control and simulation of doubly‐fed induction generator for variable‐speed wind turbine systems...

24
Control and simulation of doublyfed induction generator for variablespeed wind turbine systems based on an integrated Finite Element approach Qiongzhong Chen*, Michel Defourny # , Olivier Brüls* *Department of Aerospace and Mechanical Engineering (LTAS), University of Liège, Belgium # SAMTECH Headquarters, Liège, Belgium EWEA 2011, Brussels, Belgium

Upload: aman-abdulla-tanvir

Post on 28-Sep-2015

13 views

Category:

Documents


5 download

DESCRIPTION

Control of DFIG

TRANSCRIPT

  • Controlandsimulationofdoublyfedinductiongeneratorforvariablespeedwindturbinesystemsbasedonan

    integratedFiniteElementapproach

    QiongzhongChen*,MichelDefourny#,OlivierBrls*

    *DepartmentofAerospaceandMechanicalEngineering(LTAS),UniversityofLige,Belgium

    #SAMTECHHeadquarters,Lige,Belgium

    EWEA2011,Brussels,Belgium

  • 1Outline

    Background

    Control of DFIG

    Integrated simulation approach

    Examples & validation

    Conclusions

  • 2Background

    Wind turbine concepts

    Evolution of WT size: Increased flexibility Increased coupling effects

    (Data source: A. Perdala, dynamic models of wind turbines, PhD thesis, 2008)

    WT types Gen. typesDFIG WTs DFIG

    FSWTs SCIG

    FCWTs PMSG, SCIG etc.

    Other OSIG

    Equipped gen. types

    (Figure from EWEA factsheets)

  • 3Background

    Computer-aided analysis for WT systems Software specialized in a certain field Aerodynamics: AeroDyn etc. Structure: ADAMS/WT etc. Electrics: DIgSILENT etc.? Different systems on different simulation platforms?? No detailed coupling analysis

    Integrated simulation packages: GH Bladed, Simpack Wind, HAWC2, FAST etc.? Weak coupling (DLLs or co-simulation)?? Numerical stability?

    Need for integrated optimization tools (Bottasso, 2010)

  • 4Background

    Samcef for Wind Turbine (S4WT) Nonlinear FE flexible multibody solver: SAMCEF/MECANO One single platform: Aeroelastics, multibody, control, electrodynamics etc.

    Flexibility in blades, shafts, tower etc. Simulation approaches: Weak & strong coupling

    An integrated model on S4WT(Courtesy: Samtech)

  • 5Highlights of the paper

    Improved control strategies of DFIG WTs Grid-synchronization Power optimization

    Strongly-coupled approach for mechatronic systems [B. & Golinval 2006]

    Integrated structure-control-generator analysis on S4WT

    Brls, O. and Golinval, J. C. The generalized- method in mechatronic applications. Zeitschrift fr angewandte mathematik und mechanik (ZAMM) 86, 10 (2006), 748-758.

  • 6Control of DFIG

    Working process of WT systems

    Control of DFIG: soft grid connection power optimization

    Gearbox

    Grid

    AC/DC

    DC/ AC

    SWs

    SWg SWr

    Transformer

    DFIG

    RSC GSC

    Wind turbine

    A schematic configuration of a DFIG wind turbine

    E

    A B

    C

    D

    Power Optimization

    Power Limitation

    W

    i

    n

    d

    p

    o

    w

    e

    r

    Wind speed 0

    T

    u

    r

    b

    i

    n

    e

    o

    u

    t

    p

    u

    t

    p

    o

    w

    e

    r

    Rotor speed

    0 A

    B

    C

    D, E Power Optimization

    Power Limitation

  • 7Grid synchronization control

    Objective: Regulate stator voltage, frequency, phase angle

    grid before connection

    Method: Grid-voltage-oriented reference frame Vector control PI Controller designed based on internal model control

    (IMC) method

    +

    _ Gr(s)+ +qrVqr_ref

    i qri

    l r drs L i

    +DFIG

    Cqr(s)

    l r drs L i

    _

    FF term

    +

    _ Gr(s)+ +drVdr_ref

    i dri

    l r qrs L i

    _DFIG

    Cdr(s)

    l r qrs L i

    +

    FF term

    D,q-axis rotor current control loops

  • 8Power control

    Objective: Follow a pre-defined power-speed characteristics

    profile speed regulation

    Method Stator-flux-oriented reference frame

    Vector control q-axis rotor current active power d-axis rotor current reactive power

    IMC or pole placement method for design of controllers

  • 9Power control

    Power control scheme

    Controllers: PI or IP regulators Design of controllers

    PI : IMC method (current loop) IP : pole placement method (speed loop)

    controller:CT(s)

    + _

    qr_refi

    qri

    qrvref

    e_refT

    dr_refi

    dri

    refQ drv

    DFIG

    controller:CiT(s)

    controller:CiQ(s)

    controller:Cvi_qr(s)

    controller:Cvi dr(s)

    +_

    +_

    Decoupled speed and reactive power control of DFIG

  • 10

    Design of controllers

    PI controller for q-axis rotor current i-v transfer function

    PI controller on IMC

    IMC parameter:

    For electrical dynamics, the rise time is set to 10ms

    1

    ( ) 1( )( )

    qrvi_qr

    qrr

    s

    I sG s

    XV s R s

    1 1( ) ( ) rvi_qr qrs

    X RC s G ss s

    riseln 9 /= t

    +

    _ Cvi_qr(s) Gvi_qr(s)+qrVqr_refi qri

    qrE

    current control block

  • 11

    Design of controllers

    IP controller for speed control Close-loop transfer function

    Pole placement method

    For over-damped systems:

    For mechanical dynamics, the settling time is set to 1s, DFIG alone 2.5s, with WT system

    +_

    Ki/s 1/(Js)+ +e_refTref

    Kp

    +

    _

    mT

    r2

    ( )( ) ( )

    ir

    ref p i

    K /Js =s s + K /J s+ K /J

    2

    2p d nd

    i nd

    K = J

    K = J

    5.8nd sd= /t

    Speed control block

  • 12

    Integrated simulation approach

    Strongly-coupled representation for mechatronic systems

    Extended generalized- solver Coupled 1st / 2nd order systems Second order accuracy Unconditional stability More details can be referred to [B. & Golinval 2006]

    qMq ( ) g(q,q, ) L y 0

    (q) 0x f (q,q,q,, x, y, ) 0y h(q,q,q,, x, y, ) 0

    T ak p tk

    tt

    Mechanism

    Control system

    y ( , , , )q q q

    Coupling in a mechatronic system

  • 13

    Mechatronic Modelling on SAMCEF

    Considerations for the Mechatronic modelling: Functional system decomposition Modularized, parameterized components E.g. DFIG, PI, PID modules etc.

    Nodes are introduced for Mechanical DOFs State variables Outputs

    On a general-purpose use User-friendly Reusable

    A uniform tangent matrix for Newton iteration

  • 14

    Examples & validation

    2MW DFIG parameters:

    WT parameters:

    Base voltage (line-to-line): Vbase= 690 V;Base power: Pbase= 2 MW;Grid frequency: fs= 50 Hz;Number of poles: np= 4;Stator resistance: Rs= 0.00488 p.u.;Rotor resistance : Rr= 0.00549 p.u.;Stator Leakage inductance: Lsl= 0.09241 p.u.;Rotor leakage inductance: Lrl= 0.09955 p.u.;Mutual inductance: Lm= 3.95279 p.u..

    Inertia of the generator rotor: 100kgm2

    Blade length: 41m;Tower height: 75m;Gearbox ratio: 106Etc.

  • 15

    Ex. 1:DFIG with defined input torque

    Simulation situationSynchronization process starts at 0.8

    p.u. of the rotating speed

    Reactive power reference: 0 p.u.

    Speed (active power) control situation:Reference speed:

    Input torque:

    1 p.u., time 4sec0.9 p.u., 4sec time 6sec1.1 p.u., time 6sec

    s

    1 p.u., time 8.5sec0.5time 5.25 p.u., 8.5sec time 9.5sec

    0.5 p.u., time 9.5sec

    mT

  • 16

    Results

    Grid synchronizationSynchronization starts

    Synchronization finishes

    A-phase grid voltageA-phase stator voltage

    Grid synchronization process

  • 17

    Results

    Power controlSpeed response

    Reactive power response

    Rotor current response

    iqr

    idr

  • 18

    Ex. 2: DFIG with WT structure model

    WT models on S4WT wind8 m s, time 8sec11 m s, time 8sec

    //

    Integration of DFIG with WT structure model on S4WT

    Simulation situation: Initial WT speed:

    1.1rad/s (0.74p.u.) Grid synchronization

    starts at 0.8p.u. of generator speed

    Reactive power reference: 0

    Active power control according to wind speed:

  • 19

    Results

    Grid synchronizationSynchronization starts

    Synchronization finishes

    A-phase grid voltageA-phase stator voltage

    Grid synchronization process

  • 20

    Results

    Power control

    Active power

    Reactive power

    Schematic power-speed characteristics

    Speed response

    Power response

  • 21

    Results

    Influence of structural flexibility

    Generator torque

    Speed response

    Blade Rigi. Flex.

    Youngs module (Gpa) 100 30

    Damping (N/m/s) 4.55e-2 4.55e-3

    Shaft Rigi. Flex.

    Bending stiffness (Nm/deg) 86.92 43.46

    Bending damping (kgm2/s) 0 0

    Torsional stiffness (Nm/deg) 55.85 27.93

    Torsional damping (kgm2/s) 7858 785.8

    Other applied elements: Flexible tower Simple gearbox, bedplate

    elements etc.

  • 22

    Conclusions

    Improved control strategies for DFIG Grid synchronization & power control Solution to the difficulty in the configuration of the

    controllers coefficients Integrated FE approach with strong coupling

    instead of weak coupling Unconditional stability, less intricacy Could be less efficient

    Modular models of the generator/control systems for S4WT package (on a general purpose)

    Integrated variable-speed DFIG WT system model analysis and validation

  • 23

    In acknowledgement of DYNAWIND (grant number: 850533)

    funded by Wallonia government, Belgium

    Thank you for your Attention!