chapter 8 group velocity and pulse dispersion

25
Chapter 8 Group Velocity and Pulse Dispersion

Upload: sumi

Post on 15-Jan-2016

54 views

Category:

Documents


0 download

DESCRIPTION

Chapter 8 Group Velocity and Pulse Dispersion. Group Velocity. 考慮兩平面波沿 + z 軸傳播 , 振幅相同,但頻率有少許差異,分別為  +   與     。. 此二平面波疊加結果為. At t = 0. Group velocity 群速度. Phase velocity 相速度. 對一介質折射率為頻率的函數, n (  ),有. 因此. 代入. 以真空中波長. Group index n g 定義為. Negative dispersion. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Chapter 8 Group Velocity and Pulse Dispersion

Chapter 8Group Velocity and Pulse Dispersion

Page 2: Chapter 8 Group Velocity and Pulse Dispersion

Group Velocity考慮兩平面波沿 +z 軸傳播,

振幅相同,但頻率有少許差異,分別為 + 與 。

1

2

( , ) cos[( ) ( ) ]

( , ) cos[( ) ( ) ]

z t A t k k z

z t A t k k z

此二平面波疊加結果為 ( , ) cos[( ) ( ) ]

cos[( ) ( ) ]

2 cos( )cos[( ) ( ) ]

z t A t k k z

A t k k z

A t kz t k z

cos kz

cos (k)z

z

(a)

(b)

At t = 0

Page 3: Chapter 8 Group Velocity and Pulse Dispersion

(z, t = 0)

(z, t = t)

z

(a)

(b)

pvk

( , ) 2 cos( ) cos[( ) ( ) ]z t A t kz t k z

Phase velocity 相速度

Group velocity 群速度

gvk

Page 4: Chapter 8 Group Velocity and Pulse Dispersion

對一介質折射率為頻率的函數, n() ,有

( ) ( )k nc

1 1( )

g

dk dnn

v d c d

因此

以真空中波長 0

2 c

代入

20 0

0 02

ddn dn dn

d d d c d

0 00

1 1( )

g

dnn

v c d

Group index ng 定義為 0 00

( )gg

c dnn n

v d

Page 5: Chapter 8 Group Velocity and Pulse Dispersion

2

2.02

2.04

2.06

0.5 0.75 1 1.25 1.5

vg (108 m/s)0 (m)

Negativedispersion

Positivedispersion

Fig. 8.3 Variation of the group velocity vg with wavelength for pure silica.

Page 6: Chapter 8 Group Velocity and Pulse Dispersion

Example 8.1 對純 silca ,在波長 0.5 m < 0 < 1.6 m 區間,折射率對波長的關係可近似為以下經驗式

20 0 0 2

0

( )a

n C a

其中 C0 = 1.451, a = 0.003, 0 以 m 為單位。

20 0 0 0 0 02 3

0 0 0

20 0 2

0

( ) 2 2

3

g

dn a an n C a a

d

aC a

當 0 = 1 m ,0

0

( ) 1.451

( ) 1.463g

n

n

即群速度與相速度約有 8% 的差別。對 silca 而言,當 0 = 1.27 m ,群速度為最高。小於 1.27 m 波長越短,群速度越小;反之,大於 1.27 m ,波長越長,群速度越小。

Page 7: Chapter 8 Group Velocity and Pulse Dispersion

對一脈衝而言,由於其不同波長分量,群速度均有些微不同,因此一般在介質中行進之脈衝會變寬 broadening 。

對 silca 而言,當 0 = 1.27 m ,群速度為最高。小於 1.27 m 波長越短,群速度越小;反之,大於 1.27 m ,波長越長,群速度越小。

考慮一脈衝在一色散介質中行進 L 長度,所花時間為

0 00

( )g

L L dnn

v c d

因此脈衝寬化可表為2

200 0 2

0 0 0m

Ld d n

d c d

脈衝時間寬度由 0 增加至 f ,其中

2 2 20 ( )f m

Page 8: Chapter 8 Group Velocity and Pulse Dispersion

220

0 0 20 0 0

m

Ld d n

d c d

由上式可知,脈衝寬化正比於行進長度 L 以及光源譜線寬度 0 。因此定義色散係數為,

2 22 2 40 02 2

0 0 0 0 0

1 110 ps/km nm

3m

m

d n d nD

L c d d

若介質 Dm > 0 ,稱為正色散 positive dispersion 介質 Dm < 0 ,稱為負色散 negtive dispersion

其中 0 單位為 m

Page 9: Chapter 8 Group Velocity and Pulse Dispersion
Page 10: Chapter 8 Group Velocity and Pulse Dispersion

Example 8.2 在第一代光通訊系統中,以 0 = 0.85 m LED , 0 = 25 nm

22

20

0.03 md n

d

當 0 = 0.85 m

85 ps/km nmmD

0 = 25 nm

2.1 ns/kmm

Example 8.3 在第四代光通訊系統中,以 0 = 1.55 m laser diode , 0 = 2 nm

22

20

0.0042 md n

d

當 0 = 1.55 m

21.7 ps/km nmmD

0 = 2 nm

43 ps/kmm

Page 11: Chapter 8 Group Velocity and Pulse Dispersion

Group Velocity of a Wave Packet

( )( , ) i t kzE z t Ae

考慮一平面波沿 +z 軸傳播

( ) ( )k nc

A 為振幅,一般而言可為複數,即 | | iA A e

n 為介質折射率

( )( , ) | | i t kzE z t A e

因為電場不可能分佈於整個空間 ( 總能量趨近無窮大 ) ,因此實際上,電場應表為波包

( )( , ) ( ) i t kzE z t A e d

Page 12: Chapter 8 Group Velocity and Pulse Dispersion

( 0, ) ( ) i tE z t A e d

顯然, E(z = 0, t) 為 A() 的 Fourier transform 。因此 A() 為 E(z = 0, t) 的逆轉換。

1( ) ( 0, )

2i tA E z t e dt

Example 8.4 Gaussian Pulse.考慮一 Gaussian pulse

2 20 0/

0( 0, ) t i tE z t E e e 2 2

0 0/ ( )0( )2

t i tEA e e dt

In general, A() 可為複數,因此定義 power spectral density S() = |A()|2

2 22 20 0

0 0

1( ) exp ( )

22

ES

利用 2 2 / 4x xe dx e

2 20 00 0

1exp ( )

42

E

Page 13: Chapter 8 Group Velocity and Pulse Dispersion

-50 -25 0 25 50

t (fs)

E (

0, t)

0 0.5 1.5 2

0

S (

)

2 22 20 0

0 0

1( ) exp ( )

22

ES

2 20/

0 0( 0, ) costE z t E e t

0 = 20 fs0 = 1 m (0 = 61014)

稱為半高寬 full width at half maximum (FWHM) 定義為當 = 0 /2 ,

S() 為其最大值之半。

此例中, FWHM 滿足2 2

0

1 1exp ( )

2 2 2

14

0 0

2 2ln 2 2.361.18 10

Page 14: Chapter 8 Group Velocity and Pulse Dispersion

Propagation in a Non-Dispersion Medium

在非色散介質中,如真空,所有頻率的電磁波以相同速度行進。在真空中

( )kc

( )( , ) ( )

i z ctcE z t A e d

2 20 00 0

1( ) exp ( )

42

EA

將 Gaussian pulse 代入上式

02 2 2

0( )( ) /

0( , )i z ctz ct c cE z t E e e

當 z ct = constant ,則 E(z, t) = constant

Gaussian pulse 以速度 c 無變形的行進。

Page 15: Chapter 8 Group Velocity and Pulse Dispersion

-25 0 25

z = 0 z = z 0

t (fs)

Fig. 8.5 Distortionless propagation of a Gaussian pulse in a non-dispersive medium. 

Page 16: Chapter 8 Group Velocity and Pulse Dispersion

Propagation in a Dispersion Medium

( ) ( )k nc

電磁波在折射率為 n() 的色散介質中行進,

若 A() 為非常尖銳的峰值函數,0

0

[ ( ) ]( , ) ( ) i t k zE z t A e d

以 Taylor series 對 = 0 展開 k()

0 0

22

0 0 0 2

1( ) ( ) ( ) ( )

2

dk d kk k

d d

20 0 0

1 1( ) ( ) ( )

2g

k kv

0 0

2

0 0 2

1where ( ), ,

g

d dk k

v dk dk

Page 17: Chapter 8 Group Velocity and Pulse Dispersion

若 k() 只考慮前兩項的貢獻 ( 忽略 ) ,0 0

0 0

0

( )( )( , ) ( ) ( )g g

i k z z t i z tv vi t kzE z t A e d e A e d

令 = 0

0( )( , ) ( )g

g

i z v tvi t kzE z t e A e d

phaseterm envelope

term

envelope 項,以群速度 vg 無變形的移動

Page 18: Chapter 8 Group Velocity and Pulse Dispersion

若將 k() 近似式的三項全代入,

0( ) 2( , ) ( ) exp2

i t kz

g

z iE z t e A i t z d

v

2 20 00

1( ) exp

42

EA

將 Gaussian pulse 代入

2 2 / 4x xe dx e

利用

2

020

( )0(1 )

( , ) exp1

g

zt

vi t kz

ip

EE z t e

ip

where 20

2 zp

Page 19: Chapter 8 Group Velocity and Pulse Dispersion

corresponding intensity distribution2

20

( )0

( , ) exp( ) /

g

zt

v

z

II z t

z

where2 2 2

0( ) (1 )z p

-25 0 25 9752.21

0

0.5

1

19504.4

z = 0

z = z0

z = 2z0

t (fs)

50 fs 50 fs 50 fs

I (

z, t)

Define pulse broadening 2 20 0

0

2 | |( ) | |

zz p

0

1, | |

2

020

00

0 0

22002 2

0

1

1

2

d k d dnn

d d c d

d d dnn

c d d d

d n

c d

Page 20: Chapter 8 Group Velocity and Pulse Dispersion

Example 8.5 For pure silica ,考慮 0 = 1.55 m 的光線2

220

0.004165 ( m)d n

d

62 26 2

8 2

1.55 10(1.55) ( 0.004165) 2.743 10 s /m

2 (3 10 )

對一 100 ps 的脈衝,在光纖中行進 2 km26 3

100

2 | | 2 2.743 10 2 101.1 ps

(10 )

z

對一 10 fs 的脈衝,在光纖中行進 4 mm26 3

140

2 | | 2 2.743 10 4 1022 fs

(10 )

z

1/ 22 20 ( ) 24 fsf

a 10 fs pulse doubles its temporal width after propagating through a very small distance.

Page 21: Chapter 8 Group Velocity and Pulse Dispersion

The Chirping of the Dispersed Pulse

2

0 020

0 02 20

0 02

( )0

(1 )

( )0(1 )2 1/ 2

( / 2)01/ 2 ( )

0

( , ) exp1

exp (1 )(1 )

exp exp( ) /

g

g

g g

zt

vi t k z

ip

zt

vi t k z

pi

z zt t

v vi t k z

z

EE z t e

ip

Ee ip

p e

Ee i p

z

2 ( )z

1tan p

where

Page 22: Chapter 8 Group Velocity and Pulse Dispersion

where

2

10 2 2

0

1( , ) tan

2 (1 )g

z pz t t t p

v p

2

001/ 2 ( )

0

( , ) exp exp ( ( , ) )( ) /

g

zt

v

z

EE z t i z t k z

z

0( ) 2g

zt t

t v

0 2 20

2( )

(1 ) g

p zt t

p v

The frequency chirp is

Page 23: Chapter 8 Group Velocity and Pulse Dispersion

Example 8.6 考慮 0 = 1.55 m 的 100 ps 的脈衝,在純 silica 光纖中行進 2 km 。

26 3

2 12 20

2 2 ( 2.743 10 ) 2 100.011

(100 10 )

zp

At 50 psg

zt

v

12 82 2 12 20

2 2 0.011(50 10 ) 1.1 10 Hz

(1 ) (100 10 )g

p zt

p v

( 在脈衝的前緣 )

因此此脈衝前緣頻率較高,此稱為“ blue shifted”

相對在 50 psg

zt

v 81.1 10 Hz ,稱為“ red shifted”

down-chirped pulse :脈衝前緣藍移,後緣紅移。up-chirped pulse :脈衝前緣紅移,後緣藍移。

Page 24: Chapter 8 Group Velocity and Pulse Dispersion

-25 0 25 9752

0

0.5

1

19504

50 fs 50 fs 50 fs

t (fs)

z = 0 z = z0

z = 2z0 R

e E

(z, t

)

Fig. 8.7 The temporal broadening of a 10 fs unchirped Gaussian pulse (0 = 1.55 m) propagating through silica. Notice that since dispersion

is positive, the pulse gets down chirped.

Page 25: Chapter 8 Group Velocity and Pulse Dispersion

-25 0 25

z = 0

z = z0 z = 2z0

t (fs)

Fig. 8.8 If a down-chirped pulse is passed through a medium characterized by negative dispersion, it will get compressed until it becomes unchirped and then it will broaden again with opposite chirp.