chapter 3 rubber elasticityocw.snu.ac.kr/sites/default/files/note/wk11_ch21+-1... · rubber is an...

16
Chapter 21 Elastomers Structure Thermodynamics Statistical approach Mechanical behavior

Upload: others

Post on 31-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Chapter 21

    Elastomers

    Structure

    Thermodynamics

    Statistical approach

    Mechanical behavior

  • Elastomer

    rubber ( eraser), ゴム ( gum), elastomer [彈性體]

    Requirements for rubber

    (1) stretch to > 100% and (2) retract to original dimension instantly

    flexible chain Tg < room temp

    no crystalline phase EPR vs PE or PP

    (lightly) crosslinked how lightly? segmental motion

    chemically ~ vulcanization [加黃] by sulfur or peroxide

    physically ~ TPE

    Ch 21+e1 sl 2

    Fig 21.1 p513

  • Rubber is an entropy spring.

    thermoelastic effect

    Rubbers contract when heated, and

    give out heat [get warm] when stretched.

    rubber spring ~ entropy-driven elasticity

    metal? energy-driven elasticity

    Ch 21+e1 sl 3

    rr0

  • (Classical) thermodynamics

    internal energy U

    Helmoltz free energy constant volume n = 0.5 for rubbers

    retractive force f

    Ch 21+e1 sl 4

    energetic [fe]0 or small

    Tg

    entropic [fs]dominant

    dU ≈ 0 dW = dQadiabatic stretching get warm

    Fig 21.3

    thermodynamic ‘eqn of state’ for rubber elasticity

    eqn (21.9-14)

  • Statistical theory

    DS with deformation of one chain from (x,y,z) to (x’,y’,z’)

    Ch 21+e1 sl 5

    1 l1

    Fig 21.5

    l = extension ratio = L/L0

  • DS of N chains (per unit volume)

    work of deformation

    T modulus ~ another characteristic of elastomer

    for linear polymers,

    Ch 21+e1 sl 6

    dU = 0dw = (–)TDS

    Mc

    Fig 21.1

    Fig 21.2

  • Stress-strain behavior

    comparison with exp’t

    at low l, s(theo) > s(exp’t)

    affine deformation vs phantom network

    at high l, s(theo) < s(exp’t)

    Gaussian to non-Gaussian chain segments

    stressed, extended, fewer conformations

    strain-induced crystallization

    Ch 21+e1 sl 7

    l1 = l and

    statistical mechanical equation for rubber elasticity

    exp’tal

    Fig 21.7

  • Chapter Extra 1-1

    Polymer Rheology

    Shear and elongational viscosity

    Normal stress difference

    Rheometry

  • Rheology

    rheology [流變學]

    study of flow and deformation of fluids [liquids]

    constitutive [stress-strain] relation of fluids

    shear flow

    shear stress t = F/A [N/m2 = Pa]

    shear strain g = dx1/dx2

    shear (strain) rate dg/dt [s–1]

    dv1 = dx1/dt

    dg/dt = dv1/dx2 ~ velocity gradient

    constitutive eqn: Newton’s law: t = h(s) (dg/dt)

    (shear) viscosity h(s) h of water ~ 10-3 Pa s = 1 cP 1 Pa s = 10 P(oise)

    h of polymer melt ~ 103 Pa s

    Ch 21+e1 sl 9

  • Shear viscosity

    Temperature dependence of h

    WLF eqn ~ for Tg – 50 < T < Tg + 100 K

    Arrhenius-type relation ~ for T > Tg + 100 K

    h = A exp[–B/T]

    T h

    not for large DT (> 20 K)

    Pressure dependence of h

    h = A exp[B/P]

    p h

    inter-particle distance

    increasing P and decreasing T the same effect

    100 atm is equiv to 30–50 K

    Ch 19 sl 10

  • Shear rate dependence of h

    Newtonian ~ constant viscosity

    many solutions and melts

    non-Newtonian

    dilatant = shear-thickening

    suspensions

    pseudoplastic = shear-thinning

    polymer melts

    chains aligned to shear direction

    zero-shear(-rate) viscosity h0

    Bingham plastic ~ yielding

    slurries, margarine

    Ch 21+e1 sl 11

    t = h (dg/dt)

    h0

  • molecular weight dependence of h

    h = K Mw1.0 for M < Mc

    h = K Mw3.4 for M > Mc

    Mc = 2 – 3 Me

    Me ~ entanglement MM

    Me = rRT / GN0

    Me depends on structure of chain

    chain stiffness and interactions

    PE ~1200, PS ~20000, PC ~2500

    Me(step polymers) < Me(chain polymers)

    Ch 21+e1 sl 12

    GN0

  • Normal stress difference

    normal stress caused by shear flow

    s1 – s2 = N1 > 0 ~ 1st normal stress difference

    s2 – s3 = N2 0 ~ 2nd normal stress difference

    results of NSD

    Weisenberg effect

    rod-climbing

    die swell

    Ch 21+e1 sl 13

    retractive force 1

    2

    3

    recoiling force

  • Elongational viscosity

    s = hE (de/dt)

    hE ~ elongational [tensile] viscosity

    hE determines melt strength [stability of melt]

    Ch 21+e1 sl 14

    tension-thickening

    Troutonian

    tension-thinning

    de/dt

    hE

    http://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&docid=CaAxwNiCzMEtIM&tbnid=7ZEb6ezZk3mI2M:&ved=0CAUQjRw&url=http://www.sciencedirect.com/science/article/pii/S0377025701001252&ei=ZrEdUpLwAorQkgWUtYHIBQ&bvm=bv.51156542,d.dGI&psig=AFQjCNEnBRhYHPeByst5rLB_nPP432AGxg&ust=1377763956113522http://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&docid=CaAxwNiCzMEtIM&tbnid=7ZEb6ezZk3mI2M:&ved=0CAUQjRw&url=http://www.sciencedirect.com/science/article/pii/S0377025701001252&ei=ZrEdUpLwAorQkgWUtYHIBQ&bvm=bv.51156542,d.dGI&psig=AFQjCNEnBRhYHPeByst5rLB_nPP432AGxg&ust=1377763956113522

  • Rheometry

    Shear flow

    rotational rheometers ~ drag

    cylinder, Brookfield

    parallel-plate rheometer

    cone-and-plate rheometer

    capillary or slit rheometer ~ pressure drop

    dynamic rheometry

    h’ = G”/w ~ dynamic viscosity

    h” = G’/w

    h* = h’ – ih” ~ complex viscosity

    elongational flow

    difficult to perform expt

    possible only for very small strain rate

    Ch 21+e1 sl 15

  • melt index (MI) or melt flow index (MFI)

    melt indexer ~ a simple capillary viscometer

    M(F)I = g of resin/10 min

    at specified weight and temperature

    high MI = low h = low MM of a polymer

    Ch 21+e1 sl 16