cds-ii (2)

Upload: talha-yasin

Post on 07-Jul-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 CDS-II (2)

    1/79

     

    Control System Design-II

    .

    Department of Electrical EngineeringPakistan Institute of Engineering and Applied Sciences

    P.O. Nilore Islamabad Pakistan

    url: www.pieas.edu.pk/aqayyumEmail: [email protected]

  • 8/18/2019 CDS-II (2)

    2/79

    Preliminaries of MCT ctd….. The central concept on which the modern control theory is based,

    is STATE.

    State: The state of dynamic system is the smallest set of variables(referred to as state variables) such that the knowledge of thesevariables at together with the knowledge of input for0t t= 0t t>

    Control System Design-II by Dr. A.Q. Khan

    completely determines the behavior of the process; that is,

    The concept of state is not limited to physical/engineeringsystems but also biological systems, economic systems, socialsystems etc.

    Deter mines

    0 t t 0 0t t t tx(t) , and u(t) x(t) →

    >= >

  • 8/18/2019 CDS-II (2)

    3/79

    State variables: The smallest set of variables that determinesthe behavior of the system

    State vector:Vector of state variables. For ‘n’ state variables, astate vector of n-components to be constructed. Let ‘x’ be a

    Preliminaries of MCT ctd…..

    Control System Design-II by Dr. A.Q. Khan

     

    State space: It is an ‘n’ dimensional space whose coordinatesare state variables.

    [ ]1 2 3 4x x x x . . . x=

    1 2 3 nx ,x , x , , xK

    Any state can be represented by a point in state space

  • 8/18/2019 CDS-II (2)

    4/79

    State space equation: It is a first order differential equation(or set of first order differential equations).

    It generally involves three variables of interest.

    State variables

     

    Preliminaries of MCT ctd…..

    Control System Design-II by Dr. A.Q. Khan

     

    Output variables

    Let us consider

    x x u,y x

    = +=

    &

    State variables

    Output equation

    Input variablesState equation

    Outputvariables

  • 8/18/2019 CDS-II (2)

    5/79

    There exists many kinds of state space representation.However the no. of states (state variables) are the same.

    A higher order differential equation can be represented inthe form of set of first order differential equations. Hence

    Preliminaries of MCT ctd…..

    Control System Design-II by Dr. A.Q. Khan

     

    Let us consider a 2nd order dynamic system

    y by cy u+ + =&& &

  • 8/18/2019 CDS-II (2)

    6/79

    The preceding example shows

    Preliminaries of MCT ctd…..

    1

    1 2

    x yx y x

    == =& &

    & && &

    Control System Design-II by Dr. A.Q. Khan

    Note that the states and are the outputs of integrator.

    Remember! The state space model for a system is a set of1st order differential equations.

    2 2 1x y u y cy u x cx= = − − = − −

    1x

    2x

  • 8/18/2019 CDS-II (2)

    7/79

    Let us consider

    Preliminaries of MCT ctd…..

    1 1 1 2 n 1 2 p

    2 2 1 2 n 1 2 p

    3 3 1 2 n 1 2 p

    x f (x , x , , x ,u , u , , u , t)

    x f (x , x , , x , u ,u , , u , t)

    x f (x , x , , x ,u , u , , u , t)

    =

    = =

    &   L L

    &   L L

    &   L L 

    Control System Design-II by Dr. A.Q. Khan

    n n 1 2 n 1 2 px f (x , x , , x , u ,u , ,u , t)

    =

    MM

    &   L L

    a e equa ons

  • 8/18/2019 CDS-II (2)

    8/79

    1 1 1 2 n 1 2 p

    2 2 1 2 n 1 2 p

    3 3 1 2 n 1 2 p

    y h (x , x , , x , u , u , , u , t)

    y h (x , x , , x ,u ,u , , u , t)

    y h (x , x , , x , u ,u , , u , t)

    =

    = =

    L L

    L L

    L L 

    Preliminaries of MCT ctd…..

    Control System Design-II by Dr. A.Q. Khan

    m m 1 2 n 1 2 p

    y h (x , x , , x ,u ,u , , u , t)

    =

    M

    M

    L L

    u pu equa on

  • 8/18/2019 CDS-II (2)

    9/79

    Combining the two

    Preliminaries of MCT ctd…..

    11 1

    22 2

    ux yux y

    x(t) , y(t) , u(t)

    = = =   MM M

    State Vector Output Vector Input Vector

    Control System Design-II by Dr. A.Q. Khan

    pn m

    1 1 2 n 1 2 p

    2 1 2 n 1 2 p

    n 1 2

    ux yf (x ,x , ,x ,u ,u , ,u ,t)

    f (x ,x , ,x ,u ,u , ,u ,t)

    f(x)

    f (x ,x

     

    =

    L L

    L L

    MM

    1 1 2 n 1 2 p

    2 1 2 n 1 2 p

    n 1 2 p m 1 2 n 1 2 p

    h (x ,x , ,x ,u ,u , ,u ,t)

    h (x ,x , ,x ,u ,u , ,u ,t)

    , h(x) =

    , ,x ,u ,u , ,u ,t h (x ,x , ,x ,u ,u , ,u ,t)

    L L

    L L

    MM

    L L L L

  • 8/18/2019 CDS-II (2)

    10/79

    The resultant state space model is

     

    Preliminaries of MCT ctd…..

    x f (x , u , t)

    y h (x , u , t)==

    &

    Control System Design-II by Dr. A.Q. Khan

    It may represents Linear System

    Nonlinear System

    Linear Time varying system

  • 8/18/2019 CDS-II (2)

    11/79

    The LTV system is represented by

    Preliminaries of MCT ctd…..

    ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

     x t A t x t B t u t 

     y t C t x t D t u t 

    = +

    = +

    &

    Control System Design-II by Dr. A.Q. Khan

    The LTI system is represented by

    ( ) ( ) ( )( ) ( ) ( )

     x t Ax t Bu t 

     y t Cx t Du t 

    = +

    = +

    &This is the focusof this course

    11

  • 8/18/2019 CDS-II (2)

    12/79

    Transfer function V/S State Space Two important Questions

    Given a Transfer function G(s) = Y(s)/U(s), how to obtain thestate space representation?

    Given the state space representation G: (A,B,C,D), how toobtain Transfer function G(s) = Y(s)/U(s)?

    Control System Design-II by Dr. A.Q. Khan

     

    Let us consider a system G with the following SS-form

    ( ) ( ) ( )

    ( ) ( ) ( )

    : x t Ax t Bu t 

    G

     y t Cx t Du t 

      = +

    = +

    &

    12

  • 8/18/2019 CDS-II (2)

    13/79

    Laplace Transform of the state equation is

     

    ( ) ( )

    ( ) ( ) ( )1

    ( ) (0)

    (0)

    0

    sX s x AX s BU s

    sI A X s x BU s

     X s sI A x BU s−

    − = +   ⇒

    − = +   ⇒

    = − +

    State Space Transfer function

    Control System Design-II by Dr. A.Q. Khan

    Laplace Transform of the output equation is

    Substituting X(s) in the above equation

    Note that for T/F, x(0) = 0, then

    ( ) ( ) ( )Y s CX s DU s= +

    ( ) ( ) ( )( )1 (0) ( )Y s C sI A x BU s DU s−= − + +

    ( )( )

    1

    ( )

    Y sC sI A B D

    U s

    −= − +

    13

  • 8/18/2019 CDS-II (2)

    14/79

    Note that A,B,C,D are constant matrices

    As

    characteristics polynomial of G(s)

     

    Correlation between transfer function

    and state space model Ctd……

    ( )1 ( )

    ( )  adj sI A

    G s C sI A B D C B DsI A

    −   −= − + = +

    Control System Design-II by Dr. A.Q. Khan

    Poles of G(s) are the eigenvalues of A. Hence G(s) can be written as

    where Q(s) is a polynomial in s. If A,B,C,D are time varying or uncertain, then it is difficult to derive

    equivalent transfer function. For a nonlinear system, transfer function representation is also

    difficult to obtain.

    Q(s)G(s)

    sI A=

  • 8/18/2019 CDS-II (2)

    15/79

    Some important facts: Recall that the characteristic equation is obtained by equating

    the denominator of the transfer function to ZERO.

    In SS-representation, (sI-A) is very important. Thecharacteristic equation in this case is |sI-A| = 0.

     

    Control System Design-II by Dr. A.Q. Khan

      - .some properties

    If the coefficients of A are real, its eigenvalues are either real orin complex conjugate pairs

    The eig(A) = eig(transpose(A))

    15

  • 8/18/2019 CDS-II (2)

    16/79

    An Example Example 2: Obtain the transfer function from the state-

    space model derived in Example 1.

    Solution: Given that

    1 1 0

    A , B = , C 1 0 , D 0k b 1

    = = =

    Control System Design-II by Dr. A.Q. Khan

    [ ]

    [ ]

    1

    1

    22

     

    m m mG (s ) C (s I A ) B D

    s 1 0

      1 0 0k b 1s

    m m m

    b0s 1

    1 1m  = 1 0 1

    b k  k  m s b s k  s s s m

    m m m

    − −

    = − +

    − = + +

    +  

      =   + + + +   −  

  • 8/18/2019 CDS-II (2)

    17/79

    State-representation for MIMO system Consider a multiple input multiple output (MIMO) system

    with ‘p’ inputs and ‘m’ outputs; i.e.;

    11

    22

    uy

    uy  u

    = =

    Control System Design-II by Dr. A.Q. Khan

    The transfer function matrix is given aspm

     

    uy    

    ( ) ( )

    1 m pY(s)

    G s C sI A B DU(s)

    − ×

    = = − + ∈ ℜ

    Note that the Eigenvalues of A does not necessarily imply

    the closed loop poles

  • 8/18/2019 CDS-II (2)

    18/79

    Transfer function State SpaceTransfer function State SpaceTransfer function State SpaceTransfer function State Space

    Transform T/F into n-th order differential equation

    Get the SS- representation then.

    Consider an n-th order differential equation

    Control System Design-II by Dr. A.Q. Khan

    Let1

    n n

    n y a y a y u

    + + + =LLLLLL

    1

    2 1

    3 2

    1n

    n

     x y

     x y x

     x y x

     x y

    =

    = =

    = =

    =

    & &

    && &

    M

    18

  • 8/18/2019 CDS-II (2)

    19/79

    1 2

    2 3

    1 1 2 1

    1 1

    2 2

    0 1 0 0 0

    0 0 1 0 0

    n n n n

     x x

     x x

     x u a x a x a x

     x x

     x xu

    =

    =

    = − − −

          = +

    &

    &M

    &   L

    &   L

    &   L

    Control System Design-II by Dr. A.Q. Khan

    Let the output of this system be1 1 1n nn na a a x x−

      − − − &   L

    [ ]

    1

    2

    1 1 0 0

    n

     x

     x y x

     x

    = =

    LM

    19

  • 8/18/2019 CDS-II (2)

    20/79

    In compact form

    where

    0 1 0 0 0

     x Ax Bu

     y Cx Du

    = +

    = +

       

    &

    L

    L

    Control System Design-II by Dr. A.Q. Khan

    [ ]

    1 1

    ,

    1

    1 0 0 , 0

    n n

     A B

    a a a

    C D

    = =    

    − − −

    = =

    M O O M   M

    L

    L

    20

  • 8/18/2019 CDS-II (2)

    21/79

    Case: When derivatives are present in

    ControlConsider an n-th order differential equation with in n

    derivatives in control channel1 1 .

    1 0 1 1

    Let

    n n n n

    n n n y a y a y b u b u b u b u

    − −

    −+ + + = + + + +L L

    Control System Design-II by Dr. A.Q. Khan

    1 0

    2 0 1 1 1

    3 0 1 2 2 2

    1 1 2

    0 1 2 1 1 1

    n n n

    n n n n n

     x y ß u

     x y ß u ß u x ß u

     x y ß u ß u ß u x ß u

     x y ß u ß u ß u ß u x ß u− − −

    − − − −

    = −= − − = −

    = − − − = −

    = − − − − − = −

    & & &

    && && & &

    M

    & &L21

  • 8/18/2019 CDS-II (2)

    22/79

    0 1

    0 0

    1 1 1 0

    2 2 1 1 2 0

    1 1 1 1 0

    w h e r e , , a r e d e t e r m i n e d f r o m

     

    n

    n n n n n

     ß ß ß

     ß b

     ß b a ß

     ß b a ß a ß

     ß b a ß a ß a ß− −

    =

    = −

    = − −

    = − − − −

    L

    M

    L L

    Control System Design-II by Dr. A.Q. Khan

    W i t h t h i s c h o i c e o f s t a t e v a r i a b le s , t h ee x i s t a n c e a n d u n i q u n e s s o f s ta t e e q u a t i o n

    i s g u a r a n t e e d . L e t u s c

    1 2 1

    2 3 2

    o n s t r u c t

    s t a t e s p a c e e q u a t i o n

     x x ß u

     x x ß u

    = +

    = +

    &

    &

    M22

  • 8/18/2019 CDS-II (2)

    23/79

    1 1

    1 1 2 1

    n n n

    n n n n n

     x x ß u

     x a x a x a x ß u− −

    = +

    = − − + +

    M

    &

    &   L

    1 1 1

    2 2 2

    Combining the above set of equations

    0 1 0 00 0 1 0

     x x x x

    u

     β  β 

    = +

    &   L&   L

    M O O M MM M

    Control System Design-II by Dr. A.Q. Khan

    [ ]

    1 1

    1

    2

    1 01 0 0

    n n nn n

    n

    a a a x x

     x

     x

     y x ß u

     x

     β −− − −

    = = +

    &   L

    L M

    Note that

    •The derivatives of the control

    only affect B matrix

    •A and C matrices are unchanged

    •Matrix D is non-zero in this case

    23

  • 8/18/2019 CDS-II (2)

    24/79

    Decomposition of Transfer functionConsider the following transfer function

    ( )( )

    n n n n   n n n n 

    Y s    b s b s b s b s b  U s s a s a s a  

    − − −

    − −+ + + + +=

    + + + +

    1 2 3

    0 1 2 3

    1 2

    1 2

    Control System Design-II by Dr. A.Q. Khan24

    Steps:1. Express the transfer function in –ve power of s. Multiply

    numerator and denominator by   n s −

    ( )( )

    n n n 

    Y s    b b s b s b s b s  U s a s a s a s  

    − − − −

    − − −+ + + + +=

    + + + +

    1 2 3

    0 1 2 3

    1 2

    1 21

  • 8/18/2019 CDS-II (2)

    25/79

    2. Multiply numerator and denominator by a dummy variableX(s)

    Decomposition of Transfer function ctd…

    ( )( )

    ( )( )

    n n 

    Y s X s  b b s b s b s b s  

    U s a s a s a s X s  

    − − − −

    − − −

    + + + + +=

    + + + +

    1 2 3

    0 1 2 3

    1 2

    1 21

    Control System Design-II by Dr. A.Q. Khan25

    3. Rewrite numerator and denominator as

    ( )  ( )

      ( )

    ( )   ( )   ( )

    Y s b b s b s b s X s  

    U s a s a s a s X s  

    − − −

    − − −

    = + + + +

    = + + + +

    1 2

    0 1 2

    1 2

    1 21

  • 8/18/2019 CDS-II (2)

    26/79

    4. Construct the state diagram in the above two equations.Re-arrange the last equation as

    5. Substituting as( ) ( )   ( )   ( )n n X s U s a s a s a s X s  − − −= − + + +1 21 2   ⋯

    Decomposition of Transfer function ctd…

    Control System Design-II by Dr. A.Q. Khan26

    ( ) ( )( ) ( )

    ( )

    ,

    ,

    n n 

    n n 

    n n n n n  

    n n n n n  

    s X s x s X s x x  

    s X s x x s X s x x  

    X s x x a x a x a x a x u  

    y b x b x b x b x b x  

    − − +

    − + −−

    − −

    − −

      → →   =← ←    → →= =← ←  

     →← = − − − − − +

    = + + + + +

    1

    1 2 1

    2 1

    3 2 1

    1 1 2 2 3 1

    1 1 2 2 3 1 0

    ℓ ℓ

    ɺ

    ɺ ɺ⋯

    ɺɺ   ⋯

    ɺ⋯

  • 8/18/2019 CDS-II (2)

    27/79

    substituting 

    into n n n n n  

    n n n n n  

    x a x a x a x a x u  

    y b x b x b x b x b x  

    − −

    − −

    = − − − − − +

    = + + + + +

    1 1 2 2 3 1

    1 1 2 2 3 1 0

    ɺ   ⋯

    ɺ⋯

    Decomposition of Transfer function ctd…

    Control System Design-II by Dr. A.Q. Khan27

    ( )( ) ( )

    ( )

    n n n n  

    n n n n  

    n n n n  

    As 

    y b x b x b x b x  

    b a x a x a x a x u  b b a x b b a x  

    b b a x b u  

    − −

    − −

    − −

    = + + + +

    + − − − − − += − + − + +

    − +

    1 1 2 2 3 1

    0 1 1 2 2 3 1

    0 1 1 0 1 2

    1 0 1 0

  • 8/18/2019 CDS-II (2)

    28/79

    The resultant state space model is

    where

    x Ax Bu  

    y Cx Du  

    = +

    = +

    ɺ

    Decomposition of Transfer function ctd…

    Control System Design-II by Dr. A.Q. Khan28   ( ) ( ) ( )

    , ,

    n n n 

    n n n n  

    A B D b  

    a a a a  

    C b b a b b a b b a  

    − −

    − −

              = = =

            − − − −

    = − − −

    0

    1 2 1

    0 1 0 1 1 0 1

    0 1 0 0   00 0 1 0   0

    0 0 0 0   0

    1

    ⋯⋯

    ⋮ ⋮ ⋮ ⋯ ⋮   ⋮

  • 8/18/2019 CDS-II (2)

    29/79

    Matlab functions ss2tf: Transforms state-space to transfer function

    [num,den] = ss2tf(A,B,C,D)

    G(s) = num/den = Y(s)/U(s) For multi-input systems, the above function still works; that is, [num,den] = ss2tf(A,B,C,D,iu)

     

    Control System Design-II by Dr. A.Q. Khan

    iu: ith input and should be an integer value, that is, 1,2,…. For example [num,den] = ss2tf(A,B,C,D,1) returns transfer

    function from first input.

    tf2ss: Transforms the transfer function to state-space [A,B,C,D]=tf2ss(num,den) This function is only for SISO

    29

  • 8/18/2019 CDS-II (2)

    30/79

    State space model of Inverted PendulumState space model of Inverted PendulumState space model of Inverted PendulumState space model of Inverted Pendulum

    Control SystemControl SystemControl SystemControl System

    Control System Design-II by Dr. A.Q. Khan30

  • 8/18/2019 CDS-II (2)

    31/79

    State space model of Inverted PendulumState space model of Inverted PendulumState space model of Inverted PendulumState space model of Inverted Pendulum

    Control SystemControl SystemControl SystemControl System----Free body diagramFree body diagramFree body diagramFree body diagram

    Control System Design-II by Dr. A.Q. Khan31

    ɺɺ

  • 8/18/2019 CDS-II (2)

    32/79

    ( )

    ( )

    ( )

     

    M m x m u  

    I m m x mg  or 

    M M m g u  

    Mx u mg  

    Let 

    θ

    θ θ

    θ θ

    θ

    + + =

    + + =

    = + −

    = −

    2

    ɺɺɺɺ   ℓ

    ɺɺ   ɺɺℓ ℓ ℓ

    ɺɺℓ

    ɺɺ

    ɺ   ɺ

    Control System Design-II by Dr. A.Q. Khan32

    , , , ,

    x x 

    M m x gx u  

    M M 

    x x 

    m x gx u  

    M M 

    = = = =

    =

    += −

    =

    = − +

    1 2 3 4

    1 2

    2 1

    3 4

    4 1

    1

    1

    ɺ

    ɺℓ ℓ

    ɺ

    ɺ

  • 8/18/2019 CDS-II (2)

    33/79

    x x M m g 

    x x M M 

    u x x 

    x x m g 

    + −

    = + −

    1 1

    2 2

    3 3

    4 4

    0 1 0 0 0

    10 0 0

    0 0 0 1 0

    10 0 0

    ɺ

    ɺℓ ℓ

    ɺ

    ɺ

    Control System Design-II by Dr. A.Q. Khan33

    x y 

    =

    1

    2

    3

    4

    1 0 0 0

    0 0 1 0

  • 8/18/2019 CDS-II (2)

    34/79

    Canonical forms 4 canonical forms are important

    Controllable canonical form

    Observable canonical forms

    Diagonal canonical form

     

    Control System Design-II by Dr. A.Q. Khan

     

    Given a nth order linear differential equation

    and the transfer function

    1 1 .

    1 0 1 1

    n n n n

    n n n y a y a y b u b u b u b u− −

    −+ + + = + + + +L L

    ( )

    1

    0 1 1

    1

    1 1

    n n

    n n

    n n

    n n

    b s b s b s bG s

    s a s a s a

    −−

    + + + +=

    + + + +

    L

    L34

  • 8/18/2019 CDS-II (2)

    35/79

    Controllable Canonical forms The controllable canonical form for the system shown is

    {

    1 1

    2 2

    1 1

    1 2 1

    0 1 0 0 0

    0 0 1 0 0

    0 0 1 0

    1

    n n

    n n nn n

     x x

     x x

    u x x

    a a a a x x

    − −

    − −

         

      = +       − − − −

    &   L

    &   L

    M M O O O M M   M&   L L

    &   L144444    444443

    Control System Design-II by Dr. A.Q. Khan

    [ ]0 1 1 0 1 1 0

    cc

    c

     B A

    n n n n

     y b a b b a b b a b− −= − − −L L1444444442444444 3   {

    1

    2

    0

    1   c D

    n

    n

     x

     x

    b u

     x x

    +

    M44 

    •Very important in design of state-feedback

    controller

    •Pole placement35

  • 8/18/2019 CDS-II (2)

    36/79

    Observable Canonical forms The observable canonical form for the system shown is1 1 0

    2 2 1 1 01

    1 1 2 2 02

    0 0 0

    1 0 0

    0 0

    n nn

    n nn

    n n

     x x   b a ba

     x x   b a ba

    u

     x x b a ba

    − −−

    − −

    −−     −−

        = +  

    −−  

    &   L

    &   L

    M M MM O O O M

    &   L L

    &

    Control System Design-II by Dr. A.Q. Khan

    [ ]

    1 1 01

    0 0 1

    o b   o b

    o b

    n n

     A B

    aa x x

     y

    −−

    =

    L

    1 4 4 442 4 4 4 43   1 442 4 43

    L L1 4 442

    1

    2

    0

    1n

    n

     x

     x

    b u

     x

     x

     +

    M4 4 43

    •Very important in design of

    state observers

    Pole placement•Note also that

    ,

    ,

    T T 

    ob c ob c

    ob c ob c

     A A B C 

    C B D D

    = =

    = =

    36

  • 8/18/2019 CDS-II (2)

    37/79

    Diagonal canonical form (DCF) Consider a transfer function having distinct poles, that is,

    The diagonal canonical form is given as

    ( )

    ( ) ( )( ) ( ) ( ) ( ) ( )

    1

    0 1 1 1 10

    1 2 1 1

    n n

    n n n

    n n

    Y s   b s b s b s b cc cb

    U s s p s p s p s p s p s p

    −+ + + += = + + + ++ + + + + +

    LL

    L

    1 11 0 0 0 1

    0 0 0 1

     x x p

     x x

    −     −

    &   L

    &   L

    Control System Design-II by Dr. A.Q. Khan

    {

    [ ]

    1 1

    1

    2

    1 2 0

    1

    0 0 0 1

    0 0 0 1

    d d 

    n n

    nn n

     B A

    n

    C n

    n

    u x x

     p x x

     x

     x

     y c c c b u

     x

     x

    − −

      = +  

        −

    = +

    M M O O O M M   M&   L L

    &   L1 4 4 4 442 4 4 4 4 43

    L L M1 4 4 4 2 4 4 4 3

    37

    J d C i l f

  • 8/18/2019 CDS-II (2)

    38/79

    Jordan Canonical form

    Suppose a system transfer function has multiple poles ofmultiplicity m, the proceeding diagonal can be modified. Thismodified representation is known as Jordan Canonical form.

    ( )( )   ( ) ( ) ( )

    1

    0 1 1

    3

    1 2

    31 2 40 3 2

    n n

    n n

    n

    n

    Y s   b s b s b s bU s   s p s p s p

    c cc c cb

    −+ + + +=+ + +

    = + + + + + +

    LL

    L

    Control System Design-II by Dr. A.Q. Khan

    1 21 1   ns p s p s ps p s p+ +

    [ ]

    1

    1

    1

    4

    5

    6

    1 2 2 n 0

    p 1 0 0 0 0 0

    0 p 1 0 0 0 0

    0 0 p 0 0 0 0x x u

    0 0 0 p 0 0 1

    0 0 0 0 p 0

    0 0 0 0 0 p 1

    y c c c c x b u

    −     −     −

    = +   −

        −  

    −    

    = +

    &

    M

    L L

    38

  • 8/18/2019 CDS-II (2)

    39/79

    An Example( )

    ( )1 2

    2 2

    1 2

    0 1 2 0 1 2

    Y s b s bs 3

    U s s 3s 2 s a s a

    Obtain CCF, OCF, DCF

    Here b 0, b 1, b 3; a 1,a 3,a 2

    0 1 0CCF : A , B ,C 3 1 , D 0

    ++= =

    + + + +

    = = = = = =

    = = = =

    Control System Design-II by Dr. A.Q. Khan

    [ ]T T T0 c 0 c 0 c 0

     

    0 2 3OCF : A A , B C ,C 0 1 B , D 0

    1 3 1

    − −

    − = = = = = = = −

    [ ]D D D D1 0 1

    DCF : A , B ,C 2 1 , D 00 2 1

    − = = = − = −

    39

  • 8/18/2019 CDS-II (2)

    40/79

    Similarity TransformationSimilarity TransformationSimilarity TransformationSimilarity Transformation

    State-space representation is not unique Often desirable to work with some especial form of state-

    space models

    Control System Design-II by Dr. A.Q. Khan40

     

    A transformation exists from one canonical form to anothercanonical form

  • 8/18/2019 CDS-II (2)

    41/79

    Similarity TransformationSimilarity TransformationSimilarity TransformationSimilarity Transformation

    x Ax Bu  

    y Cx Du  

    = +

    = +

    ɺConsider

    Letx Pz =

    Where is non-sin ular matrix.n n ×

    Control System Design-II by Dr. A.Q. Khan41

     

    z P x −=  1

    The transformed equation is

     

    z P x P Ax P Bu  

    P APz P Bu  

    CPz Du  η

    − − −

    − −

    = = +

    = +

    = +

    1 1 1

    1 1

    ɺ ɺ

  • 8/18/2019 CDS-II (2)

    42/79

    Similarity TransformationSimilarity TransformationSimilarity TransformationSimilarity Transformation

    z Az Bu  

    Cz Du  η

    = +

    = +

    ɺ

    where, ,A P AP B PB C CP D D  −= = = =1

     

    Control System Design-II by Dr. A.Q. Khan42

    Invariance Properties:• Characteristic equation• Eigenvalues•

    Eigenvectors• Transfer function/Transfer function matrix (MIMO Systems)

  • 8/18/2019 CDS-II (2)

    43/79

    Controllability canonical formConsider the dynamic system

    to get the CCF, we choose

    where

    x Ax Bu  

    y Cx Du  

    = +

    = +

    ɺ

    P MW =

    n −2 1

    Control System Design-II by Dr. A.Q. Khan43

    n n 

    n n 

    a a a 

    a a 

    − −

    − −

    =

    1 2 1

    2 3

    1

    1

    1 0

    1 0 0

    1 0 0 0

    ⋮ ⋮ ⋯ ⋮ ⋮

  • 8/18/2019 CDS-II (2)

    44/79

    and are found as

    Then

    s a 

    n n n n n sI A s a s a s a s a  

    − −−− = + + + + =

    1 2

    1 2 1  0⋯

     

           

    0 1 0 0   0

    0 0 0 0   0

    Control System Design-II by Dr. A.Q. Khan44

    ,

    ,

    n n n 

    A P AP B PB  

    a a a a  

    C CP D D  

    − −

    = = = =         − − − −    

    = =

    1 2 1

    0

    0 0 0 1

    1

    ⋮ ⋮ ⋯ ⋮ ⋮

    ⋯   ⋮

  • 8/18/2019 CDS-II (2)

    45/79

    Observable canonical formConsider the dynamic system

    to get the OCF, we choose

    where

    x Ax Bu  

    y Cx Du  

    = +

    = +

    ɺ

    ( )P WN   −

    =  1

    Control System Design-II by Dr. A.Q. Khan45

    ,

    n n 

    n n 

    C a a a  CA a a  

    N W CA

    CA

    − −

    − −

    = =

    1 2 1

    2 3

    2

    1

    1

    1

    1 0

    1 0 0

    1 0 0 0

    ⋮ ⋮ ⋯ ⋮ ⋮

    ⋮ ⋯

    s

  • 8/18/2019 CDS-II (2)

    46/79

    and are found as

    Then

    s a 

    n n n n n sI A s a s a s a s a  

    − −−− = + + + + =

    1 2

    1 2 1  0⋯

    a  −−

    − − = =   −

    1

    1

    0 0 0

    1 0 0

    Control System Design-II by Dr. A.Q. Khan46

    [ ]

    C CP 

    = =

    10 0 0

    0 0 0 1

    ⋮ ⋮ ⋯ ⋮ ⋮

  • 8/18/2019 CDS-II (2)

    47/79

    Diagonal canonical form

    In DCF, the system matrix A is transformed into Diagonalmatrix,

    The entries on the diagonal are the eigenvalues of the A

    The transformation matrix is obtained as

    Control System Design-II by Dr. A.Q. Khan47

    where are the eigenvectors corresponding to theeigenvalues

    If the matrix A is in CCF and has distinct eigenvalues, Then Pmatrix has especial structure.

    n n 

    e e e e  −

    =1 2 1

    i λi e 

  • 8/18/2019 CDS-II (2)

    48/79

    Diagonalization of AAAA Let a matrix A has distinct eigenvalues and is

    represented as1 2 n, ,λ λ λL

    0 1 0 0

    0 0 1 0

    A

    =

    L

    L

    L L L L L

    L L L L L

    Control System Design-II by Dr. A.Q. Khan

    To diagonalize A, let us use some transformation; that is,

    With

    n n 1 1a a a−

    − − − L L x Pz=

    1 2 3 n

    2 2 2 21 2 3 n

    n 1 n 1 n 1 n 1

    1 2 3 n

    1 1 1 1

    P

    − − − −

    λ λ λ λ

    = λ λ λ λ λ λ λ λ

    M

    M

    M

    M M M M M

    M

    48

    Vandermondematrix

  • 8/18/2019 CDS-II (2)

    49/79

    Then

    Case: If A has multi le ei envalues, then the dia onalization

    Diagonalization of AAAA1

    2

    1

    3

    n

    0 0 0

    0 0 0

    P AP 0 0 0

    0 0 0

    λ λ = λ λ

    L

    L

    L

    L L L L LL

    Control System Design-II by Dr. A.Q. Khan

     

    is not straight forward. For instance A has eigenvaluesThen P can be constructed as

    1 2λ =λ =λ

    -11 1

    P with P does not exists.

    = λ λ This implies that diagonalization cannot be achieved this way

    49

    Is there any way possible??

    An ExampleAn ExampleAn ExampleAn Example

  • 8/18/2019 CDS-II (2)

    50/79

    An ExampleAn ExampleAn ExampleAn Example

    Diagonalise the following system dynamics

    ----------- (a)

    [ ]

    0 1 0 0

    x 0 0 1 x 0 u

    6 11 6 6

    y 1 0 0 x

    = +

    − − − =

    &

    Control System Design-II by Dr. A.Q. Khan

    Step-1: Find eigenvalues of A . In this case the eigenvaluesare

    Step-2: Form matrix P1 2 3

    1, 2, 3λ = − λ = − λ = −

    1 2 3

    2 2 2

    1 2 3

    1 1 1 1 1 1P 1 2 3

    1 4 9

    = − − − = λ λ λ λ λ λ

    50

    Apply transformation to (a)x Pz=

  • 8/18/2019 CDS-II (2)

    51/79

    pp y ( )

    [ ]

    1 1

    0 1 0 0 0 1 0 0

    Pz 0 0 1 Pz 0 u z P 0 0 1 Pz P 0 u

    6 11 6 6 6 11 6 6

    y 1 0 0 Pz

    1 0 0 3

    − − = +   ⇒   = + − − − − − −

    =

    & &

    Control System Design-II by Dr. A.Q. Khan

    [ ]z 0 2 0 z 6 u, y 1 1 1 x

    0 0 3 3

    ⇒   = − + − = −

    &

    • Transformation matrix P modifies the coefficient matrix of z into

    diagonal form• All the states are decoupled from one another• The eigenvalues remain unchanged

    51

    Fact: The eigenvalues are unchanged during similarity

  • 8/18/2019 CDS-II (2)

    52/79

    transformation.

    Proof:

    ( )

    1 1 1

    1

    1

    Consider

    I P AP P P P AP

      = P I A P

      = P I A P

    − − −

    λ − = λ −

    ⇒   λ −

    ⇒   λ −

    Control System Design-II by Dr. A.Q. Khan

    ( )

    ( )

    ( )

    1

    1

     

    = P P I A

      = P P I A

      = I A

    ⇒   λ −

    ⇒   λ −

    ⇒   λ −Hence proved that the eigenvalues are invariant under linear transformation

    52

    Example

  • 8/18/2019 CDS-II (2)

    53/79

    Example Diagonalize the following

    Step 1: The eigenvalues are -1,-3,-3[ ]

    0 1 0 0

    x 0 0 1 x 0 u

    9 15 7 3y 1 0 0 x

    = +

    − − − =

    &

    Control System Design-II by Dr. A.Q. Khan53

    Step 2: Form P matrix1

    1 2 3

    2 2 2

    1 2 3

    1 1 1 1 1 1

    P 1 3 3 P does not exist.

    1 9 9

    = λ λ λ = − − −   ⇒ λ λ λ

    Diagonalization ?

  • 8/18/2019 CDS-II (2)

    54/79

    Generalized Eigenvalues

    A has multiple eigenvalues The formula for computing eigenvectors

    does not hold to com ute all ei envectors( )i i I A e λ   − = 0

    Control System Design-II by Dr. A.Q. Khan54

     

    Let a q be distinct eigenvalues among n eigenvalues of A. Theequation hold for computing qeigenvectors.

    ( )i i I A e λ   − = 0

    Let be the eigenvalues of mth order i e; Thejλ m n q≤ −

  • 8/18/2019 CDS-II (2)

    55/79

    Let be the eigenvalues of mth order. i.e; . The

    corresponding eigenvectors are called generalized eigenvectorsand can be determined using the following formula

     j λ   m n q ≤

    ( )

    ( )

     j n q 

     j n q n q 

    I A e 

    I A e e  

    λ

    λ

    − +

    − + − +

    − =

    − =−

    − =−

    1

    2 1

    0

    Control System Design-II by Dr. A.Q. Khan55

    ( )

    n q n q  

     j n q m n q m I A e e  λ

    − + − +

    − + − + −− =−

    2

    1

    An Example

  • 8/18/2019 CDS-II (2)

    56/79

    An Example

    2 3 

    1

    Diagnolize 

    ; ; ; ;  

    Eigenvector associated to is 

    A

    Solution 

    λ λ λ

    λ

    − = = = =

    =

    1

    0 6 5

    1 0 2 2 1 1

    3 2 4

    2

    Control System Design-II by Dr. A.Q. Khan56

    ( ) ( )1

    I A e I A e e e  

    e e e 

    λ   − = − = − − = ⇒ − − −

    1 21 21 21

    31 31 31

    2 1 2 2 0

    3 2 4

    ( ) ( )2 

    e e e 

    I A e I A e e e  

    e e e 

    λ

    = − − − − = − = − − = ⇒ = −

    − − −   −

    11 12 12

    2 21 22 22

    31 32 32

    1

    2

    11 6 5

    31 1 1 2 0

    73 2 35

    7

  • 8/18/2019 CDS-II (2)

    57/79

    ( ) ( )2 

    e e 

    I A e I A e e e  e e 

    e e 

    λ

    − = − = − − = − − − −

    ⇒ = − −

    11 12

    3 21 22 2

    31 32

    13

    23

    33

    1 6 5

    1 1 1 2

    3 2 3

    1

    22

    49

    46

    49

    Control System Design-II by Dr. A.Q. Khan57

    ;P 

    A P AP  −

    = − − − − − −

    =   1

    2 1 1

    3 221

    7 49

    5 462

    7 49

    =

    2 0 0

    0 1 1

    0 0 1

  • 8/18/2019 CDS-II (2)

    58/79

    Transfer function State space-Decomposition of transfer functionsDecomposition of transfer functionsDecomposition of transfer functionsDecomposition of transfer functions Direct decomposition :

    Applied to a transfer function which is not in factored form. It canbe conducted in two ways1. Direct decomposition to CCF

     

    Control System Design-II by Dr. A.Q. Khan58

    2. rect ecompos t on to

    Cascade decompositionApplied to transfer functions that are written as product of simplefirst order or second order components

    Parallel decompositionApplied to transfer functions whose denominator is in factoredform and partial fraction expansion can be obtained

  • 8/18/2019 CDS-II (2)

    59/79

    Direct decomposition to CCFConsider the following transfer function

    ( )( )

    n n n 

    n n n n 

    Y s    b s b s b s b  U s s a s a s a  

    − − −

    − −+ + + += + + + +

    1 2 3

    1 2 3

    1 2

    1 2

    ⋯⋯

    Control System Design-II by Dr. A.Q. Khan59

    Steps:

    1. Express the transfer function in –ve power of s. Multiplynumerator and denominator by   n s −

    ( )( )

    n n 

    Y s    b s b s b s b s  U s a s a s a s  

    − − − −

    − − −+ + + += + + + +

    1 2 3

    1 2 3

    1 2

    1 21

    ⋯⋯

  • 8/18/2019 CDS-II (2)

    60/79

    2. Multiply numerator and denominator by a dummy variableX(s)

    Direct decomposition to CCF ctd…

    ( )( )

    ( )( )

    n n 

    Y s X s  b s b s b s b s  

    U s a s a s a s X s  

    − − − −

    − − −

    + + + +=

    + + + +

    1 2 31 2 3

    1 2

    1 21

    Control System Design-II by Dr. A.Q. Khan60

    3. Rewrite numerator and denominator as

    ( )   ( )   ( )

    ( )   ( )   ( )

    Y s b s b s b s b s X s  

    U s a s a s a s X s  

    − − − −

    − − −

    = + + + +

    = + + + +

    1 2 3

    1 2 3

    1 2

    1 21

  • 8/18/2019 CDS-II (2)

    61/79

    Direct decomposition to CCF ctd…4. Construct the state diagram in the above two equations.

    Re-arrange the last equation as

    5. Substituting as( ) ( )   ( )   ( )n n X s U s a s a s a s X s  − − −= − + + +1 21 2   ⋯

    Control System Design-II by Dr. A.Q. Khan61

    ( ) ( )( ) ( )

    ( )

    ,,

    n n 

    n n 

    n n n n n  

    n n n n  

    s X s x s X s x x  s X s x x s X s x x  

    X s x x a x a x a x a x u  

    y b x b x b x b x  

    − − +

    − + −−

    − −

    − −

      → →  =← ←  

      → →= =← ←  

     →← 

    = − − − − − +

    = + + + +

    1

    1 2 1

    2 1

    3 2 1

    1 1 2 2 3 1

    1 1 2 2 3 1

    ℓ ℓ

    ɺ

    ɺ ɺ⋯

    ɺ

    ɺ   ⋯

  • 8/18/2019 CDS-II (2)

    62/79

    The resultant state space model is

    where

    Direct decomposition to CCF ctd…

    x Ax Bu  

    y Cx Du  

    = +

    = +

    ɺ

    Control System Design-II by Dr. A.Q. Khan62   [ ]

    ,

    ,

    n n n 

    n n n 

    A B 

    a a a a  

    C b b b b D  

    − −

    − −

              = =         − − − −

    = =

    1 2 1

    1 2 1

    0 1 0 0   0

    0 0 1 0   0

    0 0 0 0   0

    1

    0

    ⋮ ⋮ ⋮ ⋯ ⋮   ⋮

  • 8/18/2019 CDS-II (2)

    63/79

    Direct decomposition to OCFConsider the following transfer function

    ( )( )

    n n n 

    n n n n 

    Y s    b s b s b s b  U s s a s a s a  

    − − −

    − −+ + + += + + + +

    1 2 3

    1 2 31 2

    1 2

    Control System Design-II by Dr. A.Q. Khan63

    Steps:

    1. Express the transfer function in –ve power of s. Multiplynumerator and denominator by   n s −

    ( )( )

    n n 

    Y s    b s b s b s b s  U s a s a s a s  

    − − − −

    − − −+ + + += + + + +

    1 2 3

    1 2 3

    1 2

    1 21

    ⋯⋯

  • 8/18/2019 CDS-II (2)

    64/79

    2. Expand the equation asDirect decomposition to OCF ctd…

    ( )  ( )

    ( )   ( )

    a s a s a s Y s  

    b s b s b s b s U s  

    − − −

    − − − −

    + + + +

    = + + + +

    1 2

    1 2

    1 2 3

    1 2 3

    1   ⋯

    Control System Design-II by Dr. A.Q. Khan64

    or

    ( )   ( )   ( )

    ( )   ( )

    Y s a s a s a s Y s  

    b s b s b s b s U s  

    − − −

    − − − −

    = − + + +

    + + + + +

    1 2

    1 2

    1 2 3

    1 2 3

  • 8/18/2019 CDS-II (2)

    65/79

    The output of the integrators are assigned as state variable

    Finally we get

    Direct decomposition to OCF ctd…

    x A x B u  

    y C x D u  

    = +

    = +

    ɺ

    Control System Design-II by Dr. A.Q. Khan65

    where

    [ ]

    ,

    ,

    n n 

    n n 

    n n 

    a b 

    a b 

    A B a b 

    a b 

    C D 

    − −

    − −

    = = −

    = =

    1 1

    2 3

    1 1

    0 0 0

    1 0 0

    0 1 0

    0 0 1

    0 0 0 1 0

    ⋮ ⋮ ⋮ ⋯ ⋮ ⋮

    Cascade Decomposition

  • 8/18/2019 CDS-II (2)

    66/79

    p

    ( )( )

    1 2

    1 2

    1 2 1 2

    where, , , and are real constant. Each of the first

    + +=   + +

    Y s   s b s bK U s s a s a

    a a b b

    Control System Design-II by Dr. A.Q. Khan66

    1 1 2

    2

     

    decomposition.

    The state space model is

    b= − −

    &&

     x a a x

    [ ]

    2 1

    2 2

    1 2 2 2

    +0

    b b

        −

    = − − +

     x   K  ua x   K 

     y a a x Ku

    Parallel Decomposition

  • 8/18/2019 CDS-II (2)

    67/79

    p

    ( )

    ( )

    ( )

    ( ) ( )

    ( )

    1 2

    1 2

    w h e r e

      i s a p o l y n o m i a l o f o r d e r l e s s t h a n 2

    a n d , a r e r e a l c o n s t a n t .

    =+ +

    Y s Q s

    U s s a s a

    Q s

    a a

    Control System Design-II by Dr. A.Q. Khan67

    ( )( ) ( ) ( )

    1 2

    1 2

    1

    2

     

    T h e s t a t e s p a c e m o d e l i s g i v e n a s

    0 10 1

    = ++ +

    −  

    = +   − &

    Y s   K K U s s a s a

    a x xa

    [ ]1 2

    =

    u

     y K K x

    Relationship b/w various methodRelationship b/w various methodRelationship b/w various methodRelationship b/w various method

  • 8/18/2019 CDS-II (2)

    68/79

    Control System Design-II by Dr. A.Q. Khan68

    Solving TimeSolving TimeSolving TimeSolving Time----Invariant state equationInvariant state equationInvariant state equationInvariant state equation---- A reviewA reviewA reviewA review

  • 8/18/2019 CDS-II (2)

    69/79

    Solving TimeSolving TimeSolving TimeSolving Time Invariant state equationInvariant state equationInvariant state equationInvariant state equation A reviewA reviewA reviewA review

    ( )

    ( ) 2 k 0 1 2 k  

    Consider

    x Ax Bu, (1) x t ???

    Let us consider a homogenous state equation

    x ax (2)

    Let

    x t b b t b t b t (3)

    = + =

    =

    = + + + + +

    &

    &

    L L

     

    Control System Design-II by Dr. A.Q. Khan69

    1 2 k 

    k 1 2 k  

    1 2 k 0 1 2 k  

    1 0

    2 2

    2 1 0 2 0

    3

    3

    x t t t

    subsitituting (3) and (4) into (2)

    b 2b t kb t a (b b t b t b t ) (5)

    we have

    b ab

    12b ab a b b a b , Similarly

    2

    1b a

    6

    = + + +

    + + + = + + + + +

    =

    = =   ⇒   =

    =

    &   L

    L L L

    3 k 

    0 0 k 0

    1 1b a b , b a b

    3 k = =LL

    ( ) 2 0

    As

    1x t 1 at at b

    = + + + L

  • 8/18/2019 CDS-II (2)

    70/79

    ( )

    ( )

    ( ) ( ) ( )

    0

    0

    2 2 at

    x t 1 at at b2

    At t 0, equation (3) im plies

    b x 0 , therefore

    1x t 1 at a t x 0 e x 0

    2Now consider

    x Ax (6)

     

    + + +

    =

    =

    = + + + =

    =

    L

    &

    Control System Design-II by Dr. A.Q. Khan70

    ( ) 20 1 2

    Analogy with scalar, we have

    x t b b t b t= + + +

    ( )

    ( ) ( ) ( ) ( )

    k k 

    k 1

    1 2 k 

    2 2 At

    b t (7)

    x t b 2b t kb t (8)

    proceeding in similar fashion, we

    1x t 1 At A t x 0 e x 0 = (t)x 0 (9)2

    where (t ) is state transition

    + +

    = + + +

    = + + + = φ

    φ

    L L

    &   L

    L

    matrix.

    Referring to equation (9), the term is of particulari t t

    Ate

  • 8/18/2019 CDS-II (2)

    71/79

    interest.

    It is referred to as matrix exponential and analogously, it can berepresented as

    This matrix exponential for an converges absolutely forall finite time.

    k k At

    k 0

    A te

    k!

    =

    = ∑

    n n×

    Control System Design-II by Dr. A.Q. Khan71

     

    ( )

    ( )

    At At

    A B t At Bt

    A B t At Bt

    At At

    d  e Aedx

      e e e if AB BA

      e e e if AB BA  e e = I

    +

    +

    • =

    • = =

    • ≠ ≠•

    C id i (6) d ki L l T f

  • 8/18/2019 CDS-II (2)

    72/79

    ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( )

    1

    11 At

    C onsider equation (6) and taking Laplace T ransform

    sX (s) - x (0) AX s X s sI A x (0)

    x t sI A x 0 x t e x 0

    orx t t x 0

    where

    −−

    =   ⇒   = −

    = −   ⇒   =

    = φ

    L

    Control System Design-II by Dr. A.Q. Khan72

    ( )t : n n m atrix and is the unique solution

      : State transition m atr

    φ ×

    ( )

    ( ) ( )-1 -At

    ix. It has all the inform ation abou t

      the free motion o f the system define by x Ax

    0 I

    Also note t =e = t

    =

    φ =

    φ φ −

    &

    Case-I: If be distinct eigenvalues of A, thenwill contain exponentials

    1 2 n, ,λ λ λL   ( )tφ

    1 2 nt t te ,e , eλ λ λL

  • 8/18/2019 CDS-II (2)

    73/79

    will contain exponentials

    Case-II: If the matrix A is diagonal with , then

    e ,e , e

    1 2 n, ,λ λ λL

    ( )

    1

    2

    n

    t

    t

    t

    e 0 0

    0 e 0t

    0 0 e

    λ

    λ

    λ

    φ =

    L

    L

    M O O M

    L

    Control System Design-II by Dr. A.Q. Khan73

    Case-III: if there is multiplicity of eigenvalues, then will contain terms like in addition to1 1 1 2 n, , , ,λ λ λ λ λL

    ( )tφ 1 1t t2te , t eλ λ

    1 2 nt t te ,e , eλ λ λL

    Properties of ( )tφ

    ( ) AtAs t eφ =

  • 8/18/2019 CDS-II (2)

    74/79

    ( )

    ( )

    ( )   ( )   ( ) ( ) ( )

    ( )   ( ) ( ) ( ) ( ) ( )

    ( ) ( )

    1 2 1 2

    A(0)

    1 1At At 1

    A t t A t A t1 2 1 2

    n

    As t e

      0 e I

      t e e t or t t

      t t e e e t t

      t nt

    −   −− −

    +

    φ =

    • φ = =

    • φ = = = φ − φ = φ −

    • φ + = = = φ φ

    • φ = φ

    Control System Design-II by Dr. A.Q. Khan74

    An Example

    ( ) ( ) ( )2 1 1 0 2 0  t t t t t t• φ − φ − = φ −

    0 1For x Ax, where A=

    2 3

    = − −

    &

  • 8/18/2019 CDS-II (2)

    75/79

    ( ) ( )( ) ( ){ }

    ( )

    -1

    1At

    1

    Obtain t and t

    Solution : As e t sI A

    s 1Note that sI A

    2 s 3

    s 3 11sI A

    φ φ

    = φ = −

    − − =

    + +

    − = −

    -1L

    Control System Design-II by Dr. A.Q. Khan75

    ( )( ) ( )

    Using partial fraction expansion

    1t

    s 1 s 2φ =

    + +

    -1L

    ( )-t 2 t -t 2 t t 2 t t 2 t

    -t 2 t -2t t t 2 t 2t t

    2 1 1 1

    s 3 1 s 1 s 2 s 1 s 2

    2 s 2 2 2 1

    s 1 s 2 s 2 s 1

    2e e e e 2e e e e, t

    2e 2e 2e e 2e 2e 2e e

    − −

    − −

    − − + + + + +

    =   −       − − + + + +

    − − − −=   ⇒  φ − =

    − − − −

    -1L

    Solution to Homogenous State equationsConsider

  • 8/18/2019 CDS-II (2)

    76/79

    n 1

    n 1

    n n

    n p

    x

    ux Ax Bu (1)

    A

    B

    Now

    x Ax Bu

    ×

    ×

    ×

    ×

      ∈ ℜ∈ ℜ

    = + − − − − − − − − −   ∈ ℜ

    ∈ ℜ

    − =

    &

    &

    Convolution integral

    Control System Design-II by Dr. A.Q. Khan76

    ( )

    ( ) ( ) ( )

    At At At

    t t

    A At A

    0 0

    e x Ax e Bu multiply by e both side

    Integrating both sides

    de x Ax d e Bu d e x

    d

    − − −

    − τ − − τ

    − =

    − τ = τ τ ⇒   ττ∫ ∫

    &

    &   ( )

    ( ) ( ) ( ) ( ) ( )   ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    t t

    A

    0 0

    t t

    A tAt A At

    0 0

    t

    0

    d e Bu d

    e x t x 0 e Bu d x t e x 0 e Bu d

    x t t x 0 t Bu d (2)

    − τ

    − τ− − τ

      τ = τ τ

    ⇒   − = τ τ ⇒   = + τ τ

    ⇒   = φ + φ − τ τ τ − − − − − − − −

    ∫ ∫

    ∫ ∫

    Laplace Transform ApproachLaplace Transform ApproachLaplace Transform ApproachLaplace Transform Approach

  • 8/18/2019 CDS-II (2)

    77/79

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1

    Consider

    x Ax Bu

    The Laplace transform of the above system is

    sX s x 0 AX s BU s sI A X s x 0 BU s

    X s sI A x 0 BU s−

    = +

    − = +   ⇒   − = +   ⇒

    = − +

    &

    Control System Design-II by Dr. A.Q. Khan77

    ( ) ( )   ( ) ( )

    ( )  ( )

    ( )  ( )

    ( )i

    i

    t

    A tAt

    0

    0 i

    tA t t A t

    t

    x t e x 0 e Bu d

    For initial time t t 0, then

    x t e x 0 e Bu d

    − τ

    − −τ

    ⇒   = + τ τ

    = ≠

    = + τ τ

    An ExampleAn ExampleAn ExampleAn ExampleConsider

  • 8/18/2019 CDS-II (2)

    78/79

    ( ) ( )

    ( )

    x Ax Bu,

    where

    0 1 0 0 0 for t

  • 8/18/2019 CDS-II (2)

    79/79

    Laplace Transform method:

    Method of Diagonalization of A:

    ( ) ( ){ }1At

    t e sI A  −

    φ = = −-1LDiscussed in

    Previous slides

    1if D P A P then−=

    Control System Design-II by Dr. A.Q. Khan79

    Caley-Hamilton Theorem and minimal polynomial theorem

    Minimal polynomials of A involves distinct roots Minimal polynomials of A involves repeated roots

    A t 1 D t

     

    e P e P

    =