control of superheater for electrical steam boiler at...

Download Control of superheater for electrical steam boiler at ...projekter.aau.dk/projekter/files/19042963/finalproject.pdf · Control of superheater for electrical ... Control of superheater

If you can't read please download the document

Upload: lamquynh

Post on 06-Feb-2018

220 views

Category:

Documents


2 download

TRANSCRIPT

  • ControlofsuperheaterforelectricalsteamboileratEsbjergpowerplantPeriod:November1st2009January7th2010Duedate:January7th2010Student:RasmusHolmgaardRasmussenSupervisor:ZhenyuYang

  • 1

    Titlepage

    Title:ControlofsuperheaterforelectricalsteamboileratEsbjergpowerplantDuedate:7.January2010

    Abstract:Thisprojectfocusesonmodelingofanelectricalsuperheater,placedatDONGEnergyspowerplantinEsbjerg.Basedonthemodelacontrollerforthesuperheaterismade.Theentiresystemisthentestedandcomparedtodatafromthephysicalpowerplant.

    ThetestmadetotheobtainedsystemisdonebyusingSimulink.

    Duetothetimeconsiderationssomeofthemodelhasnotbeenlinearised.Howeverithasbeenshownhowtolinearizeamodel.

    Supervisors:ZhenyuYang

    Student:RasmusHolmgaardRasmussen

  • 2

    Preface

    ThisreportiswrittenasdocumentationformyfinalprojectatAalborgUniversityEsbjerg.Thepurposeofthereportistogivethereaderinsightintowhichconsiderationsandprocessesthatwasusedduringtheproject.

    Thereportisdividedintofourparts.Firstananalysisofalltheregulationsloopsontheelectricalsteamboiler.Thepurposeofthisanalysisistofindasingleareawhichneedstobemodeled.Thesecondpartpresentstheworkwithmodeling,systemidentification,controldesignandtesting.Thethirdpartisconclusion.Thefourthandlastpartisappendix.

    InthebackofthereportaCDisenclosedcontainingadigitalcopyofthereportalongwiththeSimulinkprogram.

    DONGEnergyshouldhavethanksforthehelpandhospitalityenjoyedduringthisproject.

    AalborgUniversityEsbjerg,fall2009

    ____________________________RasmusHolmgaardRasmussen

  • 3

    Contents

    1 Analyses.............................................................................................................................4

    1.1 Physicalinfluences....................................................................................................5

    1.2 Regulationspecifications...........................................................................................6

    1.3 Analyticconclusion....................................................................................................7

    2 Systemdescription............................................................................................................8

    3 Modeling...........................................................................................................................9

    3.1 Massflowentering....................................................................................................9

    3.2 Thetemperaturechange.........................................................................................13

    3.3 Massflowleaving....................................................................................................17

    4 Identification...................................................................................................................17

    4.1 Verifyingofvalvemodel..........................................................................................17

    4.2 Thetemperaturechange.........................................................................................20

    4.3 Massflowleaving....................................................................................................22

    5 Simulink...........................................................................................................................22

    6 Controller........................................................................................................................26

    7 Testandverification........................................................................................................27

    8 Conclusion.......................................................................................................................30

    9 Appendix.........................................................................................................................31

    10 References...................................................................................................................32

  • 4

    1 Analyses

    AtthepowerplantinEsbjerg,DONGEnergyhasanelectricalsteamboiler.Thesteamboilerisusedwhenthepowerplantisstarteduporisrunningatlowload.

    Thesteamboilerismadeofanoutertank,innertankandanelectricalsuperheater.Intheinnertanktherearetwotimesthreeelectrodeswhichheatsupthewater.Theoutertankgetswaterfromamaintank.Thiswatercanbefilledintotheinnertankandbackagain.Sincethewaterintheinnertankcangobackintotheoutertank,therehastoberoomforitelsetheboilerwillbeoverflowed.Tomakesurethattheboilerwouldntbeoverflowedtherearetwomaximumlevels,whichthelevelhastostaybelow.Themorewaterintheinnertankthemoreeffectwillbeuseandthereforetheamountofsteamproducedwillincreaseiftheamountofwaterintheinnertankisincreased.Whensteamisproducedapressureinsidetheboilerwillbebuild.Thehigherthepressureisthehigherthesteamtemperatureis.Thepressureintheboilerishigherthanthepressureinthesteampipethatisconnectedtotheboiler,acontrollablevalvemakessurethatthepressuredoesntgettohighortoolowintheboilerandthesteampipe.Whenthepressuredropsthetemperaturewilldropandtheamountofdewinthesteamwillincrease.Thesteamneedstobedrysothesteampipeswonnotgetcloggedbyscaleandmore.Toensuredrysteamandahightemperaturethereisasuperheater.

    Foralloftheabovementionedtohappeninaregularmannersomecontrollershastobedeveloped.

    Thetotalamountofwater:Mustcontrolthetotalamountofwaterinthetwotanksandmakesurethatthereisroomintheoutertankforthewaterintheinnertank.

    Thelevelofwaterintheinnertank.Controlsthelevelintheinnertankbasedontheeffect.Howeverifthepressureistoohighorproperthereisnoneedformoresteamandthereforethelevelintheinnertankhastobeloweredorholdsteady.Sothepressurehastobetakenasafactorinthecontrolforthelevelintheinnertank.

    Temperatureoutofthesuperheater.Athirdcontrollermustcontrolthetemperatureofthesteamcomingoutofthesuperheater.

    Pressureintheboilerandinthesteampipe.Finalacontrollerhastocontrolthevalvethatensuresthatthepressureintheboilerorinthesteampipedoesntgettohighorlow.

  • 5

    OnFigure1alltheregulationthatisneededfortheElectricalsteamboiler,forauxiliarysteamonEsbjergpowerplant,canbeseen.

    Figure1Allregulationfortheelectricalsteamboiler

    TheProjectsgoalsaretherefore:

    Establishadynamicmodelforoneoftheareasthatneedtobecontrolled.

    Testandverifythedynamicmodelinsimilaritytotherealsystem,withdatafromtherealsystem.

    Developacontrollerbasedonthedynamicmodel.

    1.1 PhysicalinfluencesThissectionwillgiveanoverviewofthethingsthatwillhaveaninfluenceonthemodelsandthecontrollers.

    Thetotalamountofwater:Thelevelsinthetwotanksarethemaininfluence.Thepressuredoesnthaveanydirectinfluenceonethelevelsbecausewaterisalmostincompressible.Howeverwhensteamisproducedthelevelwillvirtualraisebecausetherewillbesomeabsorptionofthesteaminthewater.Thehigherpressurethemorethesteamwillbeforced

  • 6

    into/closertothewater.Therearetwodifferentvalveswhichdeliverthewatertotheoutertank,thecharacteristicsofthesetwovalvesmustbeincludedaswell.

    Thelevelofwaterintheinnertank.Againthesteamhasaninfluenceandthepressuredirectonthewatercanbeignored.Themorewaterthereisintheinnertankthemoreeffectwillbeused,whichmeansmoresteamwillbeproduced.Whenthewaterisvaporizedfeedwaterhastoenterthetank,andwhensteamismadethepressurewillraise,whichaspreviousmentionedwillhaveaninfluenceonthelevel.Thepressurehavealsoaninfluenceonthelevelbecauseifthepressureistolowtherehastobeproducedmoresteam,ifthepressureiscorrectthereonlyhavetobeproducedtheamountofsteamthatisused,ifthepressuregetstohighthenthereshouldntbeproducedmoresteam.Onevalvecontrolshowmuchwaterthereiscomingintothetank,anotheriscontrollinghowmuchwaterthereiscomingoutagain.Thetwovalvesareconnectedsowhenoneisopentheotherisclosedandreversed.Ifthetwovalvesare50%openthesameamountiscominginasthereisbeingpouredoutandtherebythelevelwillremainthesame.Thecharacteristicsofthetwovalvesarealsohavinganinfluenceonthismodelandthiscontroller.

    Temperatureoutofthesuperheater.Thesuperheateriselectronic,thereforeitistheeffectthatiscontrol.Whenthetemperaturegetslowerthanthesetpointtheeffecthastoincrease.Whenthetemperaturegettohightheeffectdecreases.Theamountofsteamgoingthroughthesuperheaterhasaninfluenceonhowmucheffecttherewillbeused.Iftheamountofsteamincreaseandtheeffectiskeptsteady,thenthetemperatureonthesteamgoingoutofthesuperheaterwilldecrease.

    Pressureintheboilerandinthesteampipe.Thevalves,whichcreatesthepressuredrop,characteristic,isthemaininfluence.Anotherinfluenceisthepressuredifferenceonthetwosidesofthevalve.

    1.2 Regulationspecifications Thetotalamountofwater:

    Forthisregulationloopthereisonlyonedemand,whichistherehastoberoomforthewaterfromtheinnertankintheoutertank.

    Thelevelofwaterintheinnertank.Somehowthisregulationhastofindalevelbasedontheeffectandpressure.Theeffectismorealimitation;theboilercanatmaxuse30MWanythingbelowisaccepted.Thepressurehastobeunderamaximumandatanidealrunningpressure,whichisat20bar.

  • 7

    Temperatureoutofthesuperheater.Thisloopmustholdthetemperatureonthesteamoutofthesuperheaterat230C.

    Pressureintheboilerandinthesteampipe.Aspreviousmentionedthepressureinsidetheboilermustbeat20bar,besidesholdingthatpressuretheregulationmustalsoholdapressureat11.5barinthesteampipe.

    1.3 AnalyticconclusionBasedontheanalysisofthecontrolloopsIhavedecidedtocontinuewiththesuperheater,becausethesuperheateristheonlyregulationthatdoesnotdirectlydependononeoftheotherregulations.

  • 8

    2 Systemdescription

    Aspreviousmentionedthesuperheatersassignmentistoensuredrysteamandatemperatureat230C.Todothistherearesomeelectrodeswhichwillheatthesteamgoingthroughthesuperheater.Tocontrolthetemperaturetheeffectthroughtheelectrodesisregulated.Themassflowenteringandthemassflowleavinghasabiginfluenceonhowmucheffectisneeded.AsitcanbeseenonFigure2thereisavalvebeforethesuperheater,thisvalveiscontrollingthepressureinthesteamboilerandthepressureafterthevalve.Sothecontrolofthevalvehasnothingtodowiththesuperheater,howevertheopeningofthevalvedetermineshowmuchsteamthatwillenterthesuperheaterandthereforealsohowmuchthatwillleave.FurthermoreitcanbeseeninFigure2thatthemeasurementofthetemperatureisplacedoutsidethesuperheaterthereforeitwilltakesometimetoregisterwhatkindofinfluenceanincreaseoradecreaseintheeffecthasonthetemperature.

    Figure2Systemoverview

    Itisassumedthatthecontrollerforthevalveiscontrollingthepressuresonbothsidesofthevalveperfectly.Itisalsoassumedthatthesteambeforethevalve/comingoutofthesteamboilerissaturatedsteam.

    Heatlosttothesurroundingsisignoredsinceitishardtofindbecausethesystemisisolatedanditisnotpossibletogetthetemperaturebetweenthepipesandtheisolation.

    Thesuperheaterisonlystartedwhenthereisaflowabove1.0kg/s.

  • 9

    3 ModelingInTable1(itisinAppendix)themainsymbolsforthefollowingsectionisexplained.

    Figure3showswhatneedstobemodeledandwhattheinputsandoutputsare.Itisnotnecessarytomodeltheeffectandthestarttemperature,sinceitistheeffectwhichhastobecontrolledandthestarttemperatureisseenasaconstant.

    3.1 MassflowenteringTofindthemassflowenteringthevalvebeforethesuperheaterhastobemodel.Themassflowenteringcanberewrittenas:

    (3.1)Where isthedensityonthesteamentering.

    Tofind ,whichistheenergyinthemass,theBernoulliprincipleisused.

    TheBernoulliprincipleisasimplificationofBernoullisequation,whichstates,thatthesumofallformsofenergyinafluidflowingalonganenclosedpath(astreamline)isthesameatanytwopointsofthatpath.Influidflowwithnoviscosity,andtherefore,oneinwhichapressuredifferenceistheonlyacceleratingforce;theprincipleisequivalenttoNewtonslawsofmotion.TheBernoulliequationcanbewrittenas:

    (3.2)

    isthevelocity, isthegravitationalforceandwhere

    (3.3)

    isthepressureand isthedensity.

    Theninsertingthis

    (3.4)

    Since isthefluidthermodynamicenergyperunitmassandisthereforeaconstant,itcanbemovetotherightsideoftheequation,whichthereforebecomes:

    TemperatureTemperature

    change

    Massflowentering

    Massflowleaving

    Effect Starttemperature

    Figure3Overviewofmodels

  • 10

    (3.5)

    Becausethemassconsistsofsteam,whichismostgas,thegravitationalforce( )isverysmallandcanbeneglected.Theequationnowis:

    (3.6)

    Figure4Flowthroughthevalve

    Ifthisequationisusedintwopoints(1and2)asshowninFigure4,itwilldescribetheflowthroughthevalveandwillleadtothefollowing:

    (3.7)

    12

    2 (3.8)

    Therebytherelationshipbetweenthevelocitiesandthepressuresdifferences,betweenthesteampipebeforethevalveandthesteampipeafterthevalve/beforethesuperheater.Howeverthevelocitiesarenotknownandtheequationisonlyconsideringtheenergybalanceregardingthevalve.

    Tofindthevelocitiesthecrosssectionalareaofthevalvehastobetakenintoaccount.

  • 11

    Figure5illustrationoftheopeningofthevalve

    InFigure5itcanbeseenthattheopeningcreatesseveralcrosssectionalareasA0,A1andA2.

    ThedifferencebetweenA0andA2iscalledvenacontractaandwillbereferredtoasthecontractioncoefficient.Thecontractioncoefficienthastobefound,whichcanbedonebythefollowing:

    , (3.9)

    Tofindingthevelocitiesthroughthevalve,themassbalancewillbeused.

    (3.10)where

    (3.11)

    thereforeequation(3.10)becomes:

    (3.12)Sincethemassgoingintothevalveisequaltothemassgoingoutofthevalvetheycanbesetupasfollowing:

    (3.13)

    (3.14)Thenisolating

    AndinsertingA2fromequation(3.9)

    (3.15)

  • 12

    Nowthat isfounditcanbeinsertedintotheequationattainedfromusingtheBernoulliprinciple,equation(3.8),whichthengives:

    2

    Isolating

    2 1

    2

    1

    (3.16)

    Thevelocityoutofthevalveandintothesteampipeisobtained,givingarelationshipbetweentheorifice/openingofthevalveandthevelocity .

    Nowusingequation(3.16)onequation(3.11)asitisassumedthatequation(3.13)isvalid.

    2

    1

    OnceagaintheexpressionforA2isinserted.

    (3.17)

    Equation(3.17)istheninsertedinto(3.1)

    (3.18)

  • 13

    Where isthedensityofthesteambeforethevalve, isthedensityofthesteamafterthevalve/beforethesuperheater, isthepressurebeforethevalve, isthepressureafterthevalve.

    Therebythemassflowintothesuperheaterisfound.

    3.2 ThetemperaturechangeMassbalance:

    (3.19)

    isthemassflowofthesteamthatleavesthesuperheater, isthevolumeofthesteaminsidethesuperheaterandwherethedensitycanbewrittenas:

    . (3.20)

    Energybalance:

    Itisassumedthatthepressureafterthevalveisconstantthereforethechanceintheinnerenergycanbewritteninasthefollowing:

    (3.21)

    (3.22)

    Furthermoretheenergybalanceisgivenby:

    (3.23)

    where

  • 14

    (3.24)Insertingthisintoequation(3.23)

    Sincetheelectricaleffectismeasuredinwatts,whichis theenergyisequaltotheeffect.

    isthatenergythatisusedtoheatupthesteamenteringthesuperheatertothetemperatureinsidethesuperheater.

    (3.25)where isthemass,butthemassflowforthesteamenteringisusedinstead, isthe

    specificheatcapacityand isthetemperaturedifferencefromstarttotheend.

    canbefoundbylookingatthesteaminsidethesuperheaterandthesteamentering

    isfoundbyrearrangingtheidealgasformula

    Thereforeequation(3.25)becomes:

  • 15

    Insertingthisintoequation(3.23)

    Theninserting fromthemassbalance,equation(3.19)

    (3.26)

    Combiningthetwoformulasfromtheenergybalance,equations(3.22)and(3.26).

    Thespecificenthalpyonthesteamleaving( )canbefoundbythefollowingformula:

  • 16

    Inserting gives:

    Sincetheflowismeasuredinkg/sitisamassflowwhichmeans and.

    where

    so

  • 17

    whichmeans

    (3.27)

    3.3 MassflowleavingTherehasalreadybeenmadanequationforthemassflowleavingthesuperheaterinequation(3.19),whichis:

    4 Identification

    4.1 VerifyingofvalvemodelThemaximumdiameteroftheorificeis111.125mm

    Iftheorificeissharpatypicalvalueofcoefficientofcontractionis0.64.

    111.1252 9698.6978 0.00009699

  • 18

    Thenthemaximumareaofthevalveorificeis0.00009699 .0.00009699 valve opening %

    Thediameterofthesteampipeis15cm,thereforetheareaofthesteampipeis:

    1502 17671.4587 0.0001767

    0.6420bar 2000kPa

    11.5bar 1150kPa

    273.15

    2000kPa 0.018214C 273.15 8.314472

    360004050,40

    8,888 3

    273.15

    1150kPa 0.018188C 273.15 8.314472

    207003834,22

    5,3988 3

    0 2 1

    122

    1 1 01 1

    2

    1150kPa 0.64 0.00009699 valve opening %

    2 2000kPa

    8.8881150kPa

    5.3988

    1 8.888 0.64 0.00009699 valve opening %8.888 0.0001767

    2

  • 19

    71.38464 valve opening % 2 225022.5023 213010.2986

    1 0.00055170.001571 valve opening %2

    71.38464 valve opening % 154.99811 0.3512 valve opening % 2

    Ifthevalveis100%open

    71.38464 100% 154.99811 0.35098 100% 2

    71.38464 154,99810.8766585671.38464 176.8056

    12621.2006 11.8162

    Inthedatasheetthemaximumflowoutofthevalvecanbe43200 whichis12 .Thereforethemodelisassumedtobecorrect.

    Howevertheequation(3.18)isnonlinearandthereforeitislinearisedusingTaylor,whichgives:

    273915832783988861321301338457012475880078570760549798248448000 valve opening %

    11.0634 valve opening % (4.1)Figure6showsaplotofequation(3.18),theblue,andaplotofthelinearisedequation(4.1),thered.Itcanbeseenthataround0.5or50%adeviationisstarting,aftersomecalculation

    thelinearisedequationissatisfyingfrom0to52%wherethedeviationis0.0984 .

  • 20

    4.2 ThetemperaturechangeItisassumedthattheinternalenergybeforethevalveisthesameafterthevalve.Thereforethe canbefound,asitisassumedthatthesteambeforethevalveissaturatedsteamataconstantpressureon20bar.

    2599.5

    8.314472

    18 0.018

    2590 thisisfoundinasteamtable.

    Thevolumeofthesteam(Vs)isassumedtobethesameasthevolumeofthesuperheater,becausetherehasbeenrunningsteamthroughthesuperheatersometimebeforethesuperheaterisstarted.Thevolumeofthesuperheateris404literswhichis0.404m3.

    Figure6Relationshipbetweenvalveopeningandmass flow

  • 21

    iscalculatedbytheformulafromthemassbalancewhereitisassumedthatTslhis230Csincethisisthetemperaturethatisthesetpoint.

    11.5 whichisthepressureinthesuperheater.

    11.5 0.018230 273.15 8.314472

    0.2074183.427 4,95 10

    273.15where

    issettobeaconstantat188C.Thevalueof isobtainedfromthetemperaturemeasurementafterthesuperheaterjustbeforethesuperheateristurnedon.

    188C 273.15 461.15 Whenthesevaluesareinsertedintoequation(3.27)thefollowingisobtained:

    2599.5 0.018 8.314472 461.15 0.404m 4,95 10 2590

    2599.5 0.018 8.314472 461.15 0.404m 4,95 10 2590

    0.404m 4,95 10 2590

    2590

    11.5 0.4040.018 8.314472 230

    230

    11.5 0.4040.018 8.314472 230

    188

    0.404m 4,95 10 2590

    Itcannowbeseenthatthetemperaturechange isafunctionofthemassflowentering,

    themassflowleavingandoftheeffect.

  • 22

    4.3 Massflowleaving

    canbewrittenas:

    273.15

    where

    . (4.2)

    Adifferentialfunctioncanberewrittenasthefollowing:

    Thereforeequation(4.2)becomes

    273.15

    8.314472 11.5 0.018

    188 273.15 8.314472

    1.7211188 2.2711 10

    5 SimulinkTheequationsobtainedhavebeenwrittenintotheprogramSimulink,whichisaprograminMatlab.

    InFigure7themodelofthesuperheaterinSimulinkcanbeseen.

  • 23

    Figure7Simulink

    RunningtheSimulinkprogramwiththeValveopeningon100%thefollowinggraphsisobtained:

    Figure8Temperaturewiththevalve100%open

  • 24

    Figure9Effectusedwhenthevalveis100%open

    Figure10MassFlowwhenthevalveis100%open

    Itcanbeseenthattheeffectisalmost1500kWandthemassflowforbothentering(theyellow)andleaving(thepurple)isabitabove11kg/s.Ittakesalmost4000secondstogetthetemperatureat230C.

    Thenrunningtheprogramwhitthevalveopeningat10%givesthefollowinggraphs:

  • 25

    Figure11Temperaturewiththevalve10%open Figure12Effectwiththevalve10%open

    Figure13Massflowwiththevalve10%open

    Nowthemassflowsandtheeffecthasnowgonedowntoaround1.1kg/sand150kW.Thetimeforthetemperaturetogetto230Cisnowaround1000seconds.

    Fromthesetworunsoftheprogramiscanbeseenthatthemoresteamthatneedstobeheatedthemoreeffectwillbeused,whichwasexpected.

  • 26

    6 ControllerThecontrollerwasmanualtunedbysettingallvaluestozeroandthenincreasingthegainKpuntiltheoutputwasstartingtooscillate,thesettingittothehalfofthatvalue.NexttheKivaluewasincreaseduntilanyoffsetiscorrectinsufficienttimefortheprocess.ItwasnotnecessarytouseaKdvalue.ThereforethecontrollerisaPIcontroller,withthefollowingvalues:

    Kp=1000

    Ki=15

  • 27

    7 TestandverificationTherehasmadetwotypesoftests.Onewheretheeffectwaschangedandtheflowwaskeptstabiletoseewhattheeffectchangewoulddotothetemperature.

    Theeffectwaschanged5%,from48%to43%whichis720kWto645kW,theflowwasat1.5kg/sthetemperaturewentfrom230Cto220Conthemeasurementatthepowerplant.Themeasurementsfromthepowerplanthavethenbeenputintoequation(3.26)whichgaveatemperaturechange:

    720kW

    91.7138

    645kW

    82.1603

    Thismeansthatthetemperaturewith720kWwillbe9.5535Chigherthanthetemperaturewith645kW.Themeasurementatthepowerplantcannotmeasurewithdecimalsandthereforethetestisseenasasuccessandthemodelforthetemperaturechangeiscorrect.

    Thesametestwasdonewithonly1%changeintheeffectthisgaveattemperaturechangeon2Candifthedataisputintotheequationitgivesatemperaturechangeon1.9107againthisisasuccess.

    Theothertestwastokeeptheeffect,thetemperatureandthevalveopeningconstantbecausewhenthetemperatureisnotchangingthemassflowleavingisthesameasthemassflowentering.Thiscanbeseeninequation(3.19):

    0

    0

    Theflowmeasuredwas1.5kg/swithavalveopeningat14%

    Thentheopeningofthevalvewasputintothelinearisedequationforthevalveequation(4.1)whichgave:

  • 28

    1.5489Themeasurementatthepowerplantcannotshowmorethanonedecimal.Thetestshowedthatthemodelofthevalveiscorrect.

    Atthepowerplanttheeffectwasstabilearound180kWwhenthevalvewas13%open.When13%valveopeningisputintotheSimulinkprogramthegraphsshowninFigure14andFigure15isobtained.

    Figure14Temperaturewithvalveopeningat13%

  • 29

    Figure15Effectwithvalveopeningat13%

    ItcanbeseenthattheeffectusedintheSimulinkprogramisalittlehigherthanitwasatthepowerplant,butitisacceptably.

  • 30

    8 ConclusionIngeneralitcanbeconcludedthatacontrollerfortheelectricalsuperheateratEsbjergpowerplanthasbeenmade.Thegoalsoftheprojecthasbeenachieved,adynamicmodelhasbeenmade,acontrollerforthatmodelhasbeenfoundbymanualtuninganddatafromthepowerplanthasbeeninsertedintothemodelwithsuccess.

    Notallmodelshasbeenlinearisedthisisduetothetimeconsideration,butthemodelforthevalvehasbeenusedtoshownhowamodelcouldbelinearised.Sincetheentiresystemisnotlinearthecontrollercannotbefound/madeinatheoreticalway,likerootlocusandmore.

    ThereweresomedeviationbetweenthemeasurementatthepowerplantandtheeffectusedinSimulink.Thiscouldbeduetosomevariationsinmycalculations,forinstancethedensityofthesteamcouldbecalculatedtobealittlebitofwhatitreallyis,whichwillhaveabiginfluenceonthetemperaturechange.Anotherthingthatcouldgivedeviations,isthatsomeofthevariableshasbeenseenasconstantsforinstancethetemperaturethatthereisinsidethesuperheater.Athirdthingisthatatthepowerplantthemeasurementisnotcorrect,whenthesuperheaterisnotstartedoritdoesnotusedanyeffectthemeasurementshowsthat6kWisused.Ithasnotbeenpossibletotestifthis6kWisconstantorlinear.

    Thecontrollermadeinthisprojectandthecontrolleratthepowerplantcannotbecomparedtoeachotherbecausethecontrolleratthepowerplanthasanintegrationtimewhereasthecontrollerinthisprojecthasanintegrationgain.

    ThemodelsmadearenotfarfromtherealsuperheatersincetheeffectusedinboththeSimulinkprogramandatthepowerplantisalmostthesame.Whenlookingatthemassflowsthemodelsisalmostthesameasatthepowerplant.

  • 31

    9 AppendixThetablebelowshowsthemainsymbolsofthemodelingpartofthereport.

    Table1NomenclatureforMassbalanceandenergybalance.

    Symbol Unit Meaning venacontracta

    Specificheatcapacityofsteamatconstantpressure Theeffectthatisputintothesuperheater1 1 Massflowintothesuperheater

    Massflowoutofthesuperheater

    Specificenthalpyofthesteamentering

    Specificenthalpyofthesteamleaving

    Molarmassofgasinsteam

    Massofsteam

    Massflowofsteamenteringthesuperheater

    Massflowofsteamleavingthesuperheater

    Pressureinthesuperheater

    Densityofsteamenteringthesuperheater

    Densityofsteamleavingthesuperheater

    Idealgasconstant Internalenergyofsteam

    Thetemperaturedifferencefromstarttotheend Temperatureofsteamleaving Thisisaconstantwhereitisassumedthatthetemperatureis

    230C.Itisusedtocalculated % Percentthevalvebeforethesuperheaterisopen Volumeofthesteaminsidethesuperheater

  • 32

    10 References

    Books

    1. FeedbackControlofDynamicSystems,5thedition;GeneF.Franklin,J.D.Powell,A.EmamiNaeini

    2. Reguleringsteknik,4thedition;OleJannerup,PaulHaaseSrensen;ISBN:8750209825

    3. OptimizationofChemicalProcesses;ThomasF.Edgar,David.M.Himmelblau

    4. IntroductiontoChemicalEngineeringThermodynamiics,SixthEdition,J.M.Smith/H.C.VanNess/M.M.Abbott,ISBN:0071189572

    Webpages

    1. http://www.spiraxsarco.com/resources/steamtables/saturatedsteam.asp

    2. http://www.lru.dk/nvg/pdf/Opslag19b.pdf

    3. http://en.wikipedia.org/wiki/Specific_heat_capacity#Heat_capacity

    4. http://en.wikipedia.org/wiki/Vena_contracta

    Allwebpageshavebeenaccessedthe06thJanuary2010.