chap. 6-pbs(2)

Upload: jihad-allam

Post on 03-Apr-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Chap. 6-Pbs(2)

    1/41

    Problem 6.2-1

    1

    6.2-1 Determine whether the given member satisfies the appropriate AISC

    interaction equation. Do not consider amplification. The loads are 50% dead load

    and 50% live load. Bending is about thex-axis,Fy = 355 MPa.

    a. Use LRFD.

    b. Use ASD.

  • 7/28/2019 Chap. 6-Pbs(2)

    2/41

    Problem 6.2-1 (Solution)

    2

    HE 300 B: d= 300 mm, bf= 300 mm, tw = 11 mm, tf= 19 mm, h = 208 mm,Iy

    = 8563 cm4 , ry = 7.58 cm , Sx = 1678 cm3 ,Zx = 1869 cm

    3 ,J= 189 cm4, Cw =

    1690000 cm6.

    width-to-thickness ratio:

    Load Calculations for LRFD:

    / 2 300 / 2 /19 7.895 0.56 / 0.56 200000 / 355 13.292

    / 208 /11 18.909 1.49 / 1.49 200000 / 355 35.366

    No Local Buckling

    f f y

    y

    b t E F

    h t E F

    1.2(0.5 1110) 1.6(0.5 1110) 1554 kN

    1.2(0.5 325) 1.6(0.5 325) 455 kN.m

    u

    u

    P

    M

  • 7/28/2019 Chap. 6-Pbs(2)

    3/41

    Problem 6.2-1 (Solution)

    3

    (4.2 m) (4.00 m) [ (4.25 m) (4.00 m)](4.20 4.00) / (4.25 4.00)

    (4.2 m) 3860 [3757 3860](0.20) / 0.25 3777.6 kN

    / (4.2 m) 3777.6 / 1.5 2518.4 kN

    c n c n c n c n

    c n

    n c

    P P P P

    P

    P

    cPncalculation:

    SinceKxL =KyL, KyL/ry Controls, Column Load Tables give, by interpolation

    bMnxcalculation:

    3 6355(1869 10 ) 10 663.495 kN.mpx y x

    M F Z

    / 2 300 / 2 /19 7.895 0.38 / 0.38 200000 / 355 9.020

    / 208 /11 18.909 3.76 / 3.76 200000 / 355 89.246

    Shape is compact

    f f y

    y

    b t E F

    h t E F

  • 7/28/2019 Chap. 6-Pbs(2)

    4/41

    4

    Problem 6.2-1 (Solution)

    52 10

    1.76 1.76(7.58) 316.7 cm355

    p y

    y

    EL r

    F

    62 28563(1.69 10 ) 71.691 cm 8.47 cm

    1678

    y w

    ts ts

    x

    I Cr rS

    0 (300 19) /10 28.1 cmfh d t

    2

    0

    0

    25

    5

    0.71.95 1 1 6.76

    0.7

    2 10 189(1.0) 0.7 355 1678 28.11.95(8.47) 1 1 6.76

    0.7(355) 1678(28.1) 2 10 189 1.0

    1272 cm

    y x

    r ts

    y x

    r

    r

    F S hE JcL r

    F S h EJc

    L

    L

  • 7/28/2019 Chap. 6-Pbs(2)

    5/41

    5

    Problem 6.2-1 (Solution)

    3 6

    316.7 cm 420 cm 1272 cm

    ( 0.7 )

    420 316.71.0 663.495 (663.495 0.7(355)(1678 10 ) 10 )

    1272 316.7

    636.839 kN.m 0.9(636.839) 57

    p b r

    b p

    nx b p p y x p

    r p

    nx

    nx b nx

    L L L

    L LM C M M F S M

    L L

    M

    M M

    3.155 kN.m

    / 0.6 0.6(636.839) 382.103 kN.mnx b nxM M

    1554 0.411 0.23777.6

    u

    c n

    P

    P

  • 7/28/2019 Chap. 6-Pbs(2)

    6/41

    6

    Problem 6.2-1 (Solution)

    8

    9

    8 4550.411 0

    9 573.1550.411 0.706 1.117 1.0, N.G.

    uyu ux

    c n b nx b ny

    MP M

    P M M

    15540.411 0.2

    3777.6

    u

    c n

    P

    P

    11100.441 0.2

    / 2518.4

    u

    n c

    P

    P

    8

    / 9 / /

    8 3250.441 09 382.103

    0.441 0.756 1.197 1.0, N.G.

    aya ax

    n c nx b ny b

    MP M

    P M M

  • 7/28/2019 Chap. 6-Pbs(2)

    7/41

    Problem 6.2-2

    7

    6.2-2 How much service live load, in kN/m, can be supported? The member

    weight is the only dead load. The axial compression load consists of a service dead

    load of 45 kN and a service live load of 90 kN. Do not consider amplification

    Bending is about thex-axis,Fy = 355 MPa.

    a. Use LRFD.b. Use ASD.

  • 7/28/2019 Chap. 6-Pbs(2)

    8/41

    Problem 6.2-2 (Solution)

    8

    HE 450 A: d= 440 mm, bf= 300 mm, tw = 11.5 mm, tf= 21 mm, h = 2344

    mm,Iy = 9465 cm4 , ry = 7.29 cm , Sx = 2896 cm

    3 ,Zx = 3216 cm3 ,J= 250

    cm4, Cw = 4150000 cm6, m = 139.8 kg/m.

    width-to-thickness ratio:

    Load Calculations for LRFD:

    / 2 300 / 2 / 21 7.143 0.56 / 0.56 200000/ 355 13.292

    / 344 /11.5 29.913 1.49 / 1.49 200000/355 35.366

    No Local Buckling

    f f y

    y

    b t E F

    h t E F

    2 2

    ,max

    1.2(45) 1.6(90) 198 kN

    1.2(139.8 10/1000) 1.6( ) 1.678 1.6 kN/m

    /8 (1.678 1.6 )(6) /8 7.549 7.2 kN.m

    u

    u L L

    u u L L

    P

    w w w

    M w L w w

  • 7/28/2019 Chap. 6-Pbs(2)

    9/41

    Problem 6.2-2 (Solution)

    9

    (6 m) 3415 kN

    / (6 m) 2272 kN

    c n

    n c

    P

    P

    cPncalculation:

    SinceKxL =KyL, KyL/ry Controls, Column Load Tables give

    bMnxcalculation:

    / 2 300 / 2 / 21 7.143 0.38 / 0.38 200000 /355 9.020

    / 344/11.5 29.913 3.76 / 3.76 200000 /355 89.246

    Shape is compact

    f f y

    y

    b t E F

    h t E F

    Load Calculations for LRFD:`

    2 2

    ,max

    45 90 135 kN

    139.8 10/1000 1.398 kN/m

    /8 (1.398 )(6) /8 6.291 4.5 kN.m

    a

    a L L

    a a L L

    P

    w w w

    M w L w w

  • 7/28/2019 Chap. 6-Pbs(2)

    10/41

    10

    Problem 6.2-2 (Solution)

    1.14 for uniform load, lateral support at the supports only.

    Beam Design Tables give

    for 1.00; 865 kN.m 961.111 kN.m

    (961.111) 1.14(961.111) 1095.667 kN.m 1142 kN.m

    0.9(1

    b

    b b nx nx

    nx b px

    b nx

    C

    C M M

    M C M

    M

    095.667) 986.1 kN.m

    / 0.6 0.6(1095.667) 657.4 kN.mnx b nxM M

  • 7/28/2019 Chap. 6-Pbs(2)

    11/41

    11

    Problem 6.2-2 (Solution)

    2

    (7.549 7.2 )0.0580

    2 986.1

    0.029 0.0077 0.0073 1.0

    131.959 kN/m

    uyu ux

    c n b nx b ny

    L

    L

    L

    MP M

    P M M

    w

    w

    w

    1980.058 0.2

    3415

    u

    c n

    P

    P

    1350.059 0.2

    / 2272

    u

    n c

    P

    P

    2 / / /

    6.291 4.50.0590

    2 657.4

    0.0295 0.0096 0.0068 1.0

    141.309 kN/m

    aya ax

    n c nx b ny b

    L

    L

    L

    MP M

    P M M

    w

    w

    w

  • 7/28/2019 Chap. 6-Pbs(2)

    12/41

    Problem 6.6-1

    12

    6.6-1 Compute the moment amplification factorB1 for the member of Problem

    6.2-1. The frame analysis was performed using the requirements for approximate

    second-order analysis method of AISC Appendix 8. This means that a reduced

    stiffness, EI*, was used in the analysis, and an effective length factor ofKx = 1.0

    can be used.

    a. Use LRFD.

    b. Use ASD.

  • 7/28/2019 Chap. 6-Pbs(2)

    13/41

    Problem 6.6-1 (Solution)

    13

    a. LRFD

    In the plane of bending

    2 21554 0 1554 kN ( 0 for braced frame)r u nt lt P P P B P B

    (4.2 m) 3777.6 kN

    / (4.2 m) 2518.4 kN

    c n

    n c

    P

    P

    *

    3

    * 4 13 2

    0.8

    1.00(1554)0.294 0.5 1.0

    14900(355)(10 )

    0.8(1.0)(200000)(25166 10 ) 4.027 10 N.mm

    b x

    r rb

    y g y

    EI EI

    P P

    P A F

    EI

    2 * 2 13

    3

    1 2 2

    1

    (4.027 10 )10 22529 kN

    ( ) (1.0 4200)e

    EIP

    K L

  • 7/28/2019 Chap. 6-Pbs(2)

    14/41

    Problem 6.6-1 (Solution)

    14

    1

    2

    1

    1

    4550.6 0.4 0.6 0.4 1.0

    455

    1.01.074

    1 ( / ) 1 (1.00)(1554) / 22529

    m

    m

    r e

    MC

    M

    CB

    P P

    1 2 1.074(455) 0 488.71 kN.mrx ux nt lt M M B M B M

    8

    9

    8 488.710.411 09 573.155

    0.411 0.758 1.169 1.0, N.G.

    uyu ux

    c n b nx b ny

    MP M

    P M M

    15540.411 0.2

    3777.6

    u

    c n

    P

    P

  • 7/28/2019 Chap. 6-Pbs(2)

    15/41

    Problem 6.6-1 (Solution)

    15

    b. ASD

    In the plane of bending

    2 21110 0 1110 kN ( 0 for braced frame)r a nt lt P P P B P B

    (4.2 m) 3777.6 kN

    / (4.2 m) 2518.4 kN

    c n

    n c

    P

    P

    *

    3

    * 4 13 2

    0.8

    1.60(1110)0.336 0.5 1.0

    14900(355)(10 )

    0.8(1.0)(200000)(25166 10 ) 4.027 10 N.mm

    b x

    r rb

    y g y

    EI EI

    P P

    P A F

    EI

    2 * 2 13

    3

    1 2 2

    1

    (4.027 10 )10 22529 kN

    ( ) (1.0 4200)e

    EIP

    K L

  • 7/28/2019 Chap. 6-Pbs(2)

    16/41

    Problem 6.6-1 (Solution)

    16

    1

    2

    1

    1

    3250.6 0.4 0.6 0.4 1.0

    325

    1.01.086

    1 ( / ) 1 (1.60)(1110) / 22529

    m

    m

    r e

    MC

    M

    CB

    P P

    1 2 1.086(325) 0 352.813 kN.mrx ax nt lt M M B M B M

    11100.441 0.2

    / 2518.4

    u

    n c

    P

    P

    8

    / 9 / /

    8 352.8130.441 09 382.103

    0.441 0.821 1.262 1.0, N.G.

    aya ax

    n c nx b ny b

    MP M

    P M M

  • 7/28/2019 Chap. 6-Pbs(2)

    17/41

    Problem 6.6-4

    17

    6.6-4 The member shown is part of a braced frame. The load and moments are

    computed from service loads, and bending is about the x-axis (the end shears are

    not shown). The frame analysis was performed consistent with the effective length

    method, so the flexural rigidity, EI, was unreduced. Use Kx = 0.9. the load and

    moments are 30% dead load and 70% live load. Determine whether this member

    satisfies the appropriate AISC interaction equation.Fy = 355 MPa.

    a. Use LRFD.

    b. Use ASD.

  • 7/28/2019 Chap. 6-Pbs(2)

    18/41

    18

    HE 300 A: d= 290 mm, bf= 300 mm, tw = 8.5 mm, tf= 14 mm, h = 208 mm,Ix

    = 18263 cm4 ,Iy = 6310 cm4 , ry = 7.49 cm , Sx = 1260 cm

    3 ,Zx = 1383 cm3 ,J

    = 87.8 cm4, Cw = 1200000 cm6.

    width-to-thickness ratio:

    Load Calculations for LRFD:

    / 2 300 / 2 /14 10.714 0.56 / 0.56 200000 / 355 13.292

    / 208 / 8.5 24.471 1.49 / 1.49 200000 / 355 35.366

    No Local Buckling

    f f y

    y

    b t E F

    h t E F

    1

    1

    1.2(0.3 535) 1.6(0.7 535) 1.48 535 791.8 kN

    1.2(0.3 90) 1.6(0.7 90) 1.48 90 133.2 kN.m

    1.2(0.3 180) 1.6(0.7 180) 1.48 180 266.4 kN.m

    u

    u

    u

    P

    M

    M

    18

    Problem 6.6-4 (Solution)

  • 7/28/2019 Chap. 6-Pbs(2)

    19/41

    Problem 6.6-4 (Solution)

    19

    a. LRFD

    In the plane of bending

    2 2791.8 0 791.8 kN ( 0 for braced frame)r u nt lt P P P B P B

    (4.8 m) 2667 (2581 2667)(4.8 4.75) / (5 4.75) 2649.6 kN

    / (4.8 m) 1766.5 kN

    c n

    n c

    P

    P

    *

    * 4 13 2(200000)(18263 10 ) 3.653 10 N.mm

    xEI EI

    EI

    2 * 2 13

    31 2 2

    1

    (3.653 10 ) 10 19317 kN( ) (0.9 4800)

    e EIPK L

  • 7/28/2019 Chap. 6-Pbs(2)

    20/41

    20

    Problem 6.6-4 (Solution)

    20

    1 2 1

    max

    ( ) / 4.8 1.48[90 ( 180 90) / 4.8] 1.48[90 56.25 ]

    ( 4.8/ 4 1.2) 1.48 22.5 kN.m

    ( 4.8/ 2 2.4) 1.48 ( 45) kN.m

    ( 3 4.8/ 4 3.6) 1.48 ( 112.5) kN.m( 4.8) 1.48 ( 180) kN.m

    u u u

    A

    B

    B

    M M M M x x x

    M M x

    M M x

    M M xM M x

    max max12.5 /(2.5 3 4 3 )

    12.5(180) /[2.5(180) 3(22.5) 4(45) 3(112.5)]

    2.174

    b A B C

    b

    b

    C M M M M M

    C

    C

    (4.8 m) 2.174[407 (402 407)(4.8 4.75) /(5 4.75)]

    (4.8 m) 882.61 kN.m 427 kN.m, use 427 kN.m

    / (4.8 m) 284 kN.m

    b nx

    b nx b px b nx b px

    nx b

    M

    M M M M

    M

  • 7/28/2019 Chap. 6-Pbs(2)

    21/41

    Problem 6.6-4 (Solution)

    21

    1

    2

    1 1

    1

    900.6 0.4 0.6 0.4 0.4

    180

    0.40.417 1.0, use 1.0

    1 ( / ) 1 (1.00)(791.8) /19317

    m

    m

    r e

    MC

    M

    CB B

    P P

    1 2 1.0(266.4) 0 266.4 kN.mrx ux nt lt M M B M B M

    8

    9

    8 266.40.299 09 427

    0.299 0.555 0.854 1.0, O.K.

    uyu ux

    c n b nx b ny

    MP M

    P M M

    791.80.299 0.2

    2649.6

    u

    c n

    P

    P

  • 7/28/2019 Chap. 6-Pbs(2)

    22/41

    Problem 6.6-4 (Solution)

    22

    b. ASD

    In the plane of bending

    2 2535 0 535 kN ( 0 for braced frame)r a nt lt P P P B P B

    / (4.2 m) 1766.5 kNn cP

    *

    * 4 13 2(200000)(18263 10 ) 3.653 10 N.mm

    xEI EI

    EI

    2 * 2 13

    31 2 2

    1

    (3.653 10 ) 10 19317 kN( ) (0.9 4800)

    e EIPK L

  • 7/28/2019 Chap. 6-Pbs(2)

    23/41

    Problem 6.6-4 (Solution)

    23

    1

    2

    1 1

    1

    900.6 0.4 0.6 0.4 0.4

    180

    0.40.419 1.0, use 1.0

    1 ( / ) 1 (1.60)(535) /19317

    m

    m

    r e

    MC

    M

    CB B

    P P

    1 2 1.0(180) 0 180 kN.mrx ux nt lt M M B M B M

    8

    / 9 / /

    8 1800.303 09 271

    0.303 0.590 0.893 1.0, O.K.

    aya ax

    n c nx b ny b

    MP M

    P M M

    5350.303 0.2

    / 1766.4

    a

    n c

    P

    P

  • 7/28/2019 Chap. 6-Pbs(2)

    24/41

    Problem 6.7-2

    24

    6.7-2 An HE 360 A ofFy = 355 MPa, 4.8 m long, is used as a column in an

    unbraced frame. The results of a first-order analysis for service D, L, and Ware

    shown in the figure. Bending is about the x-axis. The effective length factors are

    Kx = 0.85 for the braced case, Kx = 1.2 for the unbraced case, and Ky = 1.0.

    Determine whether this member is in compliance with the AISC Specification.

    a. Use LRFD.

    b. Use ASD.

  • 7/28/2019 Chap. 6-Pbs(2)

    25/41

    Problem 6.7-2 (Solution)

    25

    width-to-thickness ratio:

    LRFD:

    Load Combination 2: 1.2D + 1.6L

    / 2 300 / 2 /17.5 8.57 0.56 / 0.56 200000 / 355 13.29

    / 261/10 26.1 1.49 / 1.49 200000 / 355 35.37

    No Local Buckling

    f f y

    y

    b t E F

    h t E F

    ,Bot

    ,Top

    ,Bot

    1.2(535) 1.6(1070) 2354 kN

    1.2(25) 1.6(65) 134 kN.m, cw1.2(20) 1.6(55) 112 kN.m, cw

    2354 kN, 134 kN.m, cw, 0 (because of symmetry)

    u

    u

    u

    nt nt u lt

    P

    MM

    P M M M

  • 7/28/2019 Chap. 6-Pbs(2)

    26/41

    Problem 6.7-2 (Solution)

    26

    1

    2

    2 *2 * 2

    1 2 2 2

    1

    1 1

    1

    1120.6 0.4 0.6 0.4 0.27

    134

    (200000)(330800)39226 kN

    ( ) ( ) [(0.85)(4800)]

    0.270.28 1.0, use 1.0

    1 ( / ) 1 (1.00)(2354) / 39226

    m

    xe

    x

    m

    r e

    MC

    M

    EIEIP

    K L K L

    CB B

    P P

    1 2 1.0(134) 0 134 kN.mrx ux nt lt M M B M B M

    2 2354 0 2354 kNr u nt lt P P P B P

    (4.8 m) [613 (605 613)(4.8 4.75) / (5 4.75)]

    (4.8 m) 611.4 kN.m, for 1.0

    b nx

    b nx b

    M

    M C

    (4.8 m) [3359 (3249 3359)(4.8 4.75) / (5 4.75)]

    (4.8 m) 3337 kN

    c n

    c n

    P

    P

  • 7/28/2019 Chap. 6-Pbs(2)

    27/41

    27

    Problem 6.7-2 (Solution)

    1 2 1

    max

    ( ) / 4.8 [134 ( 112 134) / 4.8] 134 51.25

    ( 4.8 / 4 1.2) 72.5 kN.m

    ( 4.8 / 2 2.4) 11 kN.m

    ( 3 4.8 / 4 3.6) 50.5 kN.m( 0) 134 kN.m

    u u u

    A

    B

    C

    M M M M x x x

    M M x

    M M x

    M M xM M x

    max max12.5 / (2.5 3 4 3 )

    12.5(134) / [2.5(134) 3(72.5) 4(11) 3(50.5)]

    2.24

    b A B C

    b

    b

    C M M M M M

    C

    C

    For 2.24, (4.8 m) 2.24(611.4) 1369.11 kN.m 667 kN.m

    Use 667 kN.m

    b b nx b px

    b nx b px

    C M M

    M M

    134 kN.m

    112 kN.m

  • 7/28/2019 Chap. 6-Pbs(2)

    28/41

    28

    Problem 6.7-2 (Solution)

    2354 80.71 0.2

    3337 9

    8 1340.71 0

    9 6670.71 0.20 0.91 1.0, OK

    uyu u ux

    c n c n b nx b ny

    MP P M

    P P M M

  • 7/28/2019 Chap. 6-Pbs(2)

    29/41

    Problem 6.7-2 (Solution)

    29

    LRFD: Load Combination 4: 1.2D + 1.0W+ 0.5L

    ,Bot

    ,Top

    1.2(535) 0.5(1070) 1.0(135) 1312 kN

    [1.2(25) 0.5(65)] 1.0(175) [62.5] 175 237.5 kN.m, cw

    [1.2(20) 0.5(55)] 1.0(175) [51.5] 175 226.5 kN.m, cw

    1177 kN, 62.5 kN.m, cw, 0, 175

    u

    u

    u

    nt nt lt lt

    P

    M

    M

    P M P M

    2

    2

    1

    2

    1

    1 1

    1

    kN.m, cw

    For the braced condition, 0 and

    1177 0 1177 kN

    51.50.6 0.4 0.6 0.4 0.27

    62.5

    0.27

    1 ( / ) 1 [( ) / ] 1 (1.00)(1177 135) /39226

    0.28 1.0, Us

    r u nt lt

    m

    m m

    r e nt lt e

    B

    P P P B P

    MC

    M

    C CB

    P P P P P

    B

    1e 1.0B

  • 7/28/2019 Chap. 6-Pbs(2)

    30/41

    Problem 6.7-2 (Solution)

    30

    2

    story

    2story story

    2story

    2 *2 *

    2 2 2

    2

    For the unbraced condition, must be computed

    1 11 since we do not dispose of

    11

    1312 kN

    , where is taken for the unbraced case( ) ( )

    u e

    ee

    u

    xe x

    x

    B

    PB

    P P P

    PP

    P

    EIEIP K

    K L K L

    P

    2

    2 2(200000)(330800) 19681 kN[(1.2)(4800)]

    e

  • 7/28/2019 Chap. 6-Pbs(2)

    31/41

    31

    Problem 6.7-2 (Solution)

    1 2 1

    max

    ( ) / 4.8 [237.5 ( 226.5 237.5) / 4.8] 237.5 96.67

    ( 4.8/ 4 1.2) 121.5 kN.m

    ( 4.8/ 2 2.4) 5.5 kN.m

    ( 3 4.8/ 4 3.6) 110.5 kN.m

    ( 0) 237.5 kN.m

    u u u

    A

    B

    C

    M M M M x x x

    M M x

    M M x

    M M x

    M M x

    max max12.5 /(2.5 3 4 3 )

    12.5(237.5) /[2.5(237.5) 3(121.5) 4(5.5) 3(110.5)]

    2.26

    b A B C

    b

    b

    C M M M M M

    C

    C

    For 2.26, (4.8 m) 2.24(611.4) 1383.72 kN.m 667 kN.m

    Use 667 kN.m

    b b nx b px

    b nx b px

    C M M

    M M

    237.5 kN.m

    226.5 kN.m

  • 7/28/2019 Chap. 6-Pbs(2)

    32/41

    Problem 6.7-2 (Solution)

    32

    2

    2

    2

    1 2

    1 11.071 1

    1.0(1312)11

    19681

    The amplified axial load is

    1177 1.071(135) 1322 kNThe total amplified moment load is

    1.0(62.5) 1.071(175) 250 kN.m

    1312

    3337

    u

    e

    r u nt lt

    r u nt lt

    r

    c n

    BP

    P

    P P P B P

    M M B M B M

    P

    P

    8

    0.39 0.2

    9

    8 2500.39 0

    9 667

    0.39 0.33 0.73 1.0, OK

    uyu ux

    c n b nx b ny

    MP M

    P M M

  • 7/28/2019 Chap. 6-Pbs(2)

    33/41

    Example 6.10-modified

    33

    A multistory structure composed of ten three-bay stories must be stabilized by

    diagonal X bracing in one of the three bays. The braced frame is shown in the

    figure. The loading is typical. Use a steel ofFy = 235 MPa to determine the

    required cross-sectional area of the bracing. Use LRFD.

  • 7/28/2019 Chap. 6-Pbs(2)

    34/41

    Example 6.10-modified (Solution)

    34

    The total vertical load to stabilized by the bracing is

    1

    {[1.2(32) 1.6(10)](6) 3} 10 [1.2(20) 0.5(4)](6) 3

    {54.4(6) 3} 10 [26](6) 3 979.2 10 468 10260 kN

    0.004 0.004(10260) 41.04 kN

    41.0445.88 kN

    cos cos[tan (3 / 6)] cos[26.57]

    Based on

    r u

    r

    rb r

    rb rb

    P P

    P

    P P

    P PF

    2 2

    the limit state of tension yielding, the required area below

    the first floor is

    45880217 mm 2.17 cm

    0.9 0.9(235)g

    y

    FA

    F

  • 7/28/2019 Chap. 6-Pbs(2)

    35/41

    Example 6.10-modified (Solution)

    35

    The required lateral stiffness is

    1 2 1 2(10260)9120 kN/m

    0.75 3

    The axial stiffness of the brace is given by / ,

    where is the axial elongation of the brace, which is related to the horizontal

    displacement by

    cos

    rbr

    b

    P

    L

    F

    2

    2

    The axial stiffness of the brace can be written as

    / cos 1 1 2cos

    cos cos

    rb rb rb r

    b

    P P PF F P

    L

  • 7/28/2019 Chap. 6-Pbs(2)

    36/41

    Example 6.10-modified (Solution)

    36

    2

    2 6 3

    2 2 st

    min

    Knowing that

    21 6

    9120000 0.000382 mcos 200000 10 cos (26.57)

    3.82 cm Controls, use L50 50 4 3.89 cm , for the 1 story.

    / 600 / cos(26.57) / 0.979 670.82 / 0.979 685

    g

    r

    gb

    g

    A EF

    L

    P L

    A L E

    A

    L r

    min

    2

    min

    .21 300, N.G.

    /300 670.82/300 2.24 cm,

    use L120 120 8 18.7 cm , 2.37 cm, for the entire building.

    r L

    r

  • 7/28/2019 Chap. 6-Pbs(2)

    37/41

    Example 6.10-modified (Solution)

    37

    The required cross-sectional areas for all stories are

    Story No.

    Pr @

    Story No.

    (kN)

    Prb @

    Story No.

    (kN)

    Ag-

    Yielding

    @ Story

    No.

    (cm2)

    Lateral

    Stiffness

    br @Story No.

    (kN/m)

    Ag-Axial

    Stiffness @

    Story No.

    (cm2)

    Ag @

    Story No.

    (cm2)

    Equal Leg

    Angle, No

    Slenderness

    Limit

    1 10260 41.04 1.94 9120 3.82 3.82 L 50x50x4

    2 9280.8 37.12 1.76 8249.6 3.46 3.46 L 50x50x4

    3 8301.6 33.21 1.57 7379.2 3.09 3.09 L 50x50x4

    4 7322.4 29.29 1.38 6508.8 2.73 2.73 L 50x50x3

    5 6343.2 25.37 1.20 5638.4 2.36 2.36 L 50x50x3

    6 5364 21.46 1.01 4768 2.00 2.00 L 50x50x3

    7 4384.8 17.54 0.83 3897.6 1.63 1.63 L 30x30x3

    8 3405.6 13.62 0.64 3027.2 1.27 1.27 L 30x30x3

    9 2426.4 9.71 0.46 2156.8 0.90 0.90 L 30x30x3

    10 1447.2 5.79 0.27 1286.4 0.54 0.54 L 30x30x3

    Roof 468 1.87 0.09 416 0.17 0.17 L 30x30x3

  • 7/28/2019 Chap. 6-Pbs(2)

    38/41

    Example 5.15-6-modified

    38

    An IPE 160 of a steel ofFy = 355 MPa is used as purlins supported by

    trusses spaced at 3 m on centers. The total gravity load of 1.92 kN/m2 of

    roof surface, half dead load half snow load. The inclination of the roof is 1

    vertical to 4 horizontal. The tributary area of a purlin is 1.855 m. Assume

    that wind load is not a factor and investigate the adequacy of an IPE 160

    for use as a purlin. No sag rods are used, so lateral support is at the ends

    only.

  • 7/28/2019 Chap. 6-Pbs(2)

    39/41

    Example 5.15-6-modified (Solution)

    39

    IPE 160: d= 160 mm, bf= 82 mm, tw = 5 mm, tf= 7.4 mm, h = 127.2

    mm,Ix = 869 cm4 ,Iy = 68.3 cm

    4 , ry = 7.49 cm , Sx = 109 cm3 ,Zx =

    124 cm3 , Sy = 16.7 cm3 ,Zy = 26.1 cm

    3.

    width-to-thickness ratio:

    / 2 82 / 2 / 7.4 5.54 0.56 / 0.56 200000/ 355 13.292/ 127.2 /5 25.44 1.49 / 1.49 200000 /355 35.366

    Shape is Compact

    f f y

    y

    b t E F h t E F

  • 7/28/2019 Chap. 6-Pbs(2)

    40/41

    Example 5.15-6-modified (Solution)

    40

    Load Calculations for LRFD:2

    1

    Roof

    Roof

    1.2(0.5 1.92) 1.6(0.5 1.92) 1.48 535 2.688 kN/m

    1.855(2.688) 4.986 kN/m

    weight of the beam;

    16.8 10/1000 0.168 kN/m

    roof slope:

    1tan 14.04

    4

    ( ) ( 1.2 )cos( ) [4.986 1.2(

    u

    u

    u u

    u

    q

    w

    w

    w w ww

    Roof

    Roof

    0.168)]cos14.04 5.033 kN/m

    ( ) ( 1.2 )sin

    ( ) [4.986 1.2(0.168)]sin14.04 1.258 kN/m

    u u

    u

    w w w

    w

  • 7/28/2019 Chap. 6-Pbs(2)

    41/41

    Example 5.15-6-modified (Solution)

    41

    2 2

    Roof

    2 2Roof

    ( ) 5.033(3)5.66 kN.m

    8 8

    ( ) 1.258(3)1.42 kN.m

    8 8

    uux

    u

    ux

    wM

    wM

    6

    6

    1.14 ( 1.0) 1.14(21) 23.94 kN.m 39.6 kN.m

    0.9 0.9(355)(26100) 10 8.34 kN.m

    (1.6 ) 0.9[1.6(355)(16700) 10 8.54 kN.m

    (1.6 ) 8.34 kN.m

    nx nx b px

    ny y y

    y y

    ny y y ny

    M M C M

    M F Z

    F S

    M F S M

    5.66 1.420.768 1.0

    0.5 23.94 0.5(5.34)

    The shape is adequate.

    uyux

    b nx b ny

    MM

    M M