chen%3200% fluid%mechanics% spring%2011% - …cribme.com/cu/data/chemical engineering/fluid...

10
CHEN 3200 Fluid Mechanics Spring 2011 Homework 3 solutions 1. An artery with an inner diameter of 15 mm contains blood flowing at a rate of 5000 mL/min. Further along the artery, arterial plaque has partially clogged the artery, reducing the area available for blood flow. When the person is lying down (the artery is horizontal), the pressure difference between the clean and clogged regions of the artery is 830 Pa. Determine how much (as a percentage) of the cross sectional area is clogged by the plaque. (15 points) Since !h=0, the governing equation becomes The velocity at point 1 is given by Solving the governing equation for p 1 -p 2 gives The velocities are related by the continuity equation, V The SG of blood is approximately 1.06, so the equation above V 2 =(A 1 /A 2 )V 1 , thus

Upload: phunglien

Post on 26-Aug-2018

340 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: CHEN%3200% Fluid%Mechanics% Spring%2011% - …cribme.com/cu/data/Chemical Engineering/Fluid Mechanics/Homework... · CHEN%3200% Fluid%Mechanics% Spring%2011% % % % Since !h=0, the

CHEN  3200   Fluid  Mechanics   Spring  2011    

 Homework  3  solutions  

 1.    An  artery  with  an  inner  diameter  of  15  mm  contains  blood  flowing  at  a  rate  of  5000  mL/min.    Further  along  the  artery,  arterial  plaque  has  partially  clogged  the  artery,   reducing  the  area  available   for  blood  flow.    When   the   person   is   lying   down   (the   artery   is   horizontal),   the   pressure   difference   between   the  clean  and  clogged  regions  of  the  artery  is  830  Pa.    Determine  how  much  (as  a  percentage)  of  the  cross-­‐sectional  area  is  clogged  by  the  plaque.    (15  points)      

 

Since !h=0, the governing equation becomes

The velocity at point 1 is givenby

Solving the governing equation for p1-p2gives

The velocities are related by the continuity equation, V2=(A1/A2)V2, thus

The SG of blood is approximately 1.06, so the equation abovebecomes

Therefore, A2=0.35A1, or 65% of the artery isblocked.

V2=(A1/A2)V1,  thus  

Page 2: CHEN%3200% Fluid%Mechanics% Spring%2011% - …cribme.com/cu/data/Chemical Engineering/Fluid Mechanics/Homework... · CHEN%3200% Fluid%Mechanics% Spring%2011% % % % Since !h=0, the

CHEN  3200   Fluid  Mechanics   Spring  2011    

   

Since !h=0, the governing equation becomes

The velocity at point 1 is givenby

Solving the governing equation for p1-p2gives

The velocities are related by the continuity equation, V2=(A1/A2)V2, thus

The SG of blood is approximately 1.06, so the equation abovebecomes

Therefore, A2=0.35A1, or 65% of the artery isblocked.

Page 3: CHEN%3200% Fluid%Mechanics% Spring%2011% - …cribme.com/cu/data/Chemical Engineering/Fluid Mechanics/Homework... · CHEN%3200% Fluid%Mechanics% Spring%2011% % % % Since !h=0, the

CHEN  3200   Fluid  Mechanics   Spring  2011    

2.    Benezne  flows  through  a  circular  tube  with  an  inside  diameter  of  50  mm.    A  bar,  with  a  smooth  rounded  end,  has  a  diameter  of  40  mm  and  partially  plugs  the  end  of  the  tube  where  the  fluid  is  released  into  a  tank  at  atmospheric  pressure.    Assume  uniform  velocity  profiles  throughout  the  system.  

(a)    What  pressure  is  measured  by  the  gage?    (10  points)    

     (a)  

 

   

   

V1 = 7 m/s

Since !h=0 and p2=0 (gage pressure), the governing equation becomes

or,

From the continutity equation, we can solve for V2=(A1/A2)V1=(D2/(D2-d2))V1, where D=50mm and d=40 mm. Plugging in these values,

The pressure at point 1 is then given by (using SGbenzene=0.876)

Since !h=0 and p2=0 (gage pressure), the governing equation becomes

or,

From the continutity equation, we can solve for V2=(A1/A2)V1=(D2/(D2-d2))V1, where D=50mm and d=40 mm. Plugging in these values,

The pressure at point 1 is then given by (using SGbenzene=0.876)

 

Page 4: CHEN%3200% Fluid%Mechanics% Spring%2011% - …cribme.com/cu/data/Chemical Engineering/Fluid Mechanics/Homework... · CHEN%3200% Fluid%Mechanics% Spring%2011% % % % Since !h=0, the

CHEN  3200   Fluid  Mechanics   Spring  2011    

3.     Two   connected   cylindrical   chambers   are   filled   with   an   incompressible   fluid   with   SG=0.85.     The  chamber  on  the   left   is  capped  by  a  piston  with  a  diameter  of  10  cm.    The  chamber  on  the  right  has  a  diameter  of  25  cm,  and  is  also  capped  by  a  piston  that  supports  the  weight  of  a  large  stone  block.    (15  points)  

(a)    If  the  cylinder  and  block  have  a  total  weight  of  9800  N,  what  force  must  be  applied  to  the  piston  on  the  left  to  hold  the  block  at  the  height  shown?    (10  points)  (b)    If  the  block  is  to  be  raised  6  cm,  how  far  must  the  piston  on  the  left  be  pushed  down?    (3  points)  (c)     If   some  of   the   fluid   in   the   left  cylinder  was  replaced  by  air,  would  the  system  be  more  or   less  efficient  for  raising  the  block?    Explain  your  answer.    (2  points)  

 

   

 

F

3 m

The area of the left and right cylinders is givenby

The pressure just below the cylinder on the right is equal to the weight of the piston andblock, divided by the area

That pressure is also equal to the pressure applied by the piston on the left, plus the weight ofthe fluid, i.e.

Solving for the force on the leftgives

Thus, the force applied on the left is considerably less than the weight of the cylinder and blockon the right. This is the principle behind hydraulic lifts.

The change in volume on the right when the piston is raised 6 cm must equal the change involume in the left cylinder. The change in volume on the right is

The distance the piston on the left must move is givenby

So, the force required to lift the piston and block on the right is small, but the piston on theleft must be moved much further than the desired change in height on the right.

The system would be less efficient. Air is compressible, so some of the force applied by thepiston on the left would be used to compress the air, and less force would be transferred throughthe fluid to the piston on the right.

Page 5: CHEN%3200% Fluid%Mechanics% Spring%2011% - …cribme.com/cu/data/Chemical Engineering/Fluid Mechanics/Homework... · CHEN%3200% Fluid%Mechanics% Spring%2011% % % % Since !h=0, the

CHEN  3200   Fluid  Mechanics   Spring  2011    

   

The area of the left and right cylinders is givenby

The pressure just below the cylinder on the right is equal to the weight of the piston andblock, divided by the area

That pressure is also equal to the pressure applied by the piston on the left, plus the weight ofthe fluid, i.e.

Solving for the force on the leftgives

Thus, the force applied on the left is considerably less than the weight of the cylinder and blockon the right. This is the principle behind hydraulic lifts.

The change in volume on the right when the piston is raised 6 cm must equal the change involume in the left cylinder. The change in volume on the right is

The distance the piston on the left must move is givenby

So, the force required to lift the piston and block on the right is small, but the piston on theleft must be moved much further than the desired change in height on the right.

The system would be less efficient. Air is compressible, so some of the force applied by thepiston on the left would be used to compress the air, and less force would be transferred throughthe fluid to the piston on the right.

Page 6: CHEN%3200% Fluid%Mechanics% Spring%2011% - …cribme.com/cu/data/Chemical Engineering/Fluid Mechanics/Homework... · CHEN%3200% Fluid%Mechanics% Spring%2011% % % % Since !h=0, the

CHEN  3200   Fluid  Mechanics   Spring  2011    

4.    A  cylindrical  tank  with  diameter  D  is  initially  filled  with  fluid  to  a  height  of  H+h0.    The  fluid  then  exits  the  tank  through  a  hole  of  diameter  d,  located  a  distance  H  above  the  bottom  of  the  tank.    (25  points)    

(a) Derive  an  expression  for  the  dimensionless  fluid  height,  h/h0,  as  a  function  of  time.  (10  points)  (b) Make  a  plot  of  h/h0  versus  t  using  D/d  =  10,  for  values  of  h0  =  0.2,  0.5  and  1  m.  (3  points)  (c) Make  a  plot  of  h/h0  versus  t  using  h0  =  1  m,  for  values  of  D/d  =  2,  5  and  10.  (3  points)  (d) Now,  assume   that   the   tank   is   continuously   refilled   to  maintain   a   constant   fluid  height.     If   the  

fluid  is  ethanol,  and  H  =  0.3  m  and  h0  =  0.1  m,  what  will  be  the  fluid  velocity  leaving  the  tank?  (5  points)  

(e) For  the  same  conditions  as  in  (d),  what  is  the  horizontal  distance  from  the  edge  of  the  tank  that  the  jet  of  ethanol  will  strike  the  ground?  (4  points)  

 

     (a)  

 

Problem 6.72 [4] Part 1/2

Page 7: CHEN%3200% Fluid%Mechanics% Spring%2011% - …cribme.com/cu/data/Chemical Engineering/Fluid Mechanics/Homework... · CHEN%3200% Fluid%Mechanics% Spring%2011% % % % Since !h=0, the

CHEN  3200   Fluid  Mechanics   Spring  2011    

 

       

Problem 6.72 [4] Part 1/2

Problem 6.72 [4] Part 2/2

Page 8: CHEN%3200% Fluid%Mechanics% Spring%2011% - …cribme.com/cu/data/Chemical Engineering/Fluid Mechanics/Homework... · CHEN%3200% Fluid%Mechanics% Spring%2011% % % % Since !h=0, the

CHEN  3200   Fluid  Mechanics   Spring  2011    

 

!"#$%!"!#$&'()*)$%%+#(%$,'%&-"*')%./&'0%/0%$,'%1(#2"'3%)$-$'3'0$4%5,'('

678%!"#$%!"!#%&'()*)%$%+#(%&"'9:;% 6<8%!"#$%!"!#%&'()*)%$%+#(%,#$($)$*-0<%&-"*')%#+%,;9;=>4%;=?%-0<%:%3 -0<%&-"*')%#+%@A<9>4%?%-0<%:;

,#%+*,$($ #-. #-/ ) @A<$($ . / )#!"#$%&!&'() "#"$ "#"$ "#"$ !"#$%&!&'() "#"$ "#"$ "#"$

# ) ) ) # ) ) ). #-0). #-012 #-2)3 #-/ #-/)# #-2)3 #-2104 #-543 #-15/ #-03) ) #-)03 #-03) #-2/55 #-424 #-5/2 #-1/. )-/ #-#.# #-1/. #-23/0 #-35/ #-/5. #-511 )-5 #-##1 #-135 #-23#)# #-.// #-41. #-5#5 )-1 #-##) #-1.) #-2.5). #-)5/ #-32# #-/32 3 #-/32 #-01.)4 #-#24 #-3)/ #-415 / #-3)# #-12))5 #-#43 #-.42 #-4)1 5 #-.)2 #-1/.)0 #-#). #-)2# #-35. 1 #-)44 #-1)4.# #-### #-)4# #-3)# 0 #-#0/ #-511.. #-#21 #-.53 2 #-#4) #-54).4 #-#5. #-.)2 )# #-#)3 #-5#5.5 #-#34 #-)0# )) #-##) #-/1..0 #-#)/ #-)44 ). #-/323# #-##4 #-))3 )5 #-4)13. #-### #-#0/ )0 #-35.34 #-#5) .# #-3)#35 #-#4) .. #-.5330 #-#./ .4 #-.)24# #-#)3 .5 #-)0#4. #-##/ .0 #-)4444 #-##) 3# #-))345 #-### 3/ #-#/)40 4# #-#)3/# 4/ #-###

hh0= 1! t g

2h0 D / d( )4 !1( )

"

#

$$$

%

&

'''

2

#$

#-.$

#-4$

#-5$

#-0$

)$

#$ )#$ .#$ 3#$ 4#$ /#$

*"#$+

(",+

-$((&.$"/.0%&"1" 2

&

!"#$%&!&'()&

@"<$($)#%

#-.$*%

,#$($)$*%

#-/$*%

#$

#-.$

#-4$

#-5$

#-0$

)$

#$ /$ )#$ )/$ .#$ ./$ 3#$

*"#$+

(",+

-$((&.$"/.0%&"1" 2

&

!"#$%&!&'()&

,#$($)$*%

.%

@A<$($)#%

/%

Page 9: CHEN%3200% Fluid%Mechanics% Spring%2011% - …cribme.com/cu/data/Chemical Engineering/Fluid Mechanics/Homework... · CHEN%3200% Fluid%Mechanics% Spring%2011% % % % Since !h=0, the

CHEN  3200   Fluid  Mechanics   Spring  2011    

 

Applying the Bernoulli equation between point 1 (the fluid at the top of the tank) and point 2(just outside the hole in the tank), and making the assumptions/simplifications that p1=p2 sinceboth points are at atmospheric pressure, and that V1=0 since the fluid at the top of the tank isheld constant, we have

parallel to the ground

We can use the classical equations of motion to calculate how far the fluid will travel before ithits the ground.

In the downward z direction, the acceleration due to gravity is defined as

Integrating this equation twice gives us

where C1 and C2 are constants of integration. As boundary conditions, we can say that theinitial velocity in the downward (z) direction is 0, implying that C1=0. Also, at t=0, the fluid isat the height of the hole. If we assign the ground to be z=0, then C2=0.3 m.

The time taken for the fluid to reach the ground is then

In this time, the fluid will have travelled to the right a distance of V2t,or

-­‐g  

Page 10: CHEN%3200% Fluid%Mechanics% Spring%2011% - …cribme.com/cu/data/Chemical Engineering/Fluid Mechanics/Homework... · CHEN%3200% Fluid%Mechanics% Spring%2011% % % % Since !h=0, the

CHEN  3200   Fluid  Mechanics   Spring  2011    

5.    Water   flows   from  a   large   tank  and   is  expelled   from  the  horizontal  pipe   to   the   right.    Calculate   the  velocity  and  flow  rate  in  the  pipe.  (15  points)    

     

   

Problem 6.52 [2]

H = h1 =

(h2)

Given: Flow through tank-pipe system

Find: Velocity in pipe; Rate of discharge

Solution:

Basic equation p!

V2

2g z const "p ! g "h Q V A

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Hence, applying Bernoulli between the free surface and the manometer location

patm!

p! g H

V2

2where we assume VSurface <<, and H = 4 m

Hence p patm ! g H ! V2

2

For the manometer p patm SGHg ! g h2 ! g h1 Note that we have water on one side and mercury onthe other of the manometer

Combining equations ! g H ! V2

2SGHg ! g h2 ! g h1 or V 2 g H SGHg h2 h2

Hence V 2 9.81m

s24 13.6 0.15 0.75( ) m V 7.29

ms

The flow rate is Q V# D2

4Q

#4

7.29ms

0.05 m( )2 Q 0.0143m3

s