chap 5 fourier series

41
中中中中 中中中中中 Fall 2002 Chap 5 Fourier Series

Upload: judith-holt

Post on 04-Jan-2016

84 views

Category:

Documents


0 download

DESCRIPTION

Chap 5 Fourier Series. 中華大學 資訊工程系 Fall 2002. Fourier Analysis. Discrete. Continuous. Fourier Series. Fourier Integral. Fast Fourier Transform. Discrete Fourier Transform. Fourier Transform. Outline. Periodic Function Fourier Cosine and Sine Series - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Chap 5  Fourier Series

中華大學 資訊工程系

Fall 2002

Chap 5 Fourier Series Chap 5 Fourier Series

Page 2: Chap 5  Fourier Series

Page 2

Fourier Analysis

FourierSeries

FourierSeries

FourierIntegral

FourierIntegral

DiscreteFourier

Transform

DiscreteFourier

Transform

FourierTransform

FourierTransform

FastFourier

Transform

FastFourier

Transform

Discrete Continuous

Page 3: Chap 5  Fourier Series

Page 3

Outline

Periodic Function

Fourier Cosine and Sine Series

Periodic Function with Period 2L

Odd and Even Functions

Half Range Fourier Cosine and Sine

Series

Complex Notation for Fourier Series

Page 4: Chap 5  Fourier Series

Page 4

Fourier, Joseph

Fourier, Joseph 1768-1830

Page 5: Chap 5  Fourier Series

Page 5

Fourier, Joseph

In 1807, Fourier submitted a paper to the Academy of Sciences of Paris. In it he derived the heat equation and proposed his separation of variables method of solution. The paper, evaluated by Laplace, Lagrange, and Lagendre, was rejected for lack rigor. However, the results were promising enough for the academy to include the problem of describing heat conduction in a prize competition in 1812. Fourier’s 1811 revision of his earlier paper won the prize, but suffered the same criticism as before. In 1822, Fourier finally published his classic Theorie analytique de la chaleur, laying the fundations not only for the separation of variables method and Fourier series, but for the Fourier integral and transform as well.

Page 6: Chap 5  Fourier Series

Page 6

Periodic Function

Definition: Periodic Function

A function f(x) is said to be periodic with

period T if for all x

)()( xfTxf

T

f(x)

x

Page 7: Chap 5  Fourier Series

Page 7

Periodic Function

f(x+p)=f(x), f(x+np)=f(x) If f(x) and g(x) have period p, the the

function H(x)=af(x)+bg(x) , also has the period p

If a period function of f(x) has a smallest period p (p >0), this is often called the fundamental period of f(x)

Page 8: Chap 5  Fourier Series

Page 8

Periodic Function

Example Cosine Functions: cosx, cos2x, cos3x, …

Sine Functions: sinx, sin2x, sin3x, …

eix, ei2x, ei3x, …

e-ix, e-i2x, e-i3x, …

Page 9: Chap 5  Fourier Series

Page 9

Fourier Cosine and Sine Series

Lemma: Trigonometric System is

Orthogonal

)( ,0coscos nmnxdxmx

)( ,0sinsin nmnxdxmx

),( ,0sincos nmanynxdxmx

Page 10: Chap 5  Fourier Series

Page 10

Fourier Cosine and Sine Series

A function f(x) is periodic with period 2

and

10

321

3210

sincos

3sin2sinsin

3cos2coscos)(

nnn nxbnxaa

xbxbxb

xaxaxaaxf

Page 11: Chap 5  Fourier Series

Page 11

Fourier Cosine and Sine Series(Euler formulas)

Then

dxxfa )(

2

10

nxdxxfan cos)(

1

nxdxxfbn sin)(

1

Page 12: Chap 5  Fourier Series

Page 12

Fourier Cosine and Sine Series

Proof:

n

n

n

n

nnn

a

a

xdxnnxdxnna

nxdxnxa

nxdxnxbnxaa

nxdxxf

22

1.

)cos(2

1)cos(

2

1

coscos1

cossincos1

cos)(1

10

Page 13: Chap 5  Fourier Series

Page 13

Fourier Cosine and Sine Series

Example 5-1: Find the Fourier coefficients

corresponding to the function

Sol:

0)(2

10

dxxfa

)()2(

0 ,

0 ,)(

xfxf

xk

xkxf

Page 14: Chap 5  Fourier Series

Page 14

Fourier Cosine and Sine Series

Sol:

0

sinsin

coscos)(1

cos)(1

0

0

0

0

n

nx

n

nxk

nxdxknxdxk

nxdxxfan

Page 15: Chap 5  Fourier Series

Page 15

Fourier Cosine and Sine Series

Sol:

2,4,6,n ,0

1,3,5,n ,2cos1

cos12

coscos

sinsin)(1

sin)(1

0

0

0

0

n

nn

k

n

nx

n

nxk

nxdxknxdxk

nxdxxfbn

Page 16: Chap 5  Fourier Series

Page 16

Periodic Function with Period 2L

A periodic function f(x) with period 2L

2L

f(x)

x

10 sincos)(

nnn L

xnb

L

xnaaxf

Page 17: Chap 5  Fourier Series

Page 17

Periodic Function with Period 2L

Then

L

Ldxxf

La )(

2

10

L

Ln dxL

xnxf

La

cos)(

1

L

Ln dxL

xnxf

Lb

sin)(

1

Page 18: Chap 5  Fourier Series

Page 18

Periodic Square Wave

2,2

21,0

11 ,12 ,0

)(

LLp

x

xkx

xf

Page 19: Chap 5  Fourier Series

Page 19

Odd and Even Functions

A function f(x) is said to be even if

A function f(x) is said to be odd if

)()( xfxf

)()( xfxf

Page 20: Chap 5  Fourier Series

Page 20

Odd and Even Functions

)()( xfxf )()( xfxf

f(x)

x

f(x)

x

Even Function Odd Function

Page 21: Chap 5  Fourier Series

Page 21

Odd and Even Functions

Property

The product of an even and an odd function is odd.

evenisxfifdxxfdxxfLL

L )( ,)(2)(

0

oddisxfifdxxfL

L )( ,0)(

Page 22: Chap 5  Fourier Series

Page 22

Odd and Even Functions

Fourier Cosine Series

Fourier Sine Series

1

0 )( ,cos)(n

n evenisxfifL

xnaaxf

1

)( ,sin)(n

n oddisxfifL

xnbxf

Page 23: Chap 5  Fourier Series

Page 23

Sun of Functions

The Fourier coefficients of a sum f1+f2 are the sum of the corresponding Fourier coefficients of f1 and f2.

The Fourier coefficients of cf are c times the corresponding Fourier coefficients of f.

Page 24: Chap 5  Fourier Series

Page 24

Examples

Rectangular Pulse The function f*(x) is the sum in Example 1

of Sec.10.2 and the constant k.

Sawtooth wave Find the Fourier series of the function

...)5sin5

13sin

3

1(sin

4kk )(* xxxxf

)()2(,

x )(

xfxf

xifxf

Page 25: Chap 5  Fourier Series

Page 25

Half-Range Expansions

A function f is given only on half the range, half the interval of periodicity of length 2L. even periodic extention f1 of f

odd period extention f2 of f

Page 26: Chap 5  Fourier Series

Page 26

Complex Notation for Fourier Series

inx

nnecxf

)(

dxexfc inx

n )(2

1

1

0 sincos)(n

nn nxbnxaaxf

Page 27: Chap 5  Fourier Series

Page 27

Complex Notation for Fourier Series

A periodic function f(x) with period 2L

L

xin

nnecxf

)(

L

L

L

xin

n dxexfL

c

)(2

1

Page 28: Chap 5  Fourier Series

Page 28

Complex Fourier Series

Find complex Fourier series

)()2(

)(

xfxf

xifexf x

Page 29: Chap 5  Fourier Series

Page 29

Exercise

Section 10-4 #1,

Section 10-2 #5, #11

Section 10-3 #5, #9

Section 10-4 #1, #15

Page 30: Chap 5  Fourier Series

Page 30

Fourier Cosine and Sine Integrals

Example 1

)()2(

1 ,0

11 ,1

1 ,0

)(

xfLxf

Lx

x

xL

xf

Page 31: Chap 5  Fourier Series

Page 31

Fourier Cosine and Sine Integrals

n

nn LLn

Ln

Ldx

L

xnxf

La

Ldxxf

La

sin2

/

)/sin(2cos)(

1

1)(

2

1

1

1

1

10

x

x

1

sin(x)

Page 32: Chap 5  Fourier Series

Page 32

Fourier Cosine and Sine Integrals

x

x

xsin

Page 33: Chap 5  Fourier Series

Page 33

Fourier Cosine and Sine Integrals

Page 34: Chap 5  Fourier Series

Page 34

Fourier Cosine and Sine Integrals

Page 35: Chap 5  Fourier Series

Page 35

Fourier Cosine and Sine Integrals

L

sin2

)( A

Page 36: Chap 5  Fourier Series

Page 36

Gibb’s Phenomenon

Sine Integral u

duSi0

sin)(

Page 37: Chap 5  Fourier Series

Page 37

Gibb’s Phenomenon

Gibb’s Phenomenon

Page 38: Chap 5  Fourier Series

Page 38

Gibb’s Phenomenon

))1(())1((1

sin1sin1

)sin(1)sin(1

)sin()sin(1

sincos2)(

)1(

0

)1(

0

00

0

0

xaSixaSi

dtt

tdt

t

t

dx

dx

dxx

dx

xf

axax

aa

a

a

Page 39: Chap 5  Fourier Series

Page 39

Fourier Cosine and Sine Integrals

Fourier Cosine Integral of f(t)

0

)cos()( )( dtAtf

0

)cos()(2

)( dtttfA

Page 40: Chap 5  Fourier Series

Page 40

Fourier Cosine and Sine Integrals

Fourier Sine Integral of f(t)

0

)sin()( )( dtBtf

0

)sin()(2

)( dtttfB

Page 41: Chap 5  Fourier Series

Page 41

Fourier Integrals

Fourier Integral of f(t)

dtttfB

dtttfA

)sin()(1

)(

)cos()(1

)(

0

)sin()()cos()( )( dtBtAtf