coupled quantum dots: a laboratory for studying quantum impurity physics rok Žitko sissa, trieste,...

42
Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Upload: clarissa-wilkins

Post on 13-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Coupled quantum dots:a laboratory for studying quantum impurity physics

Rok Žitko

SISSA, Trieste, 30. 10. 2007

Jožef Stefan Institute, Ljubljana, Slovenia

Page 2: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Co-workers

• Quantum transport theory– prof. Janez Bonča1,2

– prof. Anton Ramšak1,2

– Tomaž Rejec1,2

– Jernej Mravlje1

• Experimental surface science and STM

– prof. Albert Prodan1

– prof. Igor Muševič1,2

– Erik Zupanič1

– Herman van Midden1

– Ivan Kvasić1

1 Jožef Stefan Institute, Ljubljana, Slovenia

2 Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia

Page 3: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Transport in nanostructures

Cu/Cu(111)IJS, 2007

Page 4: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Outline

• Kondo physics in quantum dots• Coupled quantum dots as impurity clusters:

– side-coupled double QD and two-stage Kondo effect

– N parallel QDs (N=1...5, one channel) and quantum phase transitions

– N serial QDs (N=1…4, two channels) and non-Fermi liquid physics

• Low-temperature STM: manipulations and single-atom spectroscopy

Page 5: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Tools: SNEG and NRG Ljubljana

Add-on package for the computer algebra system Mathematica for performing calculations involving non-commuting operators

Efficient general purpose numerical renormalization group code

• flexible and adaptable

• highly optimized (partially parallelized)

• easy to use

Both are freely available under the GPL licence:

http://nrgljubljana.ijs.si/

Page 6: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

W. G. van der Wiel, S. de Franceschi, T. Fujisawa, J. M. Elzerman, S. Tarucha, L. P. Kouwenhoven, Science 289, 2105 (2000)

Conduction as a function of gate voltage for decreasing temperature

Kondo effect in quantum dots

Page 7: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Scattering theory

“Landauer formula”

See, for example, M. Pustilnik, L. I. Glazman, PRL 87, 216601 (2001).

Page 8: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Keldysh approach

One impurity:

Y. Meir, N. S. Wingreen. PRL 68, 2512 (1992).

Page 9: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Conductance of a quantum dot (SIAM)

Computed using NRG.

Page 10: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Systems of coupled quantum dots

L. Gaudreau, S. A. Studenikin, A. S. Sachrajda, P. Zawadzki, A. Kam,J. Lapointe, M. Korkusinski, and P. Hawrylak,Phys. Rev. Lett. 97, 036807 (2006).

M. Korkusinski, I. P. Gimenez, P. Hawrylak,L. Gaudreau, S. A. Studenikin, A. S. Sachrajda,Phys. Rev. B 75, 115301 (2007).

triple-dot device

Page 11: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Systems of coupled quantum dots and “exotic” types of the Kondo effect

-2 -1 A 1 2

B

Page 12: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Two-stage Kondo effect

R. Žitko, J. Bonča: Enhanced conductance through side-coupled double quantum dots, Phys. Rev. B 73, 035332 (2006).

-2 -1 A 1 2

B

See also: P. S. Cornaglia, D. R. Grempel, PRB 71, 075305 (2005)M. Vojta, R. Bulla, W. Hofstetter, PRB 65, 140405(R) (2002).

Page 13: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

For J<TK, Kondo screening occurs in two steps.

TK(1)

TK(2)

Page 14: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Spin-charge separation Simultaneous spin and charge Kondo effects

R. Žitko, J. Bonča: Spin-charge separation and simultaneous spin and charge Kondo effect, Phys. Rev. B 74, 224411 (2006).

Page 15: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia
Page 16: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

A. Ramšak, J. Mravlje, R. Žitko, J. Bonča:Spin qubits in double quantum dots - entanglement versus the Kondo effectPhys. Rev. B 74, 241305(R) (2006)

The inter-impurity spin entanglement vs. the Kondo effect

Page 17: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Parallel quantum dots and the N-impurity Anderson model

R. Žitko, J. Bonča: Multi-impurity Anderson model for quantum dots coupled in parallel, Phys. Rev. B 74, 045312 (2006)

Vk = eikL vkVk≡V (L0)

Page 18: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Effective single impurity S=N/2 Kondo model

The RKKY interaction is ferromagnetic, JRKKY>0:

S is the collective S=N/2 spin operator of the coupled impurities,

S=P(Si)P

Effective model (T<JRKKY):

JRKKY0.62 U(0JK)2 4th order perturbation in Vk

Page 19: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Free orbital regime

(FO)

Local moment regime

(LM)

Ferro-magnetically frozen (FF)

Strong-coupling

regime (SC)

o o

Page 20: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

The spin-N/2 Kondo effect

Full line: NRG Symbols: Bethe Ansatz

Page 21: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Discontinuities in G quantum phase transitions

Page 22: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Chrage fluctuations vs. ferromagnetic alignment

first-order transition

Page 23: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Kondo model Kondo model + potential scattering

Page 24: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

S=1 Kondo model

S=1 Kondo model + potential scattering

S=1/2 Kondo model + strong potential scattering

Page 25: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Gate-voltage controlled spin filtering

Page 26: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Local occupancy variation

Occupancy switching: Γ-dependent coupling vs. charging energy U

Page 27: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Spectral functions - underscreening

See also: A. Posazhennikova, P. Coleman, PRL 94, 036802 (2005).

Page 28: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Kosterlitz-Thouless transition1=+, 2=-

S=1 KondoS=1/2 Kondo

Page 29: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Triple quantum dot

R. Žitko, J. Bonča, A. Ramšak, T. Rejec: Kondo effect in triple quantum dot, Phys. Rev. B 73, 153307 (2006)

R. Žitko, J. Bonča: Fermi-liquid versus non-Fermi-liquid behavior in triple quantum dots, Phys. Rev. Lett. 98, 047203 (2007)

Page 30: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

J t

Good agreement between 3 methods:

• CPMC – constrained path quantum Monte CarloZhang, Carlson and Gubernatis, PRL 74, 3652 (1995); PRB Zhang, Carlson and Gubernatis, PRL 74, 3652 (1995); PRB 5959, 12788 (1999)., 12788 (1999).

• GS – projection/variational method.

Schonhammer, Z. Phys. B Schonhammer, Z. Phys. B 2121, 389 (1975); PRB , 389 (1975); PRB 1313, 4336 (1976), Gunnarson and , 4336 (1976), Gunnarson and Schonhammer, PRB Schonhammer, PRB 3131, 4185 (1985), Rejec and Ram, 4185 (1985), Rejec and Ramššak, PRB 68, 035342 (2003).ak, PRB 68, 035342 (2003).

• NRG – numerical renormalization group

Krishna-murthy, Wilkins and Wilson, PRB Krishna-murthy, Wilkins and Wilson, PRB 2121, 1003 (1980); Costi, Hewson and Zlati, 1003 (1980); Costi, Hewson and Zlatićć, J. , J. Phys.: Condens. Matter Phys.: Condens. Matter 66, 2519, (1994)., 2519, (1994).

Page 31: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Non-Fermi liquid behavior of

the two-channel Kondo model type

Page 32: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Two-channel Kondo model

Experimental observation: R. M. Potok et al., Nature 446, 167 (2007).

Page 33: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

• Gside~G0/2, Gserial~0

non-Fermi liquid

• Gserial=G0

Fermi liquid

See also: G. Zaránd et al. PRL 97, 166802 (2006).

TK(1)

TK(2)

T

NFL

Page 34: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

CFT prediction: 0, 1/8, 1/2, 5/8, 1, 1+1/8, ...

Page 35: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Conductance: quantum dots in series

N=2 N=3 N=4

See also: A. Oguri, Y. Nisikawa and A. C. Hewson, J. Phys. Soc. Japan, 74 2554 (2005).Y. Nisikawa, A. Oguri. Phys. Rev. B 73, 125108 (2006).

Page 36: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Low-temperature STM

(2004)

Page 37: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Besocke beetle

Working temperature: 5.9 K

Gerhard Meyer (FU Berlin, now at IBM Research Division, Rüschlikon)Stefan Fölsch (Paul Drude Institute, Berlin)SPS-Createc GmbH

Page 38: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

High mechanical stability!

Page 39: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Erik Zupanič, IJS, July 2007. Cu/Cu(111) at T=10 K.

Page 40: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Scanning tunneling spectroscopy: we measure local density of states, i.e. spectral functions.

STM tip

metal surface

Fano resonance in STS spectra due to Kondo effect in Co ions on various surfaces.

[P. Wahl et al., Phys. Rev. Lett., 93 176603, 2004]

Page 41: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Two-impurity Kondo problem on

surfaces

P. Wahl et al., Phys. Rev. Lett. 98,

056601 (2007).

Page 42: Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia

Conclusions and outlook• Impurity clusters can be systematically studied with

ease using flexible NRG codes• Very rich physics: various Kondo regimes, quantum

phase transitions, etc. But to what extent can these effects be experimentally observed?

• Towards more realistic models: better description of inter-dot interactions, role of QD shape and distances.

• Surface Kondo effect in clusters of two or three magnetic adatoms: – low-temperature high-field experimental studies– DFT + NRG study