colin prentice speddexes 2014

18
Why big data is a game changer for terrestrial ecosystem science and what have we learned over the last 30 years I. Colin Pren,ce AXA Chair in Biosphere and Climate Impacts, Imperial College London Professor in Ecology and EvoluCon, Macquarie University Chair, ecosystem Modelling And Scaling infrasTructure (eMAST)

Upload: aceas13tern

Post on 20-May-2015

101 views

Category:

Education


0 download

DESCRIPTION

Why big data is a game changer for science and what have we learned over the last 30 years

TRANSCRIPT

Page 1: Colin Prentice SPEDDEXES 2014

Why  big  data  is  a  game  changer  for  terrestrial  ecosystem  science  and  what  have  we  learned  

over  the  last  30  years  

I.  Colin  Pren,ce    

AXA  Chair  in  Biosphere  and  Climate  Impacts,  Imperial  College  London  

Professor  in  Ecology  and  EvoluCon,  Macquarie  University  

Chair,  ecosystem  Modelling  And  Scaling  infrasTructure  (eMAST)  

Page 2: Colin Prentice SPEDDEXES 2014

The  significance  of  30  years  ago…  

•  Orwell’s  1984  •  Murakami’s  1Q84  •  Shugart  (1984)  A  Theory  of  Forest  Dynamics  

–  “gap  models”  for  tree  growth  and  compeCCon  –  ecosystem-­‐specific,  required  data  on  every  tree  species  –  lack  of  integraCon  of  vegetaCon  dynamics  with  ecophysiology,  

biogeochemistry,  biogeography  

Page 3: Colin Prentice SPEDDEXES 2014

Trends  in  ecosystem  science,  1984-­‐2004  

•  Recognizing  large-­‐scale  drivers  of  ecosystem  change          GCTE  launch  (1992):  promoCng  experimental  and  modelling  research  on  global  change  

•  From  ecosystem-­‐specific  models  to  DGVMs        Cramer  et  al.  (2001)  GCB:  C  cycle  projecCons,  six  models  

•  Revival  of  comparaCve  funcConal  ecology  (moCvaCon  to  improve  DGVMs)        Wright  et  al.  (2004)  Nature:  leaf  economics  spectrum  

Page 4: Colin Prentice SPEDDEXES 2014

Big  data  for  ecosystem  science  

•  Steady  accumulaCon  of  precise  atmospheric  measurements  (ramp  up  in  1980s)  

•  Major  advances  in  remote  sensing  (MODIS  launch  2000;    Sciamachy,  GOME  etc.  for  atmospheric  consCtuents)  

•  ‘Bodom-­‐up’  syntheses  of  local  measurements  (flux,  traits)  =>  push  for  data  sharing  (N  America  first;  big  push  from  TERN;  WIRADA)  

•  ConCnuous  exponenCal  improvement  in  data  storage  and  computaConal  capacity  

•  Major  advances  in  computaConal  tools  (especially  open-­‐source  languages  and  codes)      

Page 5: Colin Prentice SPEDDEXES 2014

What  can  we  do  with  big  data?  

•  Model  evaluaCon  and  benchmarking  (post  facto  comparison)  •  Data  assimilaCon  (model  structure  pre-­‐defined:  variables  

and/or  parameters  to  be  esCmated)  •  New  model  development  (using  data  to  inform  model  

structure)  

1.  Process  understanding  flows  from  large-­‐scale  data  analysis.  2.  There  are  huge  unexploited  opportuniCes  –  hardly  

conceivable  30  years  ago.      

Page 6: Colin Prentice SPEDDEXES 2014

Role  of  eMAST  

•  PredicCve  models,  fully  informed  by  all  relevant  data  •  Ecosystems  under  pressure  =>  requirement  for  predicCve  

power  

Page 7: Colin Prentice SPEDDEXES 2014

Role  of  eMAST  (cont.)  

•  Without  models,  there  is  no  predicCve  power.  •  Without  data,  models  are  worthless.  •  We  need  to  make  it  easy  for  models  and  data  to  talk  to  one  

another.  

Page 8: Colin Prentice SPEDDEXES 2014

Example  1:  CO2  seasonal  cycles  

•  Seasonal  cycles  at  different  locaCons  as  a  benchmark  for  modelled  NEE  

•  Increasing  high-­‐laCtude  seasonal  cycle  as  a  challenge  for  modelling  NPP  

•  Requires  intervenCon  of  an  atmospheric  transport  model  –  but  this  can  be  done  ‘automaCcally’  through  inversion  

Page 9: Colin Prentice SPEDDEXES 2014

NH  

Tropics  

SH  

Kelley  et  al.  (2013)  Biogeosciences    

Page 10: Colin Prentice SPEDDEXES 2014

Graven  et  al.  (2013)  Science  

Page 11: Colin Prentice SPEDDEXES 2014

Graven  et  al.  (2013)  Science  

Page 12: Colin Prentice SPEDDEXES 2014

Example  2:  Leaf  stable  carbon  isotopes  

•  Global  leaf  δ13C  data  (for  ci:ca  raCo  –  coupling  of  water  and  CO2  exchanges):  synthesis  of  >  3500  measurements  led  by  Will  Cornwell,  UNSW  

•  Leaf  economics  theory  (PrenCce  et  al.  2013  Ecology  LeIers)  =>  predicts  dependence  on  temperature,  aridity,  elevaCon  

•  Requires  climate  data  and  a  model  to  infer  bioclimate  variables,  e.g.  cumulaCve  water  deficit  (proxy  for  vpd)  

Page 13: Colin Prentice SPEDDEXES 2014

ParCal  residual  plots    

H.  Wang  et  al.  (unpublished  results)    

Page 14: Colin Prentice SPEDDEXES 2014

Global  slopes:  ln  χ/(1  −  χ)  vs  predictors    

                 Predicted          FiIed  (±  95%  CI)    

temperature          0.055            0.050  ±  0.004  ln  (dryness)    −  0.250    −  0.226  ±  0.012    elevaCon      −  0.082    −  0.093  ±  0.030    R2    =    0.450    

Page 15: Colin Prentice SPEDDEXES 2014

Global  regression  slopes    

Page 16: Colin Prentice SPEDDEXES 2014

Example  3:  IntegraCng  remotely  sensed  and  flux  measurements  (ePiSaT)  

•  OzFlux  synthesis  (all-­‐site  CO2  flux  measurements)  •  fAPAR  synthesis  product  (Huete  et  al.)  

 ParCConing  fluxes  into  respiraCon  and  GPP   Analysis  of  monthly  integrated  GPP  versus  fAPAR  x  PPFD   LUE  model  driven  by  fAPAR,  PPFD,  vpd…  

•  Also  requires  climate  data,  bioclimate  variables,  parCConing  and  gap-­‐filling  methods…  

 

B.J.  Evans  et  al.  (2013)  unpublished  results    

Page 17: Colin Prentice SPEDDEXES 2014
Page 18: Colin Prentice SPEDDEXES 2014

Where  do  we  go  from  here?  

•  Data-­‐model  comparison  and  evaluaCon  ‘made  easy’.  •  Data  assimilaCon  ‘made  possible’.  •  IntegraCon  of  data  sets  with  different  properCes  (e.g.  spaCally  

versus  temporally  extensive)  ‘made  rouCne’.