chapter 21 performance of fluid flow equipment

30
Chapter 21 Performance Curves for Performance Curves for Individual Unit Operations (Fluid Flow Equipment) Department of Chemical Engineering West Virginia University Copyright J. A. Shaeiwitz and R. Turton - 2012 1

Upload: engr-muhammad-hisyam-hashim

Post on 13-Feb-2017

343 views

Category:

Engineering


1 download

TRANSCRIPT

Page 1: Chapter 21   performance of fluid flow equipment

Chapter 21 Performance Curves forPerformance Curves for 

Individual Unit Operations(Fluid Flow Equipment)

Department of Chemical EngineeringWest Virginia University

Copyright J. A. Shaeiwitz and R. Turton - 2012 1

Page 2: Chapter 21   performance of fluid flow equipment

OutlineOutline

• Flow in pipesFlow in pipes– laminar vs. turbulent

• NPSH• NPSH

• Pump and system curves– single vs. multiple pumps

– centrifugal vs. positive displacement

– compressors

Copyright J. A. Shaeiwitz and R. Turton - 2012 2

Page 3: Chapter 21   performance of fluid flow equipment

OutlineOutline

• Flow in pipesFlow in pipes– laminar vs. turbulent

• NPSH• NPSH

• Pump and system curves– single vs. multiple pumps

– centrifugal vs. positive displacement

– compressors

Copyright J. A. Shaeiwitz and R. Turton - 2012 3

Page 4: Chapter 21   performance of fluid flow equipment

Key RelationshipsKey Relationships

2

• Turbulent flow

22

4

2∝Δ⇒=Δ

mm

vPDfLvP frfrρ

&&

2

2

32

4==

mfL

Dm

Amv

ρπρ

&

&&

552

32 −∝Δ⇒=Δ DPDmfLP frfr ρπ&

Copyright J. A. Shaeiwitz and R. Turton - 2012 4

Page 5: Chapter 21   performance of fluid flow equipment

Key RelationshipsKey Relationships

• Laminar flow

LLL

DPvDv Δ==

128321284

42

μππ

&

&

vDPD

LvD

LvP frfr ∝∝Δ⇒==Δ − and12832 442 πμμ &

Copyright J. A. Shaeiwitz and R. Turton - 2012 5

Page 6: Chapter 21   performance of fluid flow equipment

Example 1Example 1

• Increase velocity by 25% ‐ turbulent flow ‐effect on ΔP

ld12

25.1

old1 new2

2 =

==

vv

2 22

1

∝Δ⇒=Δ vPDfLvP

v

frfrρ

5625.125.1 22

22

1

2 ===ΔΔ

vv

PP

D ff

11Δ vP

Copyright J. A. Shaeiwitz and R. Turton - 2012 6

Page 7: Chapter 21   performance of fluid flow equipment

Example 2Example 2

• Double diameter – turbulent flow‐ effect on ΔP

2

old1 new2

2 =

==

DD

32 552

21

∝Δ⇒=Δ −DPDmfLP

D

frfrρπ

&

32103125.05.0 5

5

51

1

2 ====ΔΔ

DD

PP

Dρπ

3221Δ DP

Copyright J. A. Shaeiwitz and R. Turton - 2012 7

Page 8: Chapter 21   performance of fluid flow equipment

OutlineOutline

• Flow in pipesFlow in pipes– laminar vs. turbulent

• NPSH• NPSH

• Pump and system curves– single vs. multiple pumps

– centrifugal vs. positive displacement

– compressors

Copyright J. A. Shaeiwitz and R. Turton - 2012 8

Page 9: Chapter 21   performance of fluid flow equipment

NPSHNPSH

NPSH N P i i S i H d• NPSH = Net Positive Suction Head

• There is pressure drop upon entering pump, p p p g p p,before mechanism that increases pressure

• If fluid is too close to vapor pressure at pump• If fluid is too close to vapor pressure at pump inlet, it could flash upon entering pump

• Pumps are designed to handle liquids and do not behave well with vapor

Copyright J. A. Shaeiwitz and R. Turton - 2012 9

Page 10: Chapter 21   performance of fluid flow equipment

NPSHNPSH

• NPSHA = Pinlet – P *NPSHR

• NPSHA= NPSH “available”

NPSHR

• NPSHR = NPSH “required”i f i li d b f

v&

– information supplied by pump manufacturer

Copyright J. A. Shaeiwitz and R. Turton - 2012 10

Page 11: Chapter 21   performance of fluid flow equipment

NPSHNPSH

• Common situation

• Apply MEB

1202

2WezgvP

sf −→Δ=−+Δ+Δ

+Δρ

2

02

2

212

fL

DfLvghPP

=+−−

ρ

ρ

*2*

2

2

2

12

PfLvghPPPNPSH

DfLvghPP

+==

−+=

ρρ

ρρ

Copyright J. A. Shaeiwitz and R. Turton - 2012 11

** 12 PD

ghPPPNPSH A −−+=−= ρ

Page 12: Chapter 21   performance of fluid flow equipment

NPSHNPSH

52

2

1 *32 PD

vfLghPNPSH A πρρ −−+=

&

2

form of

vbaNPSH A −= &NPSH

1

32*

fLb

PghPavbaNPSH A

ρρ −+=

NPSHA

5232

DfLb

πρ

=v&

this is for turbulent flowf l i fl t i ht li

Copyright J. A. Shaeiwitz and R. Turton - 2012 12

for laminar flow – straight linewith negative slope

Page 13: Chapter 21   performance of fluid flow equipment

NPSHNPSH

2

1

2

32*

fLPghPavbaNPSH A

ρ −+=−= &• How to increase NPSHA

• base case is line (1)increase a line (2)

5232

DfLb

πρ

=– increase a – line (2)

• increase h• increase P1• decrease P*

– decrease T

– decrease b – line (3) NPSHA

• decrease L• increase D

– suction line usually larger D1

32

Copyright J. A. Shaeiwitz and R. Turton - 2012 13

v&

Page 14: Chapter 21   performance of fluid flow equipment

NPSHNPSHNPSHA > NPSHRpump operates appropriately

R

NPSHA < NPSHRpump will cavitateinappropriate pump operationbut it will operate

NPSHbut it will operate

v&

A

v&

Copyright J. A. Shaeiwitz and R. Turton - 2012 14

Page 15: Chapter 21   performance of fluid flow equipment

OutlineOutline

• Flow in pipesFlow in pipes– laminar vs. turbulent

• NPSH• NPSH

• Pump and system curves– single vs. multiple pumps

– centrifugal vs. positive displacement

– compressors

Copyright J. A. Shaeiwitz and R. Turton - 2012 15

Page 16: Chapter 21   performance of fluid flow equipment

Pump and System CurvesPump and System Curves

• Pump curve (centrifugal pump shown)• Pump curve (centrifugal pump shown)

• Supplied by manufacturer

• Can be measured in lab

• centrifugal is sometimes called “constant head” pump

ΔP in pressure unitsor head developedor head developed

Copyright J. A. Shaeiwitz and R. Turton - 2012 16v&

Page 17: Chapter 21   performance of fluid flow equipment

Pump and System CurvesPump and System Curves

• System curvepump supplies pressure increase

)()( 323121 Δ−+Δ−+Δ=Δ −−− PPPP fr

to increase fluid pressure and to overcome all of these pressure losses

0)(h)0or0becould()0usually(n destinatio tosource

in-out

31

Δ<>Δ+>Δ=Δ

PzgPP ρ

0)(valveacrossdroppressurefrictional

0)( pipesin drop pressure frictional0)(pumpacrosschange pressure

32

21

<=Δ

<=Δ>=Δ −

P

PP

fr

0)( valveacrossdroppressure frictional32 <=Δ −P

Copyright J. A. Shaeiwitz and R. Turton - 2012 17

Page 18: Chapter 21   performance of fluid flow equipment

Pump and System CurvesPump and System Curves

• To plot system curve – look at source to destination and frictional loss

31

31

)0or0becould()0usually(n destinatio tosourcein-out

)(

zgPP

PPP frsys

<>Δ+>Δ=Δ=Δ

Δ−+Δ=Δ −

ρ

52

2

31

2

31

31

so

322

)obecou d()usu y(des oosou ce

DvfLP

DfLvPP

g

sys&

+Δ=+Δ=Δ −−

πρρ

ρ

ΔPsys

( )2 form empirical

so

vbaP

PPP

sys

valvesyspump

&+=Δ

Δ−+Δ=Δ

v&

ΔPsys

Copyright J. A. Shaeiwitz and R. Turton - 2012 18

v&this is for turbulent flowfor laminar flow – straight line

Page 19: Chapter 21   performance of fluid flow equipment

Pump and System CurvesPump and System Curves

• Often expressed as head

sysvfLhfLvhh +=+= −−

32252

2

31

2

31&

sys DggD −−

so

523131 π

valvesyspump hhh += hsys

Copyright J. A. Shaeiwitz and R. Turton - 2012 19

v&

Page 20: Chapter 21   performance of fluid flow equipment

Pump and System CurvesPump and System Curves

ΔP

ΔPpump < ΔPsysimpossible operation

sys

ΔP

a = ΔPsource dest + ρgΔz if know this point2

{-ΔPvalve

ΔPpump

a ΔPsource-dest + ρgΔzwithcan find a and b

2vbaPsys &+=Δ

operatingv& v&

pumpa}-ΔPfr

ΔPpump > ΔPsysexcess pressure dissipated across partially closed valveas open and close valve, flowrate changes

operating v&

Copyright J. A. Shaeiwitz and R. Turton - 2012 20

as open and close valve, flowrate changesintersection point is fully open valve

Page 21: Chapter 21   performance of fluid flow equipment

OutlineOutline

• Flow in pipesFlow in pipes– laminar vs. turbulent

• NPSH• NPSH

• Pump and system curves– single vs. multiple pumps

– centrifugal vs. positive displacement

– compressors

Copyright J. A. Shaeiwitz and R. Turton - 2012 21

Page 22: Chapter 21   performance of fluid flow equipment

Pumps in Series and ParallelPumps in Series and Parallel

• Series– Pump curve

two pumps

Pump curve

– 2X head at same flowrate

ΔPpump

one pump

v&

Copyright J. A. Shaeiwitz and R. Turton - 2012 22

Page 23: Chapter 21   performance of fluid flow equipment

Pumps in Series and ParallelPumps in Series and Parallel

• ParallelP

two pumps

– Pump curve

– 2X flowrate at same head

ΔPpumpone pump

same head

v&

Copyright J. A. Shaeiwitz and R. Turton - 2012 23

Page 24: Chapter 21   performance of fluid flow equipment

Pumps in Series and ParallelPumps in Series and Parallel

• Which configuration

two pumpsseries

configuration maximizes flowrate?

ΔPpumpflowrate?– No general result

one pumptwo pumps parallel

result

Copyright J. A. Shaeiwitz and R. Turton - 2012 24

v&

Page 25: Chapter 21   performance of fluid flow equipment

OutlineOutline

• Flow in pipesFlow in pipes– laminar vs. turbulent

• NPSH• NPSH

• Pump and system curves– single vs. multiple pumps

– centrifugal vs. positive displacement

– compressors

Copyright J. A. Shaeiwitz and R. Turton - 2012 25

Page 26: Chapter 21   performance of fluid flow equipment

Centrifugal – variable speedCentrifugal  variable speed

ΔPΔPpump

rpm 5

rpm 3

rpm 2

rpm 4

v& rpm 1

rpm increases with numbermore expensive pump

Copyright J. A. Shaeiwitz and R. Turton - 2012 26

p p pcost of “wasting” pressure across valve may be less than cost of pump

Page 27: Chapter 21   performance of fluid flow equipment

Positive Displacementfl l /flow regulation/pump curve

ΔP in pressure unitssometimes called “constant volume” pump

por head developed

v&

Copyright J. A. Shaeiwitz and R. Turton - 2012 27

Page 28: Chapter 21   performance of fluid flow equipment

OutlineOutline

• Flow in pipesFlow in pipes– laminar vs. turbulent

• NPSH• NPSH

• Pump and system curves– single vs. multiple pumps

– centrifugal vs. positive displacement

– compressors

Copyright J. A. Shaeiwitz and R. Turton - 2012 28

Page 29: Chapter 21   performance of fluid flow equipment

CompressorsCompressors

locus of maxima = surge line

can also draw systemPout /Pin

rpm 5

can also draw systemcurves on this graph –must change form of left-hand side to ratio

rpm 3

rpm 2

rpm 4

v& rpm 1

rpm 2

usually worth using speed control here because of compression costs

Copyright J. A. Shaeiwitz and R. Turton - 2012 29

usually worth using speed control here because of compression costs

Page 30: Chapter 21   performance of fluid flow equipment

OutlineOutline

• Flow in pipesFlow in pipes– laminar vs. turbulent

• NPSH• NPSH

• Pump and system curves– single vs. multiple pumps

– centrifugal vs. positive displacement

– compressors

Copyright J. A. Shaeiwitz and R. Turton - 2012 30