chapter 4-1 continuous random variables 主講人 : 虞台文

99
Chapter 4-1 Continuous Random Variables 主主主 : 主主主

Upload: mervin-moody

Post on 12-Jan-2016

255 views

Category:

Documents


9 download

TRANSCRIPT

Page 1: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Chapter 4-1Continuous Random Variables

主講人 :虞台文

Page 2: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Content Random Variables and Distribution Functions Probability Density Functions of Continuous Rando

m Variables The Exponential Distributions The Reliability and Failure Rate The Erlang Distributions The Gamma Distributions The Gaussian or Normal Distributions The Uniform Distributions

Page 3: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Random Variables and Distribution Functions

Chapter 4-1Continuous Random Variables

Page 4: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Temperature in Taipei

今天中午台北市氣溫為25C之機率為何 ?

今天中午台北市氣溫小於或等於 25C之機率為何 ?

Page 5: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Renewed Definition of Random Variables

A random variable X on a probability space (, A,

P) is a function

X : Rthat assigns a real number X() to each sample point , such that for every real number x, the

set {|X() x} is an event, i.e., a member

of A.

Page 6: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The (Cumulative) Distribution Functions

The (cumulative) distribution function FX of a rando

m variable X is defined to be the function

FX(x) = P(X x), − < x < .

Page 7: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 1

Page 8: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 1

3 31 18 8 8 8

0 1 2 3

( )X

x

p x

18

48

78

0 0

0 1

( ) 1 2

2 3

1 3

X

x

x

F x x

x

x

-3 -2 -1 0 1 2 3 4 5 6 7

x

F X (x )1

-3 -2 -1 0 1 2 3 4 5 6 7

x

F X (x )1

Page 9: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 1

R

y

( ) ( )YF y P Y y 2

2

y

R

2

2

y

R 0 y R

Page 10: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 1

R

y

( ) ( )YF y P Y y

2

2

0 0

0

1 1

y

yy R

Ry

Page 11: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 1

( ) ( )YF y P Y y

2

2

0 0

0

1 1

y

yy R

Ry

0

0.5

1

y

F Y (y )

RR /20

0.5

1

y

F Y (y )

RR /2

Page 12: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 1

R

RY

R/2

( ) ( )ZF z P Z z

2

2

2

2

( )3

59 3 2

8 29 2 3

( ) 23

0 0

1 0

1

1

R z RR

R R

R R

R z RR

z

z

z

z

z R

R z

Page 13: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 1

( ) ( )ZF z P Z z

2

2

2

2

( )3

59 3 2

8 29 2 3

( ) 23

0 0

1 0

1

1

R z RR

R R

R R

R z RR

z

z

z

z

z R

R z

0

0.5

1

z

F Z (y )

RR /2R /3 2R /3

0

0.5

1

z

F Z (y )

RR /2R /3 2R /3

Page 14: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 1

0

0.5

1

z

F Z (y )

RR /2R /3 2R /3

0

0.5

1

z

F Z (y )

RR /2R /3 2R /30

0.5

1

z

F Z (y )

RR /2R /3 2R /3

0

0.5

1

z

F Z (y )

RR /2R /3 2R /30

0.5

1

y

F Y (y )

RR /2

0

0.5

1

y

F Y (y )

RR /2-3 -2 -1 0 1 2 3 4 5 6 7

x

F X (x )1

-3 -2 -1 0 1 2 3 4 5 6 7

x

F X (x )1

-3 -2 -1 0 1 2 3 4 5 6 7

x

F X (x )1

-3 -2 -1 0 1 2 3 4 5 6 7

x

F X (x )1

( )XF x ( )YF y ( )ZF z

Page 15: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Properties of Distribution Functions

1. 0 F(x) 1 for all x;2. F is monotonically nondecreasing;3. F() = 0 and F() =1;4. F(x+) = F(x) for all x.

0

0.5

1

z

F Z (y )

RR /2R /3 2R /3

0

0.5

1

z

F Z (y )

RR /2R /3 2R /30

0.5

1

z

F Z (y )

RR /2R /3 2R /3

0

0.5

1

z

F Z (y )

RR /2R /3 2R /30

0.5

1

y

F Y (y )

RR /2

0

0.5

1

y

F Y (y )

RR /2-3 -2 -1 0 1 2 3 4 5 6 7

x

F X (x )1

-3 -2 -1 0 1 2 3 4 5 6 7

x

F X (x )1

-3 -2 -1 0 1 2 3 4 5 6 7

x

F X (x )1

-3 -2 -1 0 1 2 3 4 5 6 7

x

F X (x )1

Page 16: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Definition Continuous Random Variables

0

0.5

1

z

F Z (y )

RR /2R /3 2R /3

0

0.5

1

z

F Z (y )

RR /2R /3 2R /30

0.5

1

z

F Z (y )

RR /2R /3 2R /3

0

0.5

1

z

F Z (y )

RR /2R /3 2R /30

0.5

1

y

F Y (y )

RR /2

0

0.5

1

y

F Y (y )

RR /2-3 -2 -1 0 1 2 3 4 5 6 7

x

F X (x )1

-3 -2 -1 0 1 2 3 4 5 6 7

x

F X (x )1

-3 -2 -1 0 1 2 3 4 5 6 7

x

F X (x )1

-3 -2 -1 0 1 2 3 4 5 6 7

x

F X (x )1

A random variable X is called a continuous random variable if

( ) ( ) ( ) 0P X x F x F x

Page 17: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 2

0

0.5

1

z

F Z (y )

RR /2R /3 2R /3

0

0.5

1

z

F Z (y )

RR /2R /3 2R /30

0.5

1

z

F Z (y )

RR /2R /3 2R /3

0

0.5

1

z

F Z (y )

RR /2R /3 2R /30

0.5

1

y

F Y (y )

RR /2

0

0.5

1

y

F Y (y )

RR /2-3 -2 -1 0 1 2 3 4 5 6 7

x

F X (x )1

-3 -2 -1 0 1 2 3 4 5 6 7

x

F X (x )1

-3 -2 -1 0 1 2 3 4 5 6 7

x

F X (x )1

-3 -2 -1 0 1 2 3 4 5 6 7

x

F X (x )1

Page 18: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Probability Density Functions of Continuous

Random Variables

Chapter 4-1Continuous Random Variables

Page 19: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Probability Density Functions of Continuous Random Variables

A probability density function (pdf) fX(x) of a continuous random variable X is a nonnegative function f such that

( ) ( )x

X XF x f u du

Page 20: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Probability Density Functions of Continuous Random Variables

A probability density function (pdf) fX(x) of a continuous random variable X is a nonnegative function f such that

( ) ( )x

X XF x f u du

Page 21: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Properties of Pdf's

1. ( ) 0;f x

2. ( ) 1;f x dx

3. ( ) ( ) ( ) ( )P a X b P a X b P a X b P a X b

( ) ( )P X b P X a ( ) ( )F b F a

( ) ( )x

X XF x f u du

( ) ( )b af x dx f x dx

( )

b

af x dx

( )4. ( ) ( ).

dF xf x F x

dx

Remark: f(x) can be larger than 1.

Page 22: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 3

Page 23: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 3

(1 ) 0 1( )

0

kx x xf x

otherwise

1 ( )f x dx

1

0(1 )kx x dx

12 3

02 3

x xk

6

k

6k

6k

Page 24: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 3

6 (1 ) 0 1( )

0

x x xf x

otherwise

6k

0

0 0

( ) 6 (1 ) 0 1

1 1

x

x

F x u u du x

x

2 3

0 0

3 2 0 1

1 1

x

x x x

x

Page 25: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

0

0.5

1

1.5

2

-1 0 1 2

x

f (x )

0

0.2

0.4

0.6

0.8

1

1.2

-1 0 1 2

F (x )

x

0

0.5

1

1.5

2

-1 0 1 2

x

f (x )

0

0.2

0.4

0.6

0.8

1

1.2

-1 0 1 2

F (x )

x

Example 3

6 (1 ) 0 1( )

0

x x xf x

otherwise

6k

2 3

0 0

( ) 3 2 0 1

1 1

x

F x x x x

x

Page 26: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

0

0.5

1

1.5

2

-1 0 1 2

x

f (x )

0

0.2

0.4

0.6

0.8

1

1.2

-1 0 1 2

F (x )

x

0

0.5

1

1.5

2

-1 0 1 2

x

f (x )

0

0.2

0.4

0.6

0.8

1

1.2

-1 0 1 2

F (x )

x

Example 3

6 (1 ) 0 1( )

0

x x xf x

otherwise

6k

2 3

0 0

( ) 3 2 0 1

1 1

x

F x x x x

x

2 31 1 13 3 3( ) 3( ) 2( )P X

70.25926

27

1/3

0.25926

Page 27: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Exponential Distributions

Chapter 4-1Continuous Random Variables

Page 28: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Exponential Distributions

The following r.v.’s are often modelled as exponential:

1. Interarrival time between two successive job arrivals.

2. Service time at a server in a queuing network.

3. Life time of a component.

Page 29: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Exponential Distributions

A r.v. X is said to possess an exponential distribution and to be exponentially distributed, denoted byX ~ Exp(), if it possesses the density

( ) , 0xf x e x

Page 30: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Exponential Distributions

( ) , 0xf x e x

~ ( )X Exp

: arriving rate: failure rate

pdf

cdf1 0

( )0 0

xe xF x

x

Page 31: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Exponential Distributions

( ) , 0xf x e x

~ ( )X Exp

: arriving rate: failure rate

pdf

cdf1 0

( )0 0

xe xF x

x

0

0.5

1

1.5

2

2.5

3

3.5

-2 0 2 4 6

x

f (x )

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-2 0 2 4 6

F (x )

x

0

0.5

1

1.5

2

2.5

3

3.5

-2 0 2 4 6

x

f (x )

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-2 0 2 4 6

F (x )

x

~ ( )2X Exp

Page 32: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Memoryless or Markov Property

~ ( )X Exp

( | ) ( )P X a b X a P X b 0

0

a

b

Page 33: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Memoryless or Markov Property

~ ( )X Exp

( | ) ( )P X a b X a P X b 0

0

a

b

( and )( | )

( )

P X a b X aP X a b X a

P X a

( )

( )

P X a b

P X a

( ) , 0xf x e x

~ ( )X Exp

pdf

cdf1 0

( )0 0

xe xF x

x

( ) , 0xf x e x

~ ( )X Exp

pdf

cdf1 0

( )0 0

xe xF x

x

1 ( )

1 ( )

P X a b

P X a

1 ( )

1 ( )

F a b

F a

( )a b

a

e

e

be

( )P X b

Page 34: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Memoryless or Markov Property

~ ( )X Exp

( | ) ( )P X a b X a P X b 0

0

a

b

Exercise:

連續型隨機變數中,唯有指數分佈具備無記憶性。

Page 35: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Relation Between Poisson and Exponential Distributions : arriving rate

: failure rate

Nt

Let r.v. Nt denote #jobs arriving to a computer system in the interval (0, t].

t0

?~tN ( )P t

Page 36: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Relation Between Poisson and Exponential Distributions

Let X denote the time of the next arrival.

: arriving rate: failure rate

The next arrival

Nt

Let r.v. Nt denote #jobs arriving to a computer system in the interval (0, t].

t0

X

?~tN ( )P t

?~X or ( ? ?( ) )f t F t

Page 37: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

?~tN ( )P t

The Relation Between Poisson and Exponential Distributions

Let X denote the time of the next arrival.

: arriving rate: failure rate

The next arrival

Nt

Let r.v. Nt denote #jobs arriving to a computer system in the interval (0, t].

t0

X

?~X or ( ? ?( ) )f t F t

能求出 P(X > t)嗎 ?能求出 P(X > t)嗎 ?

( ) ( 0)tP X t P N

Page 38: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

?~tN ( )P t

The Relation Between Poisson and Exponential Distributions

Let X denote the time of the next arrival.

: arriving rate: failure rate

The next arrival

Nt

Let r.v. Nt denote #jobs arriving to a computer system in the interval (0, t].

t0

X

?~X or ( ? ?( ) )f t F t

能求出 P(X > t)嗎 ?能求出 P(X > t)嗎 ?

( ) ( 0)tP X t P N

( ) ( 0)tP X t P N 0( )

0!

tt e

te

( ) 1 tF t e

( ) tf t e

0t

0t

0t

( ) , 0xf x e x

~ ( )X Exp

pdf

cdf1 0

( )0 0

xe xF x

x

( ) , 0xf x e x

~ ( )X Exp

pdf

cdf1 0

( )0 0

xe xF x

x

Page 39: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

?~tN ( )P t

The Relation Between Poisson and Exponential Distributions

Let X denote the time of the next arrival.

: arriving rate: failure rate

Nt

Let r.v. Nt denote #jobs arriving to a computer system in the interval (0, t].

t0

X

~ ( )X Exp

The next arrival

Page 40: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Relation Between Poisson and Exponential Distributions : arriving rate

: failure ratet1 t2 t3 t4 t5

The interarrival times of a Poisson process are exponentially distributed.

Page 41: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 50

10 secs

= 0.1 job/sec = 0.1 job/sec

P(“No job”) = ?

Page 42: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 50

10 secs

= 0.1 job/sec = 0.1 job/sec

P(“No job”) = ?

Method 1:

Method 2:

Let N10 represent #jobs arriving in the 10 secs.

Let X represent the time of the next arriving job.

10( ) ( 0)P P N N o "b" o j

( ) ( 10)P P X " "No job

10 ~ (1)N P

~ (0.1)X Exp

0 11

0!

e

1e

1 ( 10)P X 101 (1 )e

1e

Page 43: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Reliability and

Failure Rate

Chapter 4-1Continuous Random Variables

Page 44: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Definition Reliability

Let r.v. X be the lifetime or time to failure of a component. The probability that the component survives until some time t is called the reliability R(t) of the component, i.e.,

R(t) = P(X > t) = 1 F(t)

Remarks:

1. F(t) is, hence, called unreliability.

2. R’(t) = F’(t) = f(t) is called the failure density function.

Page 45: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Instantaneous Failure Rate

剎那間,ㄧ切化作永恆。

Page 46: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

( | )t X tP X tt

The Instantaneous Failure Rate

0 t

t

t+t

( | )P t X t t X t

生命將在時間 t後瞬間結束的機率

Page 47: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Instantaneous Failure Rate

( | )P t X t t X t

生命將在時間 t後瞬間結束的機率

and( )

( )

P t X t t X t

P X t

( )

( )

P t X t t

P X t

( ) ( )

( )

F t t F t

R t

( ) ( )( | )

( )

F t t F tP t X t t X t

R t

Page 48: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Instantaneous Failure Rate

( | )P t X t t X t

瞬間暴斃率 h(t)

( ) ( )( | )

( )

F t t F tP t X t t X t

R t

0

( | )limt

P t X t t X t

t

( )h t

0

( ) ( )lim

( )t

F t t F t

tR t

( )

( )

F t

R t

( )

( )

f t

R t

Page 49: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Instantaneous Failure Rate

瞬間暴斃率 h(t)

( )( )

( )

f th t

R t

Page 50: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 6

Show that the failure rate of exponential distribution is characterized by a constant failure rate.

Show that the failure rate of exponential distribution is characterized by a constant failure rate.

( ) , 0xf x e x

~ ( )X Exp

pdf

cdf1 0

( )0 0

xe xF x

x

( ) , 0xf x e x

~ ( )X Exp

pdf

cdf1 0

( )0 0

xe xF x

x

( )( )

( )

f th t

R t

( )

1 ( )

f t

F t

t

t

e

e

0t

以指數分配來 model物件壽命之機率分配合理嗎 ?

Page 51: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

More on Failure Rates

t

h(t)

CFR ( ) 0h t

Page 52: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

More on Failure Rates

t

h(t)

CFR ( ) 0h t

Useful Life

CFR ( ) 0h t

DFR

( ) 0h t IFR

( ) 0h t

Page 53: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

More on Failure Rates

t

h(t)

CFR ( ) 0h t

Useful Life

CFR ( ) 0h t

DFR

( ) 0h t IFR

( ) 0h t

Exponential

Distribution

Exponential

Distribution? ?

Page 54: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Relationships among F(t), f(t), R(t), h(t)

( )F t

( )f t

( )R t

( )h t

1 ( )F t

( )dF t

dt

( )

( )

f t

R t

Page 55: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Relationships among F(t), f(t), R(t), h(t)

( )F t

( )f t

( )R t

( )h t

( )f t 1 ( )F t

( )

( )

R t

f t

Page 56: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Relationships among F(t), f(t), R(t), h(t)

( )F t

( )f t

( )R t

( )h t

( )

( )

f t

R t

( )dF t

dt

1 ( )R t

Page 57: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Relationships among F(t), f(t), R(t), h(t)

( )F t

( )f t

( )R t

( )h t

?

?

?

Page 58: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Cumulative Hazard

0( ) ( )

tH t h x dx 0

( )

( )

t f xdx

R x 0

( )

( )

t R xdx

R x

0

1( )

( )

tdR x

R x 0

ln ( )t

R x

ln ( ) ln (0)R t R ln1 ln ( )R t ln ( )R t

( )( ) H tR t e 0( )

th x dx

e

Page 59: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Relationships among F(t), f(t), R(t), h(t)

( )F t

( )f t

( )R t

( )h t

0( )

th x dx

e 1 ( )R t

( )dF t

dt

Page 60: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 7

0( ) ( )

tH t h x dx 0 0

txdx

2

0

02

tx

20 , 02

tt

20( ) exp , 02

tR t t

Page 61: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Erlang Distrib

utions

Chapter 4-1Continuous Random Variables

Page 62: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

我的老照相機與閃光燈

它只能使用四次每使用一次後轉動九十度使用四次後壽終正寢

它只能使用四次每使用一次後轉動九十度使用四次後壽終正寢

Page 63: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

time

The Erlang Distributions

The lifetime of my flash (X)

I(X)=? fX(t)=?[0, )

Page 64: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Erlang Distributions

Consider a component subjected to an environment so that Nt, the number of peak stresses in the interval (0, t], is Poisson distributed with parameter t.

Suppose that the rth peak will cause a failure. Let X denote the lifetime of the component. Then,

Nt ~ P(t)

?( )P X t ( )tP N r1

0

( )

!

k tr

k

t e

k

1

0

( )( ) 1 , 0

!

k tr

k

t eF t t

k

cdf

Page 65: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Erlang Distributions

Consider a component subjected to an environment so that Nt, the number of peak stresses in the interval (0, t], is Poisson distributed with parameter t.

Suppose that the rth peak will cause a failure. Let X denote the lifetime of the component. Then,

Nt ~ P(t)

Exercise ofChapter 2

cdf

1

( ) , 0( 1)!

r r tt ef t t

r

pdf

1

0

( )( ) 1 , 0

!

k tr

k

t eF t t

k

Page 66: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The r-Stage Erlang Distributions

Consider a component subjected to an environment so that Nt, the number of peak stresses in the interval (0, t], is Poisson distributed with parameter t.

Suppose that the rth peak will cause a failure. Let X denote the lifetime of the component. Then,

cdf

1

( ) , 0( 1)!

r r tt ef t t

r

pdf

1

0

( )( ) 1 , 0

!

k tr

k

t eF t t

k

Page 67: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The r-Stage Erlang Distributions

cdf

1

( ) , 0( 1)!

r r tt ef t t

r

pdf

1

0

( )( ) 1 , 0

!

k tr

k

t eF t t

k

( , )X Erlang r

( ) (1, )Exp Erlang

Page 68: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The r-Stage Erlang Distributions

1

, 0( 1)!

( )r r tt e

tr

f t

pdf

( , )X Erlang r

( ) (1, )Exp Erlang

1

, 0( 1)!

( )r r tt e

tr

f t

1

, 0( 1)!

r r tt et

r

Page 69: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 8

In a batch processing environment, the number of jobs arriving for service is 9 per hour. If the arrival process satisfies the requirement of a Poisson experiment. Find the probability that the elapse time between a given arrival and the fifth subsequent arrival is less than 10 minutes.

In a batch processing environment, the number of jobs arriving for service is 9 per hour. If the arrival process satisfies the requirement of a Poisson experiment. Find the probability that the elapse time between a given arrival and the fifth subsequent arrival is less than 10 minutes.

Let X represent the time of the 5th arrival.

= 9 jobs/hr.

16( ?hr)P X

~ (5,9)X Erlang

1

( ) , 0( 1)!

r r xx ef t x

r

( , )X Erlang r

5 4 91/ 6

0

9

4!

xx edx

4

9/ 6

0

(9 / 6)1

!

k

k

ek

0.0285

Page 70: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Gamma

Distributions

Chapter 4-1Continuous Random Variables

Page 71: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Review

1

( ) , 0( 1)!

r r xx ef t x

r

pdf

( , )X Erlang r

r為一正整數欲將之推廣為正實數

r為一正整數欲將之推廣為正實數

Page 72: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Review

1

( ) , 0( 1)!

r r xx ef t x

r

pdf

( , )X Erlang r

( )

0

Page 73: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Gamma Distributions

1

( ) , 0( )

xx ef x x

pdf

( , ), 0X

Page 74: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Review1

( ) , 0( )

xx ef t x

( , )X

1

0( ) xx e dx

1. (1) 1

2. ( ) ( 1) ( )

3. ( ) ( 1)!, N

14.

2

1 12

( 1)!5.

2 2 !n n

n n

Page 75: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Chi-SquareDistributions

2X

1

( ) , 0( )

xx ef t x

( , )X

1 1,

2 2

2vX 1

,2 2

v

Page 76: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Gaussian or

Normal Distributions

Chapter 4-1Continuous Random Variables

Page 77: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Gaussian or Normal Distributions

德國的 10馬克紙幣 , 以高斯 (Gauss, 1777-1855)為人像 , 人像左側有一常態分佈之 p.d.f.及其圖形。

Page 78: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Gaussian or Normal Distributions

2( ) ( ; , )f x n x pdf

2( , )X N 2

2

( )

21

2

x

e

x

Page 79: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Gaussian or Normal Distributions

2( ) ( ; , )f x n x

2( , )X N

2

2

( )

21

2

x

e

x

2( ) ( ; , )f x n x

2( , )X N

2

2

( )

21

2

x

e

x

: mean : standard deviation2: variance

Inflectionpoint

Inflectionpoint

Page 80: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Gaussian or Normal Distributions

2( ) ( ; , )f x n x

2( , )X N

2

2

( )

21

2

x

e

x

2( ) ( ; , )f x n x

2( , )X N

2

2

( )

21

2

x

e

x

: mean : standard deviation2: variance

15 varying

100 varying

Page 81: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Gaussian or Normal Distributions

2( ) ( ; , )f x n x

2( , )X N

2

2

( )

21

2

x

e

x

2( ) ( ; , )f x n x

2( , )X N

2

2

( )

21

2

x

e

x

: mean : standard deviation2: variance

2 / 2 2xe dx

Facts:

2 / 211

2xe dx

2 2( ) / 211

2xe dx

Page 82: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Gaussian or Normal Distributions

2( ) ( ; , )f x n x

2( , )X N

2

2

( )

21

2

x

e

x

2( ) ( ; , )f x n x

2( , )X N

2

2

( )

21

2

x

e

x

: mean : standard deviation2: variance

2 2( ) / 211

2xe dx

2( 9) /8 ?xe dx

2 /18

0?xe dx

2 2

3 2

2

Page 83: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Standard Normal Distribution

2( ) ( ; , )f x n x

2( , )X N

2

2

( )

21

2

x

e

x

2( ) ( ; , )f x n x

2( , )X N

2

2

( )

21

2

x

e

x

( ) ( ;0,1)Zf z n z

(0,1)Z N

2 / 21

2ze

z

Page 84: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Table of N(0, 1)

( ) ( ;0,1)Zf z n z

(0,1)Z N

2 / 21

2ze

z

z

( ) ( )ZF z z2 / 21

2

z xe dx

Page 85: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Table of N(0, 1)

z

( ) ( )ZF z z2 / 21

2

z xe dx

( 1.6 ?25) 0.0521

(1.62 ?5) 0.9479

Fact: ( ) 1 ( )z z

Page 86: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Probability Evaluation for N(, 2)

x 2

2

( )

21( )

2

tx

XF x e dt

?

2

2

( )

21( )

2

x

f x e

x

2

2

( )

21

2

tt x

te dt

2 2

2

( )

2 2

t y

t

y

t y

Page 87: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Probability Evaluation for N(, 2)

x 2

2

( )

21( )

2

tx

XF x e dt

?

2

2

( )

21( )

2

x

f x e

x

2

2

( )

21

2

tt x

te dt

t y

2 / 21

2

y x y

ye dy

2 / 21

2

xye dy

x

?

Page 88: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Probability Evaluation for N(, 2)

x

2( , )X N

( )X

xF x

Z-Score: 表 距 離 中 心 若 干 個 標 準 差

Fact: (0,1)X

N

Page 89: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 9

X ~ N(12.00, 0.202)

1. (11.92 1 27 ?2. )P X

2. ( 12.45 ?)P X

3. ( 11.70 ?)P X

Page 90: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 9X ~ N(12.00, 0.202)

1. (11.92 1 27 ?2. )P X

2. ( 12.45 ?)P X

3. ( 11.70 ?)P X

(11.92 12.27) ( 12.27) ( 11.92)P X P X P X

12.27 12 11.92 12

0.2 0.2

1.35 0.40 0.9115 0.3446 0.5669

0.5669

Page 91: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 9X ~ N(12.00, 0.202)

1. (11.92 1 27 ?2. )P X

2. ( 12.45 ?)P X

3. ( 11.70 ?)P X

( 12.45) 1 ( 12.45)P X P X

12.45 121

0.2

1 0.9878 0.0122

0.5669

1 2.25

0.0122

Page 92: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 9X ~ N(12.00, 0.202)

1. (11.92 1 27 ?2. )P X

2. ( 12.45 ?)P X

3. ( 11.70 ?)P X

11.70 12( 11.70)

0.2P X

0.0668

0.5669

1.50

0.0122

0.0668

Page 93: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 10

|X | < |X | < 2|X | < 3

2( , )X N

Page 94: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 10

|X | < |X | < 2|X | < 3

|X | < |X | < 2|X | < 3

2( , )X N

(| | )P X k ( )P k X k

XP k k

( ) ( )k k

1 ( ) ( )k k

1 2 ( )k

Page 95: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 10

|X | < |X | < 2|X | < 3

|X | < |X | < 2|X | < 3

2( , )X N

(| | )P X k 1 2 ( )k

(| | )P X 1 2 ( 1)

(| | 2 )P X 1 2 ( 2)

(| | 3 )P X 1 2 ( 3)

1 2 0.1587 0.6826

1 2 0.0228 0.9544

1 2 0.0013 0.9974

(| | )P X k

Page 96: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Example 10

(| | )P X k 1 2 ( )k

(| | )P X 1 2 ( 1)

(| | 2 )P X 1 2 ( 2)

(| | 3 )P X 1 2 ( 3)

1 2 0.1587 0.6826

1 2 0.0228 0.9544

1 2 0.0013 0.9974

Page 97: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Uniform

Distributions

Chapter 4-1Continuous Random Variables

Page 98: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

The Uniform Distributions

~ ( , ), X U a b a bpdf

cdf

1( ) , f x a x b

b a

0

( )

1

a x

x aF x a x b

b ab x

a bx

f(x)

1

b a

a bx

F(x)1

Page 99: Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Summary

The Exponential Distributions The Erlang Distributions The Gamma Distributions The Gaussian or Normal Distributions The Uniform Distributions