co2drivenincreasesinvegetaon+ cover 2 - land talk 2... ·...

11
CO 2 driven increases in vegeta1on cover Randall Donohue, Mike Roderick 1,2 , Tim McVicar, Graham Farquhar 1 . CSIRO Land and Water 1 Research School of Biology, The Australian National University 2 Research School of Earth Sciences, The Australian National University

Upload: vokhuong

Post on 06-Mar-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

CO2-­‐driven  increases  in  vegeta1on  cover  Randall  Donohue,  Mike  Roderick1,2,  Tim  McVicar,  Graham  Farquhar1.            CSIRO  Land  and  Water  

1 Research School of Biology, The Australian National University 2 Research School of Earth Sciences, The Australian National University

Understanding  CO2’s  role  in  global  greening  •  Laboratory  and  plot-­‐based  studies  have  shown  that  elevated  CO2  concentra>ons  generally  increase  plant  produc>vity  and  –  under  water-­‐stressed  condi>ons  –  foliage  cover  

•  Satellites  have  shown  that  foliage  cover  has  been  increasing  globally  over  the  past  few  decades  

 

2    |  

•  Due  to  climate  variability  it  has  been  difficult  to  quan>fy  the  role  that  elevated  CO2  has  played  in  this  greening,  especially  over  warm,  dry  environments  

Relative change in foliage cover, 1982-2010

CO2  fer>lisa>on    |  Donohue  Roderick  McVicar  Farquhar  

Donohue,  Roderick,  McVicar,  Farquhar  (2013).  The  impact  of  CO2  ferBlisaBon  on  maximum  foliage  cover  across  the  globe's  warm,  arid  environments,  GRL  (40)  1-­‐5.  

CO2  fer1lisa1on  

3    |  

d d d d1 d2

ph a l l

ph a l l

W C A EDW C D A E

= − = −

•  In  rela>ve  terms,  the  change  in  Wph  is    

 

Wph Al El Ca D

water  use  efficiency  of  photosynthesis  carbon  assimila>on  rate  [per  unit  leaf  area]  evapora>on  (transpira>on)  rate  [per  unit  leaf  area]  atmospheric  CO2  concentra>on  water  vapour  pressure  gradient  between  leaf  and  atmosphere;  approximated  as  the  Vapour  Pressure  Deficit  

Al El

CO2  H2O  

ph l lW A E=

•  Elevated  CO2  increases  the  water  use  efficiency  of  photosynthesis,  Wph  

 

CO2  fer>lisa>on    |  Donohue  Roderick  McVicar  Farquhar  

CO2  fer1lisa1on  across  our  study  region  

4    |  

Warm,  dry  landscapes  free  from  irriga>on  and  surface  water  features,  and  with  high  quality  precipita>on  data    

Growth  condi>ons   P    (m  a-­‐1)  

dP/P  (%)  

D  (kPa)  

dD/D  %  

F   dF/F    (%)  

Terrestrial  globe   0.82   5.6   0.89   10.5   0.45   8.7  

Water-­‐limited   0.36   10.0   1.50   8.2   0.22   14.4  

Analysis  extent   0.36   10.4   1.51   8.2   0.21   14.1  

d 114 8.2 10%2

ph

ph

WW

= − ≈d 14%a

a

CC

= +

CO2  fer>lisa>on    |  Donohue  Roderick  McVicar  Farquhar  

Ca in 1982 ~ 340 Ca in 2010 ~ 389

Vegeta1on  response  to  CO2  fer1lisa1on  

5    |  

How  vegeta>on  responds  to  higher  Wph  will  vary  with  growing  condi>ons  

 d d d10%ph l l

ph l l

W A EW A E

≈ = −

Op>on  1.  Response  is  only  through  Al:          dAl/Al  =  10%  &  dEl/El  =  0%   Op>on  2.  Response  is  only  through  El:          dAl/Al  =  0%  &  dEl/El  =  -­‐10%    Op>on  3.  A  reasonable  expecta>on  is  for  a  5%  to  10%  drop  in  El  in  dry  places.  

To  maintain  maximum  water  use,  water-­‐stressed  vegeta>on  will  increase  leaf  cover  to  counter  the  drop  in  El;  therefore  we  expect  a  5  –  10%  rise  in  foliage  

cover.  This  is  our  a  priori  es,mate  of  the  CO2-­‐induced  change  in  foliage  cover  

 

Vegeta>on  can  respond  via  Al  or  El  or  both  

CO2  fer>lisa>on    |  Donohue  Roderick  McVicar  Farquhar  

Iden1fying  the  maximum  foliage  cover  edge    

•  A  dis>nct,  linear  edge  in  P-­‐F  space  that  represents  the  maximum  cover  againable  for  a  given  precipita>on  

•  At  these  loca>ons,  all  other  growing  condi>ons  can  be  considered  op>mum  and  we  assume  the  limit  to  growth  is  water.      

•  Therefore  any  observed  rise  in  the  maximum  edge  should  be  related  to  the  rise  in  Wph,  and  ∴  CO2.  

6    |  

The  ‘maximum  foliage  edge’  

CO2  fer>lisa>on    |  Donohue  Roderick  McVicar  Farquhar  

Results  •  Observed  change  in  the  maximum  edge  is  +11.3%,  close  to  the  predicted  +10%  

•  Observed  across  all  warm,  dry  regions  of  the  globe  

•  Infers  the  CO2  response  is  predominantly  via  El  (leaf  transpira>on)  not  Al  (leaf  assimila>on)  

7    |  

1982 2010

CO2  fer>lisa>on    |  Donohue  Roderick  McVicar  Farquhar  

Conclusions  •  The  CO2  fer>lisa>on  effect  is  now  large  enough  that  it  can  be  quan>fied  from  satellite  

•  Whilst  fer>lisa>on  is  a  global  phenomenon,  these  results  only  relate  to  warm,  dry  regions  –  other  responses  to  elevated  CO2  are  expected  in  different  environments  

•  Fer>lisa>on  may  have  poten>ally  significant  (but  poorly  understood)  flow-­‐on  effects  including  changes  in  surface  albedo,  fire  fuel  loads,  carbon  storage,  water  supplies,  tree/grass  dynamics,  erosion  rates,  na>ve  habitat  change...  

8    |   CO2  fer>lisa>on    |  Donohue  Roderick  McVicar  Farquhar  

LAND  AND  WATER  

w    www.csiro.au  

Randall  Donohue  t  +61  2  6246  5803  e  [email protected]    

10    |   CO2  fer>lisa>on    |  Donohue  Roderick  McVicar  Farquhar  

Predicted  change  in  Wph    (1982-­‐2010)  

Predicted  change  in  LAI    (1982-­‐2010)  

11    |   CO2  fer>lisa>on    |  Donohue  Roderick  McVicar  Farquhar  

Predicted  change  in  gg    (1982-­‐2010)  

Predicted  change  in  Ag    (1982-­‐2010)