cno abundances in stars with planets

1
Conclusion Analysis CNO behaviour in planetharbouring stars L. SuárezAndrés 1,2 , G. Israelian 1,2 , J.I. González Hernández 1,2 , V. Adibekyan 3 , E. Delgado Mena 3 , N.C. Santos 3,4 , S.G. Sousa 3,4 1 Ins&tuto de Astro.sica de Canarias, E38205 La Laguna, Tenerife, Spain. 2 Dpto. Astro.sica, Universidad de La Laguna (ULL), E38206 La Laguna, Tenerife, Spain. 3 Ins&tuto de Astro.sica e Ciência do Espaço, Universidade do Porto (CAUP), Rua das Estrelas, 4150762 Porto, Portugal. 4 Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Portugal. IntroducOon C, N and O are the most abundant elements (aUer H and He). They are produced in stellar interiors through the CNO cycle. Thermonuclear producXon path for N is different from that of C and O. While for carbon and oxygen the dominant producXon modes are the αchain reacXon, for nitrogen the dominant producXon mode lies in the rearrangement of nuclei during the CNO cycle. These elements play a crucial role in formaXon of biospheres and life. Thus, it is important to study their abundances in extrasolar planets and in the atmospheres of their host star. We present results for a chemical abundance analysis for stars with and without planets for nitrogen and carbon using NH and CH molecular bands. Results Sample Nitrogen was studied using highresoluXon spectra observed with UVES@VLT. 90 solartype stars were studied, using the NH molecular band located at 3360Å. 50 of these 90 stars are known to be planet hosts. Carbon was studied using highresoluXon spectra observed with HARPS. 1111 solartype stars were studied, using the CH band located at 4300 Å . 128 of these 1111 stars are planetary systems. Abundances of both nitrogen and carbon were determined using a standard thermodynamic equilibrium (LTE) analysis with the spectral synthesis code MOOG (Sneden, 1973) and a grid of Kurucz (1993) ATLAS9 atmospheres. All stellar parameters were taken from Santos et al. 2004, Sousa et al. 2011(a,b). Chemical abundances of other elements were taken from Adibekyan et al. 2012 (in both cases) and also from Bodaghee et al. 2003 (for nitrogen). Adopted solar abundances are log (N) =8.05 dex and log (C) =8.50 dex. Fig 1. LeU: Observed spectrum (solid) and syntheXc (doYed lined, dashed and dasheddoYed) for different values of [C/H]. Right: Same as leU but for another target and in the NH band. Fig 2. LeU: [X/Fe] versus Teff for both carbon (red and orange dots) and nitrogen (blue and green squares). Filled symbols correspond to stars with planets, while open symbols for single stars. As it can be seen, abundances rise unXl 5000K then moderate their increament. We are invesXgaXng the Teff dependence to correct for those trends. Right: [X/Fe] versus logg for both nitrogen and carbon. As it can be seen, no relaXon is found. Fig 3. LeU: [X/Fe] versus [Fe/H] for both carbon (red and orange dots) and nitrogen (blue and green squares). As it can be seen, abundance is nearly independent of iron. Right: [X/H] versus [Fe/H] for both nitrogen and carbon. A 1:1 relaXon is found for all samples, nitrogen and carbon, for planet hosts and single stars. We have searched for peculiar trends between those samples (planet hosts and single stars) by represenXng [X/Fe] abundance raXo as a funcXon of Teff and logg (Fig. 2). There is a small dependence with Teff for both carbon and nitrogen samples, with no difference between stars with and without planets. We are invesXgaXng the Teff dependence to correct for those trends. No relaXon can be found for logg. We also looked for disXnguishable trends between those samples by represenXng [X/Fe] abundance versus [Fe/H] for both samples. Both elements are nearly indepedent of iron and they show a 1:1 relaXon with it. (see Fig. 3). As previously, there is no different behaviour between planet hosts and single stars. Santos et al. 2004, A&A 415.1153S. Sousa et al. 2011a, A&A 526A.99S Sousa et al. 2011b, A&A 533A.141S Adibekyan et al. 2012, A&A 545A.32A Bodaghee et al. 2003, A&A 404.715B Ecuvillon et al. 2004, A&A 418..703E Fig 4. CumulaXve histograms comparing single stars with planet hosts (red, stars with planets less massive than 1.5 M J ; in blue, planets more massive than 1.5 M J ) Performing a Kuiper test we can assume that single stars are similar to smallplanets hosts (Prob 0.72 for N, 0.98 for C) while single stars and giantplanets hosts are not (Prob 0.03 for N, 0.33 for C). For nitrogen the late increase in the cumulaXve histogram of stars with massive planets (M p sini > 1.5 M J ) indicates that the average [N/Fe] raXo in those stars is higher than in stars with “small planets” (M p sini < 1.5 M J ). This may indicate the need of high abundance of nitrogen to be able to form massive giant planets. We present nitrogen abundances for 90 solartype stars observed with UVES@VLT u sing the NH band located at 3360Å. We also obtained carbon abundances for 1111 solartype observed with HARPS using the CH molecular band at 4300 Å . We performed a LTE analysis to obtain these N and C abundances and invesXgated their abundance trends. We found indicaXons that the abundance raXos [N/Fe] are on average higher in stars with massive giant planets than in stars with less massive planets, which may suggest the need for high amount of available nitrogen in protoplanetary disc in order to build massive giant planets.

Upload: luwrf

Post on 06-Jul-2016

220 views

Category:

Documents


1 download

DESCRIPTION

CNO abundances in stars with planets

TRANSCRIPT

Page 1: CNO abundances in stars with planets

Conclusion

Analysis

CNO  behaviour  in  planet-­‐harbouring  starsL.  Suárez-­‐Andrés1,2,  G.  Israelian1,2,  J.I.  González  Hernández1,2,  V.  Adibekyan3,  E.  Delgado  Mena3,  N.C.  Santos3,4,  S.G.  Sousa3,4

1  Ins&tuto  de  Astro.sica  de  Canarias,  E-­‐38205  La  Laguna,  Tenerife,  Spain.  2Dpto.  Astro.sica,  Universidad  de  La  Laguna  (ULL),  E-­‐38206  La  Laguna,  Tenerife,  Spain.3  Ins&tuto  de  Astro.sica  e  Ciência  do  Espaço,  Universidade  do  Porto  (CAUP),  Rua  das  Estrelas,  4150-­‐762  Porto,  Portugal.  4Departamento  de  Física  e  Astronomia,  

Faculdade  de  Ciências  da  Universidade  do  Porto,  Portugal.

IntroducOon

C,  N  and  O  are  the  most  abundant  elements  (aUer  H  and  He).  They  are  produced  in  stellar  interiors  through  the  CNO  cycle.

Thermonuclear  producXon  path  for  N  is  different  from  that  of  C  and  O.  While  for  carbon  and  oxygen  the  dominant  producXon  modes  are  the  α-­‐chain  reacXon,  for  nitrogen  the  dominant  producXon  mode  lies  in  the  re-­‐arrangement  of  nuclei  during  the  CNO  cycle.  These  elements  play  a  crucial  role  in  formaXon  of  biospheres  and  life.  Thus,  it  is  important  to  study  their  abundances  in  extrasolar  planets  and  in  the  atmospheres  of  their  host  star.

We  present  results  for  a  chemical  abundance  analysis  for  stars  with  and  without  planets  for  nitrogen  and  carbon  using  NH  and  CH  molecular  bands.  

Results

Sample

Nitrogen  was  studied  using  high-­‐resoluXon  spectra  observed  with  UVES@VLT.  90   solar-­‐type   stars   were   studied,   using   the   NH   molecular   band   located   at  3360Å.  50  of  these  90  stars  are  known  to  be  planet  hosts.  

Carbon  was  studied  using  high-­‐resoluXon  spectra  observed  with  HARPS.  1111  solar-­‐type   stars   were   studied,   using   the   CH   band   located   at   4300Å.   128   of  these  1111  stars  are  planetary  systems.

Abundances  of  both  nitrogen  and  carbon  were  determined  using  a  standard  thermodynamic   equilibrium   (LTE)   analysis  with   the   spectral   synthesis   code  MOOG  (Sneden,  1973)  and  a  grid  of  Kurucz  (1993)  ATLAS9  atmospheres.  All  stellar  parameters  were  taken  from  Santos  et  al.  2004,  Sousa  et  al.  2011(a,b).  Chemical   abundances  of   other   elements  were   taken   from  Adibekyan  et   al.  2012   (in   both   cases)   and   also   from   Bodaghee   et   al.   2003   (for   nitrogen).  Adopted  solar  abundances  are  log∊(N)⊙=8.05  dex  and  log∊(C)⊙=8.50  dex.

Fig  1.  LeU:  Observed  spectrum  (solid)  and  syntheXc  (doYed  lined,  dashed  and  dashed-­‐doYed)  for  different  values  of  [C/H].  Right:  Same  as  leU  but  for  another  target  and  in  the  NH  band.  

Fig  2.  LeU:  [X/Fe]  versus  Teff  for  both  carbon  (red  and  orange  dots)  and  nitrogen  (blue  and  green  squares).  Filled  symbols  correspond  to  stars  with  planets,  while  open  symbols  for  single  stars.  As  it  can  be  seen,  abundances  rise  unXl  5000K  then  moderate  their  increament.  We  are  invesXgaXng  the  Teff  dependence  to  correct  for  those  trends.  Right:  [X/Fe]  versus  logg  for  both  nitrogen  and  carbon.  As  it  can  be  seen,  no  relaXon  is  found.

Fig  3.  LeU:  [X/Fe]  versus  [Fe/H]  for  both  carbon  (red  and  orange  dots)  and  nitrogen  (blue  and  green  squares).  As  it  can  be  seen,  abundance  is  nearly  independent  of  iron.  Right:  [X/H]  versus  [Fe/H]  for  both  nitrogen  and  carbon.  A  1:1  relaXon  is  found  for  all  samples,  nitrogen  and  carbon,  for  planet  hosts  and  single  stars.  

We  have  searched  for  peculiar   trends  between  those  samples  (planet  hosts  and  single  stars)  by  represenXng  [X/Fe]  abundance  raXo  as  a  funcXon  of  Teff  and  logg  (Fig.  2).  There  is  a  small  dependence  with  Teff  for  both  carbon  and  nitrogen   samples,   with   no   difference   between   stars   with   and   without  planets.   We   are   invesXgaXng   the   Teff   dependence   to   correct   for   those  trends.  No  relaXon  can  be  found  for  logg.We   also   looked   for   disXnguishable   trends   between   those   samples   by  represenXng   [X/Fe]   abundance   versus   [Fe/H]   for   both   samples.   Both  elements  are  nearly   indepedent  of  iron  and  they  show  a  1:1  relaXon  with  it.  (see   Fig.   3).   As   previously,   there   is   no   different   behaviour   between   planet  hosts  and  single  stars.

Santos  et  al.  2004,  A&A  415.1153S.Sousa  et  al.  2011a,    A&A  526A.99S

Sousa  et  al.  2011b,    A&A  533A.141SAdibekyan  et  al.  2012,    A&A  545A.32A  

Bodaghee  et  al.  2003,    A&A  404.715BEcuvillon  et  al.  2004,    A&A  418..703E

Fig  4.  CumulaXve  histograms  comparing  single  stars  with  planet  hosts  (red,  stars  with  planets  less  massive  than  1.5  MJ;  in  blue,  planets  more  massive  than  1.5  MJ)    Performing  a  Kuiper  test  we  can  assume  that  single  stars  are  similar  to  small-­‐planets  hosts  (Prob  0.72  for  N,    0.98  for  C)  while  single  stars  and  giant-­‐planets  hosts  are  not  (Prob  0.03  for  N,  0.33  for  C).  For  nitrogen  the  late  increase  in  the  cumulaXve  histogram  of  stars  with  massive  planets  (Mp      sini  >  1.5  MJ  )  indicates  that  the  average  [N/Fe]  raXo  in  those  stars  is  higher  than  in  stars  with  “small  planets”  (Mp      sini  <  1.5  MJ  ).  This  may  indicate  the  need  of  high  abundance  of  nitrogen  to  be  able  to  form  massive  giant  planets.

We   present   nitrogen   abundances   for   90   solar-­‐type   stars   observed   with  UVES@VLT   using   the   NH   band   located   at   3360Å.  We   also   obtained   carbon  abundances  for  1111  solar-­‐type  observed  with  HARPS  using  the  CH  molecular  band   at   4300Å.   We   performed   a   LTE   analysis   to   obtain   these   N   and   C  abundances   and   invesXgated   their   abundance   trends.   We   found   indicaXons  that  the  abundance  raXos  [N/Fe]  are  on  average  higher  in  stars  with  massive  giant  planets   than   in  stars  with   less  massive  planets,  which  may   suggest   the  need  for  high  amount  of  available  nitrogen  in  protoplanetary  disc  in  order   to  build  massive  giant  planets.