computational solid state physics 計算物性学特論  5 回

25
Computational Solid State Physics 計計計計計計計 5 計 5.Band offset at hetero- interfaces and effective mass approximation

Upload: tayten

Post on 21-Jan-2016

43 views

Category:

Documents


0 download

DESCRIPTION

Computational Solid State Physics 計算物性学特論  5 回. 5.B and offset at hetero-interfaces and effective mass approximation. Energy gaps vs. lattice constants. Band alignment at hetero-interfaces. : conduction band edge. : valence band edge. crystal B. crystal A. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Computational Solid  State Physics  計算物性学特論  5 回

Computational Solid State Physics

計算物性学特論  5 回

5.Band offset at hetero-interfaces    and effective mass

approximation

Page 2: Computational Solid  State Physics  計算物性学特論  5 回

Energy gaps vs. lattice constants

Page 3: Computational Solid  State Physics  計算物性学特論  5 回

Band alignment at hetero-interfaces

BvE

AcE

BcE

crystal A crystal B

AvE

vE

cE

AgE B

gE

: conduction band edge

: valence band edge

Page 4: Computational Solid  State Physics  計算物性学特論  5 回

None of the interface effects are considered.

χ:electron affinity

Anderson’s rule for the band alignment (1)

Page 5: Computational Solid  State Physics  計算物性学特論  5 回

Anderson’s rule for the band alignment (2)

Ag

Bgvc EEEE

)( Ag

ABg

Bv

BAc

EEE

E

v

c

E

E

: conduction band offset

: valence band offset

Page 6: Computational Solid  State Physics  計算物性学特論  5 回

type I type II

type III

Types of band alignment

Page 7: Computational Solid  State Physics  計算物性学特論  5 回

Band bending in a doped hetero-junction (1)

Page 8: Computational Solid  State Physics  計算物性学特論  5 回

Band bending in a doped hetero-junction (2)

Page 9: Computational Solid  State Physics  計算物性学特論  5 回

Effective mass approximation

・ Suppose that a perturbation  is added to a perfect crystal.

・ How is the electronic state?

Examples of perturbations

an impurity, a quantum well, barrier, superlattice,

potential from a patterned gate, space charge potential

Page 10: Computational Solid  State Physics  計算物性学特論  5 回

)()(

)()(][

rrH

rErVH

nknknkcrys

crys

)()()2(

)()()(

)()()()(

)2()()()(

030

00

3

rrdk

ekrr

ereruerur

dkrkr

nnrik

nn

rikn

rikn

riknknk

mmkm

Effective mass approximation (1)

assume: conduction band        n is minimum at k=0

)(rnk : Bloch function

V : external potential

Page 11: Computational Solid  State Physics  計算物性学特論  5 回

303

3

)2()()(

)2()()(

)2()()()(

dkekr

dkrk

dkrkHrH

riknknnnknkn

nkncryscrys

m

rikmnmncrys

m

mmnk

dkekkarrH

ka

30 )2()()()(

)()(][ rErVH crys

Effective mass approximation(2)

Page 12: Computational Solid  State Physics  計算物性学特論  5 回

)()()]()([ rErrVin

)()()( 0 rrr nn Schroedinger equation for envelope function χ(r)

Effective mass approximation(3)

)()()()()()()(

)()()(

00 rirriarrH

kikfdxexfikdxedx

xdf

nm

nm

mncrys

ikxikx

If 0)( f

Page 13: Computational Solid  State Physics  計算物性学特論  5 回

)()()()](*2

[

*2)(

22

22

rErrVm

m

kk

c

cn

Effective mass approximation (4)

)()()( 0 rrr nn All the effects of crystal potential are included in εc and effective mass m*.

・ Schroedinger equation for an envelope   function χ(r)

Page 14: Computational Solid  State Physics  計算物性学特論  5 回

r

erV

s0

2

4)( :potential from a donor ion

Impurity

20

220

2

4 *

8

*

sc

s

c m

mRy

h

meE

Ry=13.6 eV: Rydber

g constant

Page 15: Computational Solid  State Physics  計算物性学特論  5 回

Quantum well

Page 16: Computational Solid  State Physics  計算物性学特論  5 回

Quantum corral

Page 17: Computational Solid  State Physics  計算物性学特論  5 回

HEMT

Page 18: Computational Solid  State Physics  計算物性学特論  5 回

2D-electron confinement in HEMT

The sub-band structure at the interface of the GaAs active channel in a HEMT structure. E1

and E2 are the confined levels. The approximate positions of E1 and E2 as well as the shape of the wave functions are indicated in the lower part of the diagram. In the uper part, an approximate form of the potential profile is shown, including contributions of the conduction band offset and of the space charge potential.

Page 19: Computational Solid  State Physics  計算物性学特論  5 回

Superlattice

The Kronig-Penney model, a simple superlattice, showing wells of width w alternating with barriers of thickness b and height V0. The (super)lattice constant is a=b+w.

Crystal A Crystal B

Page 20: Computational Solid  State Physics  計算物性学特論  5 回

Kronig-Penny model (1)

SbV

b

V

0

0

0 n

anxSxV )()(

)()()()](2

[2

22

xkExxVdx

d

m kk

Schroedinger equation in the effective mass approximation

)()( xeax kika

k

Bloch condition for superlattice

k: wave vector of Bloch   function in the superlattice

Page 21: Computational Solid  State Physics  計算物性学特論  5 回

Kronog-Penney model (2)

0)()()(2

)0()0(0

0

0

02

22

dxxxVdxxdx

d

m kk

kk

)cos()sin()( 11 xkAxkxk ax 0

Boundary condition at x=0

Solution of Schroedinger equation

0)0()]0()0([2 0

2

kkk Vm

(1)continuity of wavefunction

(2)connection condition for the 1st derivative of wavefunction

(2’)

21

2

2)( k

mkE

for

Page 22: Computational Solid  State Physics  計算物性学特論  5 回

Kronig-Penney model (3)

0)]sin(cos1[2

)cos(sin

11

2

11

SAakAakeqm

akAakeA

ika

ika

1

121

sincoscos

k

akmSakka

(1)

(2’)

21

2

2)( k

mkE

Simultaneous equation for E(k)

Page 23: Computational Solid  State Physics  計算物性学特論  5 回

Kronig-Penney model (4)

Sm

P2

allowed range of cos(ka)

Page 24: Computational Solid  State Physics  計算物性学特論  5 回

Kronig-Penney model (5)

Conduction band of crystal A is split into mini-bands with mini-gaps by the Bragg reflection of the superlattice.

Page 25: Computational Solid  State Physics  計算物性学特論  5 回

Problems 5

Calculate the lowest energy level for electrons and light and heavy holes in a GaAs well 6 nm wide sandwiched between layers of Al0.35

Ga0.65As. Calculate the photoluminescence energy of the optical transition.

Calculate the two-dimensional Schroedinger equation for free electrons confined in a cylindrical well with infinitely high walls for r>a.