperature [℃]

    Ther

    mal

    con

    duct

    ivity

    [W/(m

    K)]

    ・:Transient hot-wire method:Cyclic heat method

    +10%

    -10%

    Least squares approximation by a quadratic equation

    ρ=458 kg/m3

    Fig. 7 Thermal conductivity of lightweight insulation with bulk

    density ρ=458 kg/m3.

  • 0 500 10000

    0.1

    0.2

    0.3

    0.4

    Least squares approximation by a quadratic equation

    Temperature [℃]

    Ther

    mal

    con

    duct

    ivity

    [W/(m

    K)]

    +10%

    +10%

    -10%

    -10%Atmosphericpressure

    1.3 Pa

    :GHP method under atmosferic pressure:Cyclic heat method under

    atmosferic pressure:GHP method under 1.3 Pa:Cyclic heat method under 1.3 Pa

    Fig. 8 Thermal conductivity of alumina fiber insulation with bulk density ρ= 205

    kg/m3.

    H1300を使った測定比較

    0 500 10000

    0.1

    0.2

    0.3

    0.4

    Temperature [℃]

    Ther

    mal

    con

    duct

    ivity

    [W/(m

    K)]

    Atmospheric pressure

    1.3 Pa

    +10%

    +10%

    -10%

    -10%

    :H1000(Atmospheric pressure):H1300(Atmospheric pressure):H1000(1.3Pa):H1300(1.3Pa)

    Fig. 9 Comparison thermal conductivity of alumina fiber insulation (ρ= 205 kg/m3) by

    H1000 with H1300 using cyclic heat method.

  • 異種測定法間の差異種測定法間の差

    l保護熱板法、非定常熱線法、周期加熱法、ホットディスク法に関して、同一試験体であれば、測定結果は±10%以内で一致する。

    未知の材料に適用可能

  • 推定式の結果と測定結果の推定式の結果と測定結果の比較による精度向上比較による精度向上

    測定精度の高い高嵩密度断熱材のデータから推定式を作成

    なぜ推定式が必要か?

    低嵩密度(20kg/m3以下)断熱材は、ふく射エネルギーを透過させてしまうため、測定誤差が大きい。装置に依存してしまう。

    異種測定法によるチェックが難しい

    測定結果と推定結果を比較

    精度向上

  • 従来の推定式と問題点従来の推定式と問題点

    最も実用的な式a, b, cは係数ρは嵩密度c

    ba ++=ρ

    ρλ

    *その他の数多くの推定式

    箇々の素材の熱物性値や素材同士の接触熱抵抗を必要としている

    開発スピードについて行けず、実用性に欠ける

  • 従来の推定式の問題点従来の推定式の問題点

    1. 温度の関数になっていない

    2. 嵩密度のみの関数:他の情報(固体、ふく射、気体による伝熱効果)が得られない

    3. 高嵩密度試験体で推定式を作成すると、低嵩密度側は外挿になるため、推定精度が悪い

    試験体ごとに、最小自乗法を使って係数a, b, c を導出しているため

    根本的な原因

  • 0 50 100 150 200 250 3000

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    Bulk density [kg/m3]

    Ther

    mal

    con

    duct

    ivity

    [W/(m

    K)] :Measured values at 200℃

    :Measured values at 300℃:Measured values at 400℃:Calculated line using all data at 200℃:Calculated line using all data at 300℃:Calculated line using all data at 400℃:Calculated line using 5 data at 200℃:Calculated line using 5 data at 300℃:Calculated line using 5 data at 400℃

    Fig. 10 Calculated results by least square method.

  • 係数係数UUおよびおよびVV00のの決定決定

    真空下の熱伝導率λv:

    λv

    T 3Aρ

    B /ρ

    ρ

    切片=Aρ切片

    A

    傾き=B/ρ傾き

    B

    1/ρ

    3TBAv ρρλ +=

  • 0 100 200 300 400 500 6000

    0.01

    0.02

    0.03

    0.04

    0.05

    Third power of absolute temperature [K3]

    Ther

    mal

    con

    duct

    ivity

    [W/(m

    K)]

    [×106]

    :166kg/m3:293kg/m3:288kg/m3:227kg/m3

    Fig. 11 Thermal conductivity of rock wool with four kinds of bulk density under evacuated condition (2 Pa).

  • 0 100 200 3000

    0.005

    0.010

    0.015

    Bulk density [kg/m3]

    Inte

    rcep

    t of s

    olid

    line

    in F

    ig. 5

    -8

    [W

    /(m K

    )]

    Least squares approximation by a linear equation

    Fig. 12 Intercepts of each line in Fig. 11 vs. bulk density.

    0 0.002 0.004 0.006 0.0080

    2

    4

    6

    8

    10

    12

    14

    Reciprocal of bulk density [m3/kg]

    Gra

    dien

    t of s

    olid

    line

    in F

    ig. 5

    -8

    [

    W/(m・

    K4 ]

    [×105]

    Least squares approximation by a linear equation

    Fig. 13 Gradients of each line in Fig. 11 vs. reciprocal of bulk density.

  • 0 50 100 150 200 250 3000.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    Bulk density [kg/m3]

    Ther

    mal

    con

    duct

    ivity

    [W/(m

    K)]

    :Measured values at 20℃:Measured values at 60℃:Measured values at 100℃:Calculated line by Eq.(5-36) at 20℃:Calculated line by Eq.(5-36) at 60℃:Calculated line by Eq.(5-36) at 100℃

    Fig. 14 Thermal conductivity of rock wool.

    0 50 100 150 200 250 3000

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    Bulk density [kg/m3]

    Ther

    mal

    con

    duct

    ivity

    [W/(m

    K)]

    :Measured values at 200℃:Measured values at 300℃:Measured values at 400℃:Calculated line by Eq.(5-36) at 200℃:Calculated line by Eq.(5-36) at 300℃:Calculated line by Eq.(5-36) at 400℃

    Fig. 15 Thermal conductivity of rock wool.

  • 0 50 100 150 200 2500

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    Bulk density [kg/m3]

    Ther

    mal

    con

    duct

    ivity

    [W/(m

    K)]

    100℃200℃300℃

    400℃

    500℃

    600℃・

    Fig. 16 Comparison of reference data with calculated results.

  • 真比熱と平均比熱真比熱と平均比熱

    ( )basesss

    st HHdd

    mc −= 1

    1

    1θ真比熱

    21

    211

    ss

    ss

    ssm

    HHm

    cθθ −

    −=平均比熱

  • ① Cylindrical heater

    ② Specimen

    ③ Digital multimeter

    ④ Temperature controller

    ⑤-1 Thermocouple

    ⑥ Measuring water tank

    ⑦ Monitoring water tank

    ⑧ Support plate⑨ Personal computer

    ①②

    ⑤-2

    ⑤-1152

    275

    140

    7 00

    250

    600

    φ89

    φ191

    ⑤-2 Thermocouple

    Fig. 17 Schematic of specific heat measuring apparatus (Type: S1000)

  • 0 200 400 600 800 1000 12000

    200

    400

    600

    800

    1000

    1200

    1400

    Temperature [℃]

    Enth

    alpy

    [kJ/

    kg]

    :Measured values :Eq.(2-90)

    +10%

    -10%

    Fig. 18 Enthalpy of the standard specimen SRM720 Synthetic

    Sapphire (α-Al2O3)

    0 200 400 600 800 1000 120000.20.40.60.81.01.21.41.6

    Temperature [℃]

    Mea

    n sp

    ecifi

    c he

    at [k

    J/kg

    /K]

    :Measured values :Eqs.(2-15) and (2-90)

    +10%

    -10%

    Fig. 19 Mean specific heat of the standard specimen SRM720

    Synthetic Sapphire (α-Al2O3)

  • 0 200 400 600 800 1000 120000.20.40.60.81.01.21.41.6

    Temperature [℃]

    Spec

    ific

    heat

    [kJ/

    kg/K

    ]+5%-5%

    SiC refractory materialρ=2800kg/m3Ts1=290~1000℃

    :Measured values (Mean specific heat):Mean specific heat by Eq. (6-9):True specific heat

    Fig. 20 Mean and true specific heats of SiC refractory.

    0 200 400 600 800 1000 120000.20.40.60.8

    11.21.41.6

    Rockwoolρ=100kg/m3Ts1=100~700℃

    +5%-5%

    Temperature [℃]

    Spec

    ific

    heat

    [kJ/

    kg/K

    ] :Measured values (Mean specific heat):Mean specific heat Eq. (6-9):True specific heat

    Fig. 21 Mean and true specific heats of rock wool.

    0 200 400 600 800 1000 120000.20.40.60.8

    11.21.41.6

    Temperature [℃]

    Spec

    ific

    heat

    [kJ/

    kg/K

    ]

    Alumina silica fiber insulationρ=130kg/m3Ts1=100~1000℃

    +5%-5%

    :Measured values (Mean specific heat):Mean specific heat by Eq. (6-9):True specific heat

    Fig. 22 Mean and true specific heats of alumina silica fiber.

  • 0 200 400 600 800 1000 120000.20.40.60.81.01.21.41.6

    Temperature [℃]

    Spec

    ific

    heat

    [kJ/

    kg/K

    ]+5%-5%

    Calcium-silicate insulationρ=130kg/m3Ts1=120~1000℃

    :Measured values (Mean specific heat):Mean specific heat by Eq. (6-9):True specific heat

    Fig. 23 Mean and true specific heats of calcium-silicate insulation.

    0 200 400 600 800 1000 120000.20.40.60.81.01.21.41.6

    Temperature [℃]

    Spec

    ific

    heat

    [kJ/

    kg/K

    ]

    +5%-5%

    SiO2-glassρ=2465kg/m3Ts1=200~600℃

    :Measured values (Mean specific heat):Mean specific heat by Eq. (6-9):True specific heat

    Fig. 24 Mean and true specific heats of SiO2-glass.

    0 50 100 150 200 250 30000.20.40.60.81.01.21.41.6

    +5%-5%

    Temperature [℃]

    Spec

    ific

    heat

    [kJ/k

    g/K

    ]

    Fluoro rubberρ=1858kg/m3Ts1=100~200℃

    :Measured value (Mean specific heat):Mean specific heat by Eq. (6-9):True specific heat

    Fig. 25 Mean and true specific heats of Fluoro rubber.