cruz - mena completo

683
FISIOLOGÍA Y CLÍNICA

Upload: nico-stefano-benedetti

Post on 15-Sep-2015

329 views

Category:

Documents


32 download

DESCRIPTION

medicina libro completo

TRANSCRIPT

  • FISIOLOGA Y CLNICA

  • 2

    APARATO RESPIRATORIO: FISIOLOGA Y CLNICA

    El presente texto de pregrado tuvo 4 ediciones como libro impreso desde 1982 al 2004. Con el fin

    de ampliar al mximo su accesibilidad y establecer la posibilidad de una constante

    perfeccionamiento y reactualizacin se decidi en el ao 2008 publicar su 5 edicin en las pginas

    de Internet de la Escuela de Medicina de Universidad Catlica. Para el cumplimiento de nuestros

    objetivos es muy importante la interaccin con nuestros usuarios a quienes agradeceremos enviar

    sus opiniones, observaciones y sugerencias al e-mail cuyo acceso est en el icono de abajo a la

    derecha.

    La incorporacin a la red ha permitido adems agregar vnculos o links que se anotan al final de

    diversos captulos que tienen por objeto facilitar el acceso a informacin y material en dos niveles:

    Vnculos programticos que complementan los programas de los cursos de pregrado y, por lo

    tanto, son necesarios para la formacin en esta etapa.

    Vnculos extraprogramaticos: que dan acceso a informacin que excede las exigencias

    programadas de los cursos , pero son tiles para los estudiantes que estn involucrados en

    trabajos de revisin o de investigacin o que, como internos, necesiten mayor informacin en

    relacin a casos clnicos o estn formacin de post-grado.

    E. Cruz Mena

    R. Moreno Bolton

    Noviembre 2007

  • 3

    NDICE

    Introduccin: Orientacin del texto. 8

    Edgardo Cruz M.

    PARTE I: MORFOLOGIA BSICA 10

    Captulo 1. Bases morfolgicas de la funcin respiratoria 11

    Edgardo Cruz M.

    PARTE II: FISIOLOGA RESPIRATORIA 17

    Captulo 2 Mecnica ventilatoria 21

    Carmen Lisboa B.

    Captulo 3 Ventilacin e intercambio gaseoso 50

    Orlando Daz P.

    Captulo 4 Circulacin pulmonar 63

    Orlando Daz P.

    Captulo 5 Transporte de gases 72

    Gisela Borzone T.

    Captulo 6 Equilibrio cido-base 79

    Rodrigo Moreno B.

    Captulo 7 Control de la ventilacin 85

    Gisela Borzone T.-Edgardo Cruz M.

    Captulo 8 Fisiologa del espacio pleural 95

    Edgardo Cruz M.

    Anexo Evaluacin Formativa de Fisiologa Respiratoria

    PARTE III: FISIOPATOLOGA RESPIRATORIA 99

    Captulo 9 Alteraciones de la ventilacin alveolar 100

    Edgardo Cruz M.

    Captulo 10 Trastornos de relacin V/Q 107

    Orlando Daz P.

    Captulo 11 Hipoxemia e hipoxia 117

    Gisela Borzone T.

    Captulo 12 Hipercapnia 124

    Edgardo Cruz M.

    Captulo 13 Alteraciones del equilibrio cido-base 129

    Rodrigo Moreno B.

    Captulo 14 Patrones funcionales en enfermedades pulmonares 141

    Rodrigo Moreno B.

    Captulo 15 Alteracin de la funcin de los msculos respiratorios 154

    Carmen Lisboa B.

    Captulo 16 Anomalas de la regulacin de la ventilacin 162

    Isabel Leiva R.

  • 4

    Captulo 17 Mecanismos de defensa del pulmn 165

    Rodrigo Moreno B.

    PARTE IV: SEMIOLOGA RESPIRATORIA. 174

    Captulo 18 Anamnesis 182

    Edgardo Cruz M.

    Captulo 19 Examen fsico 204

    Edgardo Cruz M.

    Captulo 20 Espirometra 232

    Rodrigo Moreno B.

    Captulo 21 Gases arteriales y equilibrio cido base 241

    Rodrigo Moreno B.

    Captulo 22 Estudio radiolgico 247

    Edgardo Cruz M. - Rodrigo Moreno B.

    Captulo 23 Exmenes histopatolgicos 266

    Sergio Gonzles B. - Edgardo Cruz M.

    Captulo 24 Endoscopa 269

    Julio Pertuz R. Rodrigo Aparicio.

    Captulo 25 Sndromes respiratorios 274

    Edgardo Cruz M. - Rodrigo Moreno B

    PARTE V: ENFERMEDADES RESPIRATORIAS 280

    Introduccin 281

    Edgardo Cruz M.

    Seccion 1. Agentes etiolgicos inhalatorios

    Captulo 26 Contaminacin ambiental 282

    Julio Pertuz R.

    Captulo 27 Tabaquismo 287

    Edgardo Cruz M.

    Seccion 2. Enfermedades infecciosas

    Captulo 28 Infecciones de las vas areas 292

    Rodrigo Moreno B. -Fernando Saldias P.

    Captulo 29 Aspectos generales de la neumona 306

    Rodrigo Moreno B. -Fernando Saldias P.

    Captulo 30 Neumonas por agentes especficos 331

    Rodrigo Moreno B. -Fernando Saldias P.

    Captulo 31 Tuberculosis 355

    Rodrigo Moreno B. -Fernando Saldias P.

    Captulo 32 Neumonas por otros agentes biolgicos 393

    Rodrigo Moreno B. -Fernando Saldias P.

  • 5

    Seccion 3. Enfermedades bronquiales hipersecretoras 403

    Captulo 33 Bronquitis crnica 403

    Edgardo Cruz M.

    Captulo 34 Bronquiectasias 406

    Gisela Borzone T-Edgardo Cruz M.

    Seccion 4. Enfermedades obstructivas

    Captulo 35 Asma bronquial 413

    Rodrigo Moreno B.

    Captulo 36 Enfermedad pulmonar obstructiva crnica 443

    Carmen Lisboa B.- Edgardo Cruz M.

    Seccion 5. Neoplasias

    Captulo 37 Cncer bronquial 465

    Julio Pertuz - R. Rodrigo Aparicio R. - Isabel Leiva R. - Jos Miguel Clavero

    Captulo 38 Otros tumores pulmonares 481

    Isabel Leiva R. - Edgardo Cruz M.

    Seccion 6. Enfermedades infiltrativas difusas

    Captulo 39 Aspectos generales de las enfermedades intersticiales difusas 484

    Edgardo Cruz M.

    Captulo 40 Enfermedades intersticiales de causa desconocida 492

    Edgardo Cruz M.

    Captulo 41 Enfermedades intersticiales de causa conocida 496

    Edgardo Cruz M.

    Seccion 7. Enfermedades ocupacionales

    Captulo 42 Aspectos generales de las enfermedades ocupacionales 505

    Edgardo Cruz M.

    Captulo 43 Alteraciones por inhalacin de gases 508

    Edgardo Cruz M.

    Captulo 44 Neumoconiosis 511

    Edgardo Cruz M.

    Seccion 8. Enfermedades circulatorias

    Captulo 45 Embolia pulmonar 515

    Orlando Daz P.

    Captulo 46 Edema pulmonar 526

    Orlando Daz P.

    Captulo 47 Hipertensin pulmonar 532

    Orlando Daz P.

    Captulo 48 Corazn pulmonar crnico 537

    Orlando Daz P.

  • 6

    Seccion 9. Enfermedades de la pleura 538

    Captulo 49 Derrame pleural 539

    Edgardo Cruz M.

    Captulo 50 Enfermedades con derrame pleural 556

    Edgardo Cruz M.

    Captulo 51 Neumotrax 566

    Rodrigo Aparicio - R. Edgardo Cruz M. - Jos Miguel Clavero

    Seccion 10. Enfermedades del mediastino 571

    Captulo 52 Afecciones mediastnicas 572

    Rodrigo Aparicio R.

    Seccion 11. Traumatismos toracicos

    Captulo 53 Aspectos generales del traumatismo torcico 576

    Rodrigo Aparicio R. - - Jos Miguel Clavero

    Seccion 12. Insuficiencia respiratoria

    Captulo 54 Aspectos generales de la insuficiencia respiratoria 584

    Orlando Daz P.

    Captulo 55 Sndrome de distress respiratorio agudo 594

    Orlando Daz P.

    Captulo 56 Paro cardiorrespiratorio agudo 604

    Orlando Daz P. -Rodrigo Moreno B.

    Seccion 13. Trastornos respiratorios durante el sueo

    Captulo 57 Sndrome de apnea obstructiva del sueo 613

    Jorge Jorquera

    PARTE VI: RECURSO TERAPEUTICOS ESPECIFICOS 620

    Captulo 58 A. Tratamiento farmacolgico de la obstruccin bronquial 621

    Orlando Daz P.

    B. Terapia con aerosoles 627

    Rodrigo Moreno B.

    Captulo 59 Oxigenoterapia 631

    Orlando Daz P.

    Captulo 60 Ventilacin mecnica 637

    Orlando Daz P.

  • 7

    PARTE VII: PROBLEMAS CLNICOS. 642

    Captulo 61 El paciente que consulta por tos crnica 644

    Edgardo Cruz M.

    Captulo 62 Hemoptisis 647

    Edgardo Cruz M.

    Captulo 63 Conducta ante la disnea 649

    Edgardo Cruz M.

    Captulo 64 Enfrentamiento clnico de la neumona 652

    Rodrigo Moreno B. -Fernando Saldias P.

    Captulo 65 Obstruccin bronquial difusa: diagnstico diferencial 667

    Rodrigo Moreno B.

    Captulo 66 Ndulo pulmonar solitario 672

    Julio Pertuz R.

    Captulo 67 Proceso diagnostico en el derrame pleural 675

    Edgardo Cruz M.

    ABREVIATURAS

    682

  • 8

    INTRODUCCIN

    CARACTERISTICAS Y USO DE ESTE TEXTO

    El presente texto tiene como objetivo entregar a los alumnos de pregrado las bases necesarias

    para que puedan enfrentar el diagnstico, tratamiento y profilaxis de los problemas respiratorios

    de mayor frecuencia que enfrentarn tanto durante sus aos de estudio como en su posterior

    ejercicio clnico general.

    La medicina tiene como objetivo incrementar, mantener y recuperar la salud de las personas y

    para ello recurre a principios, informacin y tcnicas derivados de muy diversas fuentes. Para ello

    depende crticamente del dominio del mtodo cientfico y de los conocimientos que aportan las

    ciencias biomdicas, pero necesita el complemento del llamado arte de la medicina que es el

    conjunto de motivaciones, actitudes y habilidades que, si bien son innatas en algunas personas,

    pueden y deben aprenderse.

    En concordancia con esta visin, en este libro no se aborda en profundidad las ciencias bsicas, a

    pesar de su importancia intrnseca, sino que se selecciona aquellos conceptos y contenidos

    necesarios para la comprensin de la salud y la enfermedad, teniendo como objetivo final la

    calidad de la atencin mdica. Si bien el texto est orientado al pregrado de medicina, puede

    tambin ser til para el estudiante de otras profesiones de la salud y para el clnico general,

    denominacin que usaremos para referirnos al mdico que, no siendo especialista respiratorio, es

    consultado por un portador de una enfermedad de esta rea.

    El ritmo de crecimiento de la informacin cientfica es tal que ya nadie pone en duda la afirmacin

    de D. Tosteson, decano de Harvard, que en una escuela de medicina no se puede pretender

    ensear todo lo que un mdico debe saber sino lo que todo mdico debe saber.

    Compartiendo plenamente esta orientacin hemos hecho una reduccin selectiva de la cantidad

    de informacin, omitiendo aquellos datos que, siendo verdaderos e interesantes, no son

    necesarios para los propsitos enunciados. Los temas que, por su complejidad o rareza, son

    propios del especialista slo se exponen en lneas generales que permitan conocer su existencia y

    naturaleza, de manera que el clnico general sepa cuando y donde necesita buscar y obtener

    ayuda. La informacin que se ha seleccionado es, en cambio, expuesta con toda la extensin

    necesaria para una lectura fluida y comprensin cabal, ya que la redaccin condensada de un

    tema, si bien lo hace ms breve, puede conducir a una falta de claridad. En general los detalles de

    los mtodos usados en investigacin para generar los conocimientos no son para ser retenidos en

    s mismos, sino que tienen por objeto aclarar la gnesis y significado de los conceptos que interesa

    internalizar. Igualmente la mayor parte de las frmulas y grficos no son para memorizarlas en s,

    sino para comprender que factores determinan el aumento de un determinado elemento y cuales

    lo disminuyen y en qu grado.

    En relacin a tratamientos se ha puesto el nfasis en sus fundamentos y objetivos sin entrar en

    detalles o cifras de dosis que estn en constante revisin, por lo que muchos habrn cambiado en

    parte importante para cuando el estudiante se grade. A lo largo de todo el ejercicio de la

  • 9

    medicina estos aspectos debern consultarse toda vez que no se tenga seguridad de estar

    plenamente al da.

    Para alcanzar en forma ms completa los objetivos del presente texto es conveniente acceder a los

    vnculos designados como programticos, anotados al final de algunos captulos. Los otros

    vnculos designados como extra programticos dan acceso a material que excede a los objetivos

    del texto, pero que puede ser til para estudiantes que estn involucrados en revisiones o

    proyectos de investigacin, o tengan contacto con problemas clnicos complejos en el hospital

    La orientacin descrita exige ms reflexin y, por lo tanto, ms tiempo, dedicacin e inters que la

    simple memorizacin y persigue que el estudiante llegue a dominar en forma slida los

    conocimientos fundamentales, que tenga clara conciencia de lo que no sabe, que sepa dnde

    buscarlo cuando lo necesite y que pueda manejar la informacin cuando la obtenga.

  • 10

    PARTE I

    MORFOLOGIA BASICA

  • 11

    CAPTULO 1

    BASES MORFOLOGICAS DE LA FUNCIN RESPIRATORIA

    Introduccin

    Dada la estrecha correlacin entre forma y funcin, es conveniente repasar algunos aspectos de la

    morfologa antes de abordar la fisiologa, fisiopatologa y clnica del aparato respiratorio. Este

    captulo entrega una visin general de las estructuras macro y microscpicas. Los detalles

    necesarios para el anlisis de determinados aspectos funcionales o clnicos sern abordados en los

    captulos correspondientes.

    Considerando que la funcin primordial del aparato respiratorio es poner en contacto el aire

    atmosfrico con la sangre para que tenga lugar el intercambio gaseoso, se pueden diferenciar, por

    razones didcticas, tres grupos de estructuras, de acuerdo a la funcin predominante que

    desempean.

    rea de intercambio gaseoso.

    Vas de conduccin area.

    Caja torcica con funciones de proteccin y movimiento.

    REA DE INTERCAMBIO GASEOSO

    Alvolos El intercambio gaseoso tiene lugar en los alvolos, estructuras huecas, aproximadamente

    hemisfricas, de 250 mm de dimetro, cuyo contenido areo est en permanente renovacin y en

    el espesor de cuyas paredes circula sangre a travs de una densa malla capilar. La cavidad alveolar

    est tapizada por 2 tipos de clulas (Figura 1):

    Figura 1-1. Histologa esquemtica del

    alvolo.

    A: espacios areos alveolares.

    C: capilares

    N1: neumocitos tipo I.

    N2: neumocitos tipo II.

    M: macrfagos

    I : tejido intersticial.

  • 12

    Neumocitos tipo I. A pesar de ser escasas en nmero, estas clulas cubren ms del 90% de

    la superficie alveolar, debido a que son muy aplanadas y extensas. Con el microscopio de

    luz slo se ven sus ncleos, siendo necesaria la microscopia electrnica para ver la delgada

    capa de su citoplasma. Cuando los neumocitos I contactan con los capilares de la pared

    alveolar, su membrana basal se fusiona con la del endotelio, de manera que los gases slo

    tienen que atravesar el citoplasma del neumocito, las membranas basales fusionadas y el

    citoplasma del endotelio capilar, conjunto que mide menos de 1 micrn de espesor. En el

    resto de la pared alveolar, entre los neumocitos y los capilares se interpone una capa de

    tejido intersticial, con sustancia amorfa y fibrillas, que cumple una funcin de sostn y que,

    por tener vasos linfticos, drena el lquido que permanentemente ultrafiltra desde los

    capilares, evitando as que ste invada los alvolos. Este aspecto se analizar con mayor

    detalle a propsito del edema pulmonar.

    Neumocitos tipo II. Son clulas cuboideas, ms numerosas que las anteriores y que, entre

    otras muchas funciones, sintetizan el surfactante pulmonar. Esta sustancia disminuye la

    tensin superficial de la capa de lquido que recubre la superficie interna de los alvolos,

    impidiendo el colapso alveolar que esta fuerza tiende a producir (Ver mecnica

    ventilatoria). Adems, los neumocitos II seran responsables de las funciones metablicas

    del pulmn, que se vern ms adelante. Cuando los neumocitos I son destruidos en algunas

    enfermedades, son los neumocitos II los que proliferan para reparar los daos.

    Aparte de estas clulas estructurales, dentro del alvolo y en el espesor de los tabiques se

    encuentran clulas con un rol defensivo, especialmente macrfagos, que fagocitan las partculas

    extraas y bacterias que llegan al alvolo. Los macrfagos cargados de detritus se eliminan junto

    con las mucosidades o retornan al espacio intersticial, de donde son en su mayora removidos por

    el sistema linftico.

    Organizacin de los alvolos El nmero total de alvolos oscila entre 200 y 600 millones, y su superficie total, entre 40 y 100

    metros cuadrados, dependiendo entre otros factores de la talla corporal. Los alvolos se disponen

    como depresiones redondeadas en la pared de espacios esfricos llamados sacos alveolares, que

    confluyen en espacios tubulares llamados ductos. Varios ductos se unen dando origen a un

    bronquolo respiratorio, elemento de transicin que tiene la estructura de una va de conduccin

    area, pero que conserva algunos alvolos en sus paredes. Despus de unas 4 a 7 generaciones,

    un grupo de bronquolos respiratorios confluye en un bronquolo terminal que carece totalmente

    de alvolos, constituyndose exclusivamente en va de conduccin.

  • 13

    Segn la manera de agruparse estas diferentes estructuras, se han descrito 3 unidades (Figura 1-

    2).

    Figura 1-2. Estructuras perifricas del pulmn.

    A: alvolos.

    SA: saco alveolar.

    BR: bronquolos respiratorios.

    BT: bronquolo terminal.

    B: bronquolos.

    LP: lobulillo primario.

    LS: lobulillo secundario

    Lobulillo primario(LP) que es el conjunto de los ductos, sacos y alvolos alimentados por un

    bronquolo respiratorio.

    Acino que es todo el territorio alveolar tributario de un bronquolo terminal.

    Lobulillo secundario (LS)que es la menor porcin de parnquima pulmonar delimitada por

    tabiques fibrosos. Son fcilmente distinguibles en la corteza pulmonar donde los tabiques

    son ms completos y estn marcados por el depsito en el intersticio de partculas

    inhaladas . Estos lobulillos no se individualizan con claridad en las zonas centrales. Su

    dimetro oscila entre 1 y 2,5 cm.

    De estas unidades la de mayor importancia clnica es el acino, que es identificable en la totalidad

    del pulmn y que, por medir ms o menos 8 mm de dimetro, es visible a rayos cuando se

    encuentra lleno de lquido o exudado.

    A estos elementos, llenos de aire, se unen vasos sanguneos y linfticos para formar el parnquima

    pulmonar. Las ramas de la arteria pulmonar, que llevan la sangre venosa hacia los alvolos,

    acompaan a los bronquios en todas sus divisiones. A nivel de los bronquolos terminales pierden

    su capa muscular transformndose en arteriolas, que dan origen a una densa malla capilar en

    estrecho contacto con los alvolos. Como estos capilares no miden ms de 10 micrones de

    dimetro los globulos rojos deben pasar prcticamente en fila india, lo que optimiza su tarea de

    captar oxigeno.

    Las vnulas pulmonares que nacen de los capilares alveolares se dirigen a la periferia del lobulillo

    secundario, confluyendo en venas que se incorporan a los tabiques fibrosos interlobulillares e

    interlobulares de manera que su trayecto es diferente al de los bronquios y arterias. Las

    caractersticas morfolgicas y hemodinmicas del circuito menor o pulmonar se vern con mayor

    detalle en el captulo de fisiologa correspondiente.

  • 14

    El pulmn tambin recibe sangre arterializada a travs de las arterias bronquiales, que nacen de la

    aorta o de las intercostales y aportan la circulacin nutricia a los bronquios. Sus venas

    desembocan en las venas pulmonares, mezclndose con la sangre ya arterializada.

    VIAS DE CONDUCCION AEREA

    La sangre que circula constantemente por los capilares alveolares extrae el oxgeno del aire

    alveolar y lo carga de CO2 de manera que es necesario que este aire se renueve tambin

    constantemente. Esto se logra a travs de la ventilacin con aire ambiental, y las vas areas son el

    medio de conexin entre alvolo y exterior.

    La va area se inicia en la nariz que, adems de ser su puerta de entrada, acondiciona el aire

    inspirado para la respiracin. Lo humidifica y calienta a 37C gracias a la rica vascularizacin de su

    mucosa, dispuesta sobre una superficie ampliada por la presencia de los cornetes. Adems, la

    anfractuosidad de los conductos, la adhesividad de la capa de mucus y la presencia de pelos

    constituyen barreras fsicas que impiden la entrada de parte importante de las partculas en

    suspensin. Las defensas mecnicas son complementadas por el reflejo del estornudo y la

    presencia de tejido linfoideo y anticuerpos. La alteracin de estas funciones y la posibilidad de

    aspiracin de secreciones nasales infectadas explican la frecuencia con que las afecciones nasales

    se asocian con enfermedades bronquiales y pulmonares.

    La va area contina con la faringe, donde tambin se conecta la boca que constituye una entrada

    alterna para el aire cuando hay obstruccin nasal y cuando se necesita aumentar mucho la

    ventilacin, como sucede en el ejercicio intenso. Para que la faringe se mantenga permeable, es

    necesario que los msculos farngeos y linguales mantengan una tonicidad normal, ya que en caso

    que disminuya, la faringe puede colapsar y obstruir el flujo inspiratorio, como sucede en

    condiciones anormales durante el sueo.

    La laringe es el rgano muscular y cartilaginoso de la fonacin y est situada en una encrucijada

    importante por la confluencia de las vas respiratoria y digestiva. Un complejo mecanismo de

    ascenso de la laringe hacia la base la lengua con contraccin de msculos larngeos intrnsecos y

    cierre de epiglotis protege al aparato respiratorio de la penetracin de elementos extraos

    durante la deglucin o el vmito. Si este mecanismo se altera, pueden producirse lesiones

    respiratorias graves por aspiracin. La laringe participa tambin en el reflejo defensivo de la tos, a

    travs del cierre de la glotis durante la fase de compresin del aire intrapulmonar y de su brusca

    apertura en la fase expulsiva.

    Las vas respiratorias infralaringeas adoptan una forma de rbol, cuyo tronco es la trquea que,

    tras un trayecto de 12 a 15 cm, genera por divisin dicotmica asimtrica alrededor de 23

    generaciones de ramas, 16 de las cuales son exclusivamente conductoras.

    La trquea est situada en la lnea media en el cuello y dentro del trax, siendo ligeramente

    desviada a la derecha por el arco artico. Su dimetro es de 17 a 26 mm en adultos y su

    estabilidad es asegurada por la superposicin de una serie de cartlagos que tienen la forma de

    una C abierta hacia el dorso. En los extremos de estos cartlagos se insertan haces musculares,

    cuya contraccin estrecha el lumen del conducto, mecanismo que permite acelerar

  • 15

    considerablemente la velocidad del flujo espiratorio durante la tos, con la consiguiente mayor

    capacidad expulsiva.

    El rbol bronquial est tapizado por una mucosa que tiene un epitelio ciliado que, en combinacin

    con las glndulas mucosas, constituye el mecanismo mucociliar. Este es una especie de correa

    transportadora de mucus que es constantemente impulsada por los cilios a una velocidad de 20

    mm por minuto, atrapando por adherencia las partculas que han sobrepasado la barrera nasal. Al

    llegar a la faringe el mucus es deglutido insensiblemente.

    Otros elementos importantes de la mucosa bronquial son las glndulas mucosas, ms abundantes

    en la submucosa de las vas mayores, y las clulas caliciforme que producen mucus a lo largo de

    todo el rbol bronquial. Tambin se encuentran las clulas argirfilas de funcin neuroendocrina.

    A la altura de la articulacin del mango con la hoja del esternn, la trquea se bifurca en los

    bronquios fuente o principales, derecho e izquierdo, formndose hacia el interior de la trquea un

    espoln medianamente agudo o carina principal. Dado que el bronquio derecho se desva menos

    del eje de la trquea, es ms frecuente que los cuerpos extraos aspirados y las sondas

    introducidas por la trquea se desven hacia el pulmn derecho.

    Por sucesivas dicotomas se forman alrededor de 11 generaciones de bronquios para los diferentes

    lbulos, segmentos y subsegmentos. Estos conductos se caracterizan por presentar placas de

    cartlago incompletas, que son ms escasas a medida que se avanza hacia la periferia. En cambio,

    las fibras musculares son abundantes y envuelven la va area como una red helicoidal que llega

    hasta los bronquolos respiratorios. Su funcin normal sera regular la distribucin regional de la

    ventilacin y, en condiciones patolgicas como el asma, tienen un rol determinante en la

    reduccin del calibre bronquial.

    Cuando las vas areas reducen su dimetro bajo 2 mm, desaparece totalmente el cartlago, por lo

    que se hacen colapsables. En estos conductos, denominados bronquolos, la mantencin de la

    permeabilidad del lumen pasa a depender de la presin negativa intratorcica y de la traccin

    radial de las fibras elsticas del tejido alveolar adheridas a sus paredes externas.

    Tras unas 4 a 5 generaciones se llega a los bronquolos llamados terminales por constituir el final

    de las vas exclusivamente conduccin. Los bronquolos que siguen se denominan respiratorios por

    presentar en sus paredes un creciente nmero de alvolos.

    En las sucesivas dicotomas del rbol bronquial, el dimetro de cada rama hija es, obviamente,

    menor que el de la rama madre, pero la suma de sus reas de seccin es mayor que el rea de la

    rama de origen. Esto significa que si bien la resistencia al flujo areo aumenta en cada conducto

    considerado individualmente, la resistencia global de la va area disminuye marcadamente

    porque su rea de seccin global va aumentando por sumacin. Esto tiene importantes

    implicancias funcionales que se vern en fisiologa.

    El tejido alveolar y las vas areas, a partir de la porcin distal de los bronquios fuente, se disponen

    organizadamente con un soporte de tabiques fibrosos, formando los pulmones derecho e

    izquierdo, envueltos por sus respectivas serosas pleurales. Su forma es aproximadamente cnica,

    como la de la caja torcica que los contiene. Los vrtices pulmonares llegan a los huecos

  • 16

    supraclaviculares, donde contactan con las ramas nerviosas del plexo braquial y con los troncos

    arteriales y venosos de las extremidades superiores. Esta vecindad explica el dolor del hombro y

    extremidad superior observado en tumores de esta rea, y la posibilidad de lesionar el pulmn en

    punciones de las venas subclavias. Las bases son cncavas y descansan sobre las cpulas convexas

    del diafragma, con una relacin de vecindad indirecta con el hgado a la derecha y con el estmago

    y bazo a la izquierda. La cara costal de los pulmones es convexa y est expuesta a ser lesionada en

    traumas de la pared costal. La cara mediastnica es relativamente plana y tiene estrecho contacto

    con corazn, vasos, esfago, ganglios y otras estructuras, hecho que tiene importancia en

    radiologa pulmonar.

    El conjunto de bronquios, vasos y nervios que entran o salen del pulmn lo hace por la parte

    media de la cara mediastnica, formando una especie de tallo denominado hilio, identificable en

    rayos X. En cada hilio se encuentran ganglios, a los que drenan los linfticos de lpulmn y que a su

    vez son tributarios de ganglios mediastnicos y del cuello. El grado de compromiso de estos

    ganglios es un determinante crucial en la eleccin del tratamiento en el cncer bronquial.

    Cada pulmn presenta una gran fisura oblicua que se dirige desde la parte alta de la cara posterior

    a la parte anterior del borde inferior. Esta fisura es profunda y llega hasta cerca del hilio,

    dividiendo el pulmn en un lbulo superior y otro inferior. Al lado derecho se agrega otra fisura

    profunda que parte del plano medial a la altura del 4 cartlago costal y se dirige horizontalmente

    hasta terminar en la cisura oblicua, separndose as un tercer lbulo, llamado medio. La pleura

    visceral envuelve casi completamente cada lbulo, penetrando hasta el fondo de las cisuras.

    Dentro de cada lbulo se distinguen segmentos o reas de pulmn relativamente delimitados por

    tabiques fibrosos que dependen de un bronquio de tercera generacin. Son susceptibles de

    extirpacin quirrgica aislada, y algunas enfermedades se caracterizan por adscribirse a sus

    lmites. Su conocimiento detallado corresponde al rea de especializacin. Las serosas pleurales se

    analizarn en el captulo sobre fisiologa pleural.

    CAJA TORACICA Los principales componentes de la caja torcica son huesos que por su rigidez brindan proteccin,

    y msculos respiratorios de cuya actividad depende la ventilacin. La jaula sea est constituida

    por la columna vertebral, sobre la cual articulan las 12 costillas de cada hemitrax. El movimiento

    en sentido crneo-caudal de estos arcos seos ha sido comparado la del asa de un balde cuyos

    puntos de giro son, en su extremo anterior, el esternn, y en el posterior la columna. Al elevarse el

    vrtice del arco, que en reposo se encuentra ms bajo que los puntos de giro, se produce su

    alejamiento de la lnea media a medida que la costilla se acerca hacia la horizontal. Esto significa

    un aumento del dimetro transversal del trax, con lo que baja la presin de su contenido y

    penetra aire al aparato respiratorio. Lo inverso sucede al bajar las costillas a su posicin de reposo.

    Insertndose en esta estructura sea de apoyo, los msculos respiratorios proveen la energa

    mecnica que cambia rtmicamente el volumen del trax y abdomen, produciendo los cambios de

    presin que movilizan el aire. En el captulo sobre fisiologa de estos msculos se analizan los

    aspectos morfolgicos pertinentes

  • 17

    PARTE II

    FISIOLOGIA RESPIRATORIA

  • 18

    ESQUEMA GENERAL DE LA FUNCION PULMONAR

    INTRODUCCION

    El organismo puede considerarse como una mquina de combustin interna que quema grasas e hidratos de carbono y obtiene as la energa que necesita para realizar sus mltiples funciones. Este proceso consume oxgeno y produce anhdrido carbnico. El aire atmosfrico suministra el primero y recibe el segundo.

    Como la combustin tiene lugar en las clulas situadas profundamente en los tejidos, es necesario un medio de conexin con la atmsfera. Este nexo es la corriente sangunea, que transporta los gases en solucin fsica y en combinaciones fsicoqumicas.

    Se comprende que a mayor trabajo del organismo hay ms gasto energtico y, por lo tanto, mayor necesidad de transporte de gases entre las clulas y el ambiente. Este se logra aumentando el gasto cardaco con redistribucin del flujo sanguneo hacia los rganos en actividad que, adems, extraen una mayor cantidad de oxgeno de la sangre que pasa por los tejidos. Por estos mecanismos se puede llegar a aumentar diez veces el intercambio gaseoso entre clulas y sangre, lo que exige aumentar el intercambio entre sangre y atmsfera

    Este ltimo proceso, o respiracin externa, requiere que la sangre se exponga al contacto con el aire en una amplia superficie, y para ello fluye por un extenso territorio capilar separado de la atmsfera por una membrana de medio a un micrn de espesor que prcticamente no interfiere con una rpida difusin gaseosa. Tal superficie vascular no puede, por su extensin (60-90 m2) y su fragilidad, estar en la superficie del cuerpo. En los mamferos el problema se soluciona con la existencia de los pulmones, que pueden considerarse como una invaginacin del espacio externo hacia el interior del organismo bajo la forma de vas areas y finalmente, alvolos, los cuales tienen amplio y estrecho contacto con una densa malla capilar. Este conjunto constituye los pulmones que quedan contenidos y protegidos dentro de la caja torcica que, adems, acta como elemento motor.

    Es evidente que si el aire de los alvolos no se renueva en proporcin a la perfusin sangunea, sta agotar rpidamente el oxgeno alveolar reemplazndolo por CO2. Un fenmeno mecnico, la ventilacin pulmonar, renueva en forma parcial y peridica el aire alveolar y mantiene dentro del pulmn una composicin adecuada para el intercambio gaseoso o hematosis.

    En suma: el pulmn es un intercambiador de gases que recibe, por un lado, aire que se renueva continuamente por accin del fuelle o bomba toracopulmonar y, por el otro, sangre que se mantiene en circulacin entre tejidos y pulmn por accin de la bomba cardiaca.

    La coordinacin entre la funcin de estos dos sistemas entre s y de ambos con las necesidades del organismo est a cargo del sistema nervioso, con sus centros respiratorios y circulatorios. La actividad de estos ncleos coordinadores es modulada por la informacin suministrada por receptores situados en mltiples regiones del organismo.

    De acuerdo a lo expuesto, se puede apreciar que la funcin respiratoria es compleja y que requiere de la participacin coordinada de varios grupos de rganos, uno de los cuales es el aparato respiratorio (Figura I).

  • 19

    Figura I: Esquema simplificado del sistema respiratorio. El oxgeno ambiental llega al alvolo por efecto de la ventilacin alveolar (VA), la cual se distribuye en forma proporcional a la irrigacin que reciben los alvolos. El O2 luego difunde a travs de la pared alvolo capilar (DL) , pasa a la sangre capilar donde se une a la hemoglobina (Hb), que lo transporta a travs de las arterias hasta que llega los capilares tisulares de todo el organismo, desde donde difunde hacia las clulas que lo consumirn. El CO2 producido en las clulas difunde a los capilares sistmicos y es transportado por las venas hasta el corazn derecho y de ah al pulmn, donde difunde a los alvolos. La ventilacin eliminar este gas hacia el ambiente. Para mantener la ventilacin adecuada a los requerimientos metablicos existen sensores a nivel arterial que informan a los centros respiratorios de la PaO2 y PaCO2.

    La separacin del aparato respiratorio del aparato circulatorio, sistema nervioso, tejidos y sangre

    slo se justifica por razones didcticas, y con esta misma justificacin abordaremos la funcin

    respiratoria como si fuera una sucesin de fenmenos o etapas diferentes:

    1. Ventilacin pulmonar: fenmeno mecnico que asegura el recambio del aire contenido dentro de los alvolos.

    2. Distribucin y relacin ventilacin/perfusin: renovacin proporcional del aire y de la sangre a cada lado de la membrana de difusin.

    3. Difusin o transferencia: intercambio de gases entre aire y sangre a travs de la membrana alveolocapilar.

    4. Transporte de O2 y CO2 efectuado por la sangre entre el pulmn y las clulas. 5. Regulacin de la respiracin: conjunto de mecanismos de control de la respiracin y

    coordinacin con la circulacin, demandas metablicas, equilibrio acido-base, fonacin, deglucin,etc.

    6. Hemodinmica de la circulacin pulmonar. 7. Funciones del espacio pleural. 8. Mecanismos de defensa mecnicos, celulares y humorales, que tienen un importante papel,

    dado el amplio contacto del pulmn con los contaminantes ambientales a travs de los ms

  • 20

    de 10.000 litros de aire que se ventilan diariamente. Adems, la entrada al aparato respiratorio est en la faringe y contigua a la boca, cavidades de gran poblacin microbiana.

    9. Filtro de partculas que circulan por la sangre (cogulos, agregados plaquetarios, trozos de tejidos, etc.), funcin para la cual tiene la ventaja ventaja de ser el nico rgano, aparte del corazn, por el cual pasa continuamente el total de la sangre.

    10. Actividad metablica local: los neumocitos tipo II elaboran el surfactante, sustancia que regula la tensin superficial en la interfase aire/liquido en las paredes alveolares y, adems inactivan algunas sustancias circulantes.

    11. Reservorio de sangre: por la amplitud y distensibilidad de su lecho vascular. 12. Equilibrio cido base 13. Balance hidrico : el aire inspirado es saturado de vapor de agua en la nariz y vas areas y , al

    ser expirado es responsable de un 10-20% del total de la prdida de agua del organismo. 14. Balance calrico: por el mismo mecanismo la respiracin causa el 5-10% de la prdida calorica

    total del organismo.

    La normalidad de estas funciones est ntimamente ligada a la normalidad de su sustrato morfolgico. En el anlisis de la funcin y clnica recurriremos repetidamente a diferenciar, en este aspecto, tres compartimentos (Figura II) que, si bien son partes inseparables de un todo, tienen ciertas particularidades que determinan su forma de funcionar, de enfermar y de manifestar su patologa.

    Figura II. Representacin esquemtica de los compartimientos pulmonares: vas areas (1); espacios alveolares (2) e intersticio (3).

    Los compartimientos que convencionalmente se reconocen son:

    Vas areas: elementos de conduccin entre el ambiente y los alvolos.

    Espacios alveolares: rea destinada al intercambio gaseoso que se realiza a travs de su contacto con el endotelio capilar

    Intersticio pulmonar: tejido de sostn que forma una vaina a los bronquios y vasos intrapulmonares y contiene diversos tipos de clulas y la red capilar que envuelve a los sacos alveolares.

    A pesar de la separacin en funciones y captulos, en todo momento debe tenerse presente

    que el aparato respiratorio es un todo con mltiples interrelaciones, de manera que el dao

    de cualquier eslabn debe considerarse como un problema de toda la cadena.

  • 21

    CAPTULO 2

    MECNICA VENTILATORIA

    En este y los prximos captulos nos referiremos mltiples veces a presiones de gases y lquidos en unidades de mmHg (milmetros de mercurio) o en cmH2O (centmetros de agua). Dado que en otros textos y revistas mdicas pueden aplicarse en forma diferente o usarse la unidad de kPa (kilopascales) es conveniente tener presente las equivalencias entre estas unidades:

    1 mmHg = 1,36 cmH2O =0,13 kP

    MECANICA VENTILATORIA

    La ventilacin es un fenmeno bsicamente mecnico que renueva cclicamente el aire alveolar alternando la entrada de aire o inspiracin y la salida del mismo o espiracin. En relacin con este aspecto, el aparato respiratorio puede ser comparado con un fuelle, en el que conviene diferenciar los siguientes componentes:

    a) Las vas areas, que son tubos de calibre regulable que comunican el ambiente exterior con la superficie de intercambio.

    b) El trax, que acta como continente protector del pulmn y motor de la ventilacin.

    c) El pulmn, que es, en esencia, una extensa superficie de intercambio gaseoso entre aire y sangre, contenida dentro del trax que es el motor que lo ventila.

    Las caractersticas estructurales y la funcin mecnica de este fuelle pueden describirse a travs de:

    1. Dimensiones del fuelle. 2. Presiones que se generan. 3. Fuerzas que lo mueven. 4. Resistencias que se oponen a la ventilacin 5. Flujos resultantes. 6. Rendimiento y eficiencia mecnica.

    DIMENSIONES DEL FUELLE: VOLUMENES Y CAPACIDADES

    Las dimensiones del fuelle toracopulmonar se miden a travs de su contenido areo. Esta medicin se realiza usualmente con un espirmetro, una de cuyas formas bsicas se ilustra en la Figura 2-1, en la cual el individuo en estudio respira a travs de una boquilla dentro de una campana calibrada y sellada por agua.

  • 22

    Figura 2-1. Esquema de un espirmetro: el sujeto respira a travs de la boquilla (B), dentro de la campana (C), sellada por agua (A). Los movimientos de la campana son transmitidos a la plumilla (P) que inscribe los movimientos respiratorios sobre un quimgrafo (Q).

    Los desplazamientos de esta campana, producidos por la entrada y salida de aire, se transmiten a un elemento inscriptor que traza una curva en un papel que corre a una velocidad conocida y regulable. En la actualidad la mayora de los espirmetros miden los volmenes integrndolos a partir de los flujos respiratorios, que se miden con un neumotacgrafo y entregan los valores calculados por un programa computacional. La curva obtenida en un espirmetro de agua durante la respiracin espontnea, en reposo y en maniobras de inspiracin y espiracin mximas, permite diferenciar varios niveles y volmenes (Fig. 2-2).

    Figura 2-2. Volmenes y capacidades pulmonares. Los niveles de inspiracin mxima, reposo inspiratorio y espiratorio, espiracin mxima determinan los volmenes de reserva inspiratoria (VRI), corriente (VC), de reserva espiratoria (VRE) y residual (VR). La suma de distintos volmenes resulta en las capacidades inspiratorias (CI), residual funcional (CRF), vital (CV) y pulmonar total (CPT).

    En primer lugar se pueden diferenciar 4 niveles:

    a) Nivel de final de espiracin normal. b) Nivel de final de inspiracin normal. c) Nivel de inspiracin mxima. d) Nivel de espiracin mxima.

  • 23

    Convencionalmente las cantidades de aire comprendidas entre dos niveles contiguos se denominan volmenes, y la suma de dos o ms de stos, capacidades. Se distinguen 4 volmenes:

    1. Volumen corriente (VC): cantidad de aire que entra en una inspiracin o sale en una espiracin, en las condiciones de actividad que se especifiquen (reposo, ejercicio).

    2. Volumen de reserva inspiratoria (VRI): cantidad mxima de aire que se puede inspirar por sobre el nivel de inspiracin espontnea de reposo.

    3. Volumen de reserva espiratoria (VRE): mxima cantidad de aire que se puede expulsar a partir del nivel espiratorio espontneo normal.

    4. Volumen residual (VR): cantidad de aire que queda en el pulmn despus de una espiracin forzada mxima. Este volumen no puede medirse con el espirmetro.

    Las capacidades son tambin 4:

    1. Capacidad pulmonar total (CPT): cantidad de gas contenido en el pulmn en inspiracin mxima. Corresponde a la suma de los cuatro volmenes ya descritos.

    2. Capacidad vital (CV): cantidad total de aire movilizado entre una inspiracin y espiracin mximas. Incluye el volumen corriente y los volmenes de reserva inspiratoria y espiratoria.

    3. Capacidad inspiratoria (CI): mximo volumen de gas que puede inspirarse a partir de una espiracin normal. Comprende los volmenes corriente y de reserva inspiratoria.

    4. Capacidad residual funcional (CRF): volumen de gas que permanece en el pulmn al trmino de la espiracin normal; representa la suma del volumen residual y volumen de reserva espiratoria.

    Estas subdivisiones tienen una significacin fisiolgica que pasaremos a analizar en sus principales aspectos.

    VOLUMEN CORRIENTE

    En los adultos, en la respiracin espontnea en reposo se inspiran y espiran en cada ciclo respiratorio entre 400 y 600 ml, cantidad que se repite en forma bastante regular y se denomina volumen corriente, por ser el que se mueve o corre. Esta cantidad es aproximadamente slo una dcima parte de lo que el pulmn puede movilizar, existiendo, por lo tanto, importantes reservas de inspiracin y espiracin, a las cuales se recurre cuando aumentan las demandas por ejercicio fsico, fonacin, risa, llanto, etc.

    CAPACIDAD VITAL

    Esta capacidad est constituida por la suma del volumen corriente y las reservas inspiratoria y espiratoria. Representa el mximo de aire que se puede movilizar en una

  • 24

    sola maniobra respiratoria. En 1846, John Hutchinson desarroll el mtodo de medicin an vigente y sent las bases para su aplicacin clnica. Por estimar que revelaba la potencialidad de vida del individuo la denomin capacidad vital,

    La capacidad vital se mide directamente en un espirmetro, y los valores encontrados se expresan directamente en litros o mililitros y como porcentaje de un valor terico predeterminado o de referencia, que depende de la talla, edad y sexo del individuo. Estos valores son promedios que se han calculado a partir de mediciones realizadas en grupos de sujetos normales no expuestos a riesgos inhalatorios que pudieran alterar su funcin ventilatoria. Debido las diferentes caractersticas de las poblaciones estudiadas y los variables criterios de calificacin de normalidad que se han usado, los valores de referencia resultantes difieren y no se ha llegado a establecer una tabla de valores de aplicabilidad universal. En Chile se han utilizado principalmente los valores determinados por Knudson en poblacin norteamericana, usados en Chile por ser los mejor elaborados hasta ese momento. Posteriormente estudios nacionales demostraron algunas diferencias importantes por lo que la Sociedad Chilena de Enfermedades Respiratorias, tras un anlisis de esta informacin, ha publicado recientemente tablas que se recomienda aplicar a nuestra poblacin .(Revista Chilena Enfermedades Respiratorias 2010; Vol. 26 - N 1)

    Es importante tener presente que el valor de referencia es un promedio con mrgenes de variacin de 20 a 25%, lo que puede conducir a serios errores de interpretacin. Supongamos el siguiente ejemplo: una persona normal que, de haber sido examinado cuando estaba sano, hubiera tenido una CV de 120% del valor terico promedio, presenta una enfermedad pulmonar que reduce su CV a un 85% del mismo promedio terico. Este ltimo valor deber ser informado como dentro de los lmites normales, aunque para el paciente significa una prdida de un tercio de su capacidad vital. Por esta razn es importante instruir a la persona sana que se hace una espirometra en un examen de salud o en un examen pre-ocupacional, que guarde siempre sus resultados, ya que as contar con un valor de referencia personal.

    Los valores tericos se expresan en las condiciones fsicas que imperan dentro del aparato respiratorio, o sea, a 37C, a la presin ambiental y saturados de vapor de agua, condicin que se denomina BTPS (body temperature, ambient pressure, saturated = temperatura corporal, presin ambiental y saturado de vapor de agua). Como las mediciones clnicas se realizan en un espirmetro a una temperatura muy inferior a 37C, el volumen de aire espirado se reduce a uno menor que el que ocupaba dentro del pulmn, por lo que es necesario corregirlo. Para ello el volumen medido a la temperatura y presin ambientales y saturado de vapor de agua (ATPS: ambient temperature and pressure, saturated) se multiplica por un factor de correccin, que lo convierte a BTPS. Este valor es el que se compara con el valor terico, expresndose como porcentaje de ste. Los espirmetros actuales entregan los valores corregidos a BTPS

    La CV depende de la correcta integracin entre la generacin y la conduccin de los estmulos respiratorios, de la capacidad muscular respiratoria, de la mecnica esqueltica

  • 25

    y del estado del pulmn. El nivel de inspiracin mxima, lmite superior de la CV, no est determinado por impedimentos mecnicos sino por reflejos propioceptivos generados en el pulmn distendido, que frenan la contraccin muscular. Esto explica que en el cadver con el trax abierto, ste pueda distenderse hasta un mayor volumen.

    Dada la amplia reserva del fuelle, las alteraciones funcionales leves suelen pasar inadvertidas para el paciente, pero pueden ser captadas en la medicin de la CV. Esta puede disminuir por mltiples mecanismos, que pueden reducirse a dos tipos fundamentales: los trastornos obstructivos que reducen la CV por aumento del volumen residual atrapado en el pulmn y los trastornos restrictivos que, como su nombre lo indica, restringen el volumen del pulmn utilizable, debido a ocupacin o colapso de alvolos, infiltracin del intersticio, ocupacin del espacio pleural, restricciones a la movilidad del trax, debilidad muscular, etc. Al referirnos a la fisiopatologa del aparato respiratorio analizaremos estos aspectos con mayor detalle.

    VOLUMEN RESIDUAL Y CAPACIDAD RESIDUAL FUNCIONAL

    El volumen residual (VR) es el aire que queda en el pulmn despus de una espiracin forzada mxima, por lo que no se puede medir en la espirometra, debiendo recurrirse a mtodos indirectos de mayor complejidad. Sumado al volumen de reserva espiratoria, constituye la capacidad residual funcional (CRF), que es la cantidad de gas que se mantiene en el pulmn durante la respiracin espontnea, cumpliendo diversas funciones:

    a) Permite que la composicin del aire alveolar oscile muy levemente, ya que los 2 a 3 litros de gas que permanecen en el pulmn diluyen el aire inspirado, impidiendo cambios bruscos en la composicin del aire alveolar. Si el aire alveolar se recambiara totalmente por aire atmosfrico, el CO2 de la sangre venosa al llegar al alvolo se liberara explosivamente en forma de burbujas y se produciran cambios bruscos y violentos en el equilibrio cido base.

    b) Sirve como reservorio de oxgeno, lo que permite que la sangre siga removiendo este gas del pulmn en forma continua durante la espiracin y en perodos cortos de apnea.

    c) Mantiene un volumen alveolar mnimo que da estabilidad a los alvolos, impidiendo su colapso, situacin que exigira generar grandes presiones para volver a expandirlos La capacidad residual funcional est determinada por la interaccin de las fuerzas elsticas del pulmn, que tienden al colapso, y las del trax, que tienden a la expansin. Su posicin de equilibrio corresponde al nivel de final de espiracin en reposo.

    Para llegar al volumen residual la espiracin forzada tiene que vencer la elasticidad torcica, siendo finalmente limitada por reflejos propioceptivos toracopulmonares y por el cierre de las pequeas vas areas. Este ltimo fenmeno se debe a que la disminucin del volumen pulmonar reduce la traccin elstica que el parnquima pulmonar ejerce sobre

  • 26

    los bronquolos, mantenindolos abiertos. Por el envejecimiento normal de los elementos elsticos del pulmn, este fenmeno de cierre se acenta con la edad, con lo que el VR aumenta, representando una fraccin progresivamente mayor de la capacidad pulmonar total (30% hasta los 35 aos y 40% sobre los 50 aos).

    En cifras absolutas, el VR de un hombre de 20 aos, 1,70 m de estatura, con una CPT de 6 L, es de aproximadamente 1,8 L. Existen valores de referencia que permiten establecer si el paciente tiene alteraciones o no de los volmenes y capacidades.

    PRESIONES EN APARATO RESPIRATORIO

    En la compleja interrelacin entre trax, pulmn y ventilacin, intervienen fuerzas y se generan presiones oscilantes que analizaremos en relacin con los fenmenos mecnicos pertinentes (Fig. 2-3).

    Figura 2-3. Presiones respiratorias en condiciones estticas y durante la respiracin tranquila. Las presiones se expresan como diferencia en relacin a la presin atmosfrica que en fisiologa respiratoria se considera como cero.

    La presin alveolar (Palv) es la suma algebraica de la presin elstica del pulmn (Pel) y de la presin pleural (Ppl).

    En condiciones estticas la presin transpulmonar (P tp = P boca - P pl) es idntica a la presin elstica del pulmn, ya que P boca = P alv.

    En cambio, en condiciones dinmicas de inspiracin o espiracin existe una gradiente entre alveolo y boca la presin alveolar

  • 27

    Las presiones con que nos encontraremos son las siguientes:

    a) Presin atmosfrica. En fisiologa respiratoria convencionalmente se la considera como punto de referencia cero, expresndose las dems presiones como diferencias positivas o negativas

    b) Presin en la boca o entrada del aparato respiratorio. En situacin esttica, sin flujo de aire y con la boca y glotis abiertas, es de cero , o sea, igual a la atmosfrica y a la de las vas areas y alvolos. Cuando hay movimientos respiratorios oscila levemente por encima o por debajo de la presin atmosfrica, segn la fase de la respiracin.

    c) Presin en las vas areas. Es la que impulsa el flujo areo , segn la direccin de ste, es decreciente hacia el alvolo o hacia la boca.

    d) Presin alveolar. En condiciones estticas y con la glotis abierta es igual a la presin atmosfrica, pero, por efecto de los movimientos del trax, se hace mayor o menor que la de la boca, generando el flujo a travs de las vas areas.

    e) Presin pleural (Ppl). En la respiracin espontnea es habitualmente subatmosfrica o negativa, porque el tamao de reposo del pulmn es menor que el del trax. En la Figura 2-4 se ilustra la situacin observada al final de espiracin tranquila (CRF), en que el conjunto trax-pulmn est en equilibrio.

    Figura 2-4. Posicin de reposo del trax (T), pulmn (P) y del conjunto trax-pulmn (PT). A nivel CRF el trax y el pulmn se encuentran alejados de su posicin de reposo y traccionan en sentidos opuestos sobre el espacio pleural, determinando la negatividad de su presin.

    La posicin de reposo del pulmn aislado se encuentra por debajo de la CRF, y la posicin de reposo del trax por sobre la CRF. Por consiguiente, a este volumen pulmonar el espacio pleural est sometido a fuerzas opuestas que tienden a ampliarlo y, como este espacio es cerrado, en su interior se desarrolla una presin negativa. La Ppl puede medirse directamente insertando una aguja en el espacio pleural, pero en estudios fisiolgicos habitualmente se evala en forma indirecta a travs de la presin intraesofgica, que la representa adecuadamente y cuya medicin es menos invasiva. Para ello, se introduce un

  • 28

    catter plstico provisto de un baln de ltex en su extremo hasta el tercio inferior del esfago. Las presiones as registradas representan la presin pleural media.

    f) Presiones transmurales: el volumen de rganos o estructuras huecas y distensibles, como el pulmn y el trax, es determinado en parte por la diferencia de presiones en su interior y exterior o presin transmural.Si la presin interior es mas alta que la exterior el volumen de la estructura aumenta y si es menor ,el volumen se reduce

    f1) Presin transpulmonar (Ptp) es la diferencia entre la presin en la boca y la presin pleural. En condiciones estticas determina el grado de distensin del pulmn y en condiciones dinmicas debe, adems, vencer las resistencias opuestas al movimiento del aire

    f2) Presin tras-torcica: es la diferencia entre la presin pleural y la atmosfrica

    Lo esencial de lo expuesto es que la ventilacin es determinada por las diferencias de

    presin entre la atmsfera y el alveolo que oscilan por efecto de la actividad rtmica de

    los msculos respiratorios en combinacin con la elasticidad toracopulmonar y las

    resistencias opuestas al flujo areo

    MUSCULATURA RESPIRATORIA

    Desde el punto de vista funcional, puede considerarse que el trax se extiende desde el cuello hasta la pelvis e incluye, adems de la caja torcica propiamente tal, el diafragma y el abdomen. Esta cavidad tiene dos componentes rgidos: la columna vertebral y la pelvis, cuya forma no es modificada por la contraccin de los msculos respiratorios. En cambio, las paredes anterior y laterales se desplazan directamente por la accin muscular e indirectamente por los cambios de presin que sta provoca. En la Tabla 2-1 se indican los msculos respiratorios ms importantes.

    TABLA 2-1. ROL DE LOS MUSCULOS RESPIRATORIOS

    INSPIRATORIOS

    Utilizados durante respiracin tranquila

    Diafragma Escalenos Paraesternales

    Accesorios de la inspiracin Esternocleidomastoideo Trapecio Pectorales

    Fijadores de la pared torcica Intercostales externos

    ESPIRATORIOS

    Utilizados en espiracin forzada, Intercostales internos Abdominales

  • 29

    La respiracin en reposo es sostenida bsicamente por el diafragma, pero, para que su accin sea eficaz, es necesario que los msculos intercostales externos estabilicen el trax impidiendo que ste se hunda cuando se contrae el diafragma, lo que es especialmente importante en recin nacidos.Dado que la elasticidad del pulmn y trax tambin cooperan en la respiracin el gasto energtico de los msculos respiratorio durante el reposo representa slo un 4% del gasto total del organismo, pudiendo aumenta 15 a 20 veces durante el ejercicio

    Durante la espiracin tranquila no hay actividad de los msculos espiratorios, ya que esta fase es un fenmeno elstico pasivo. Sin embargo, el diafragma se mantiene en contraccin decreciente al comienzo de la espiracin, evitando que el pulmn se desinfle bruscamente por efecto de la retraccin elstica del pulmn. Si la ventilacin aumenta sobre 20 litros por minuto se agrega la contraccin activa de los msculos espiratorios abdominales. Sobre los 40 litros por minuto, como ocurre durante un ejercicio fsico intenso, se suman los msculos accesorios de la inspiracin, y si la ventilacin sobrepasa los 100 litros por minuto, como sucede en la ventilacin mxima voluntaria, se reclutan todos los msculos torcicos y abdominales que tienen alguna accin respiratoria. Los msculos espiratorios tambin entran en accin al soplar forzadamente, toser, cantar, tocar instrumentos de viento,etc

    DIAFRAGMA

    El diafragma es el principal msculo de la respiracin y se contrae con una frecuencia de por lo menos 10 veces por minuto durante toda la vida. Esta actividad continua es posible debido a que, si bien es un msculo esqueltico, tiene caractersticas bioqumicas y enzimticas que lo asemejan al miocardio: su contenido de mitocondrias y citocromo-oxidasas, su capacidad de metabolizar lactato y su flujo sanguneo son intermedios entre los msculos esquelticos y el miocardio. Estas cualidades permiten que el diafragma cumpla su papel de rgano esencial para la vida. Este carcter crucial del diafragma se ve confirmado por el hecho de que en insuficiencias circulatorias graves, como el shock, son el diafragma, el corazn y el cerebro los rganos que reciben prcticamente todo el flujo sanguneo disponible, quedando el resto del organismo con una mnima irrigacin.

    El diafragma tiene una morfologa nica entre los msculos esquelticos: forma una estructura en forma de cpula entre el trax y el abdomen cuyas fibras nacen de un tendn central dispuesto en forma horizontal a nivel del apndice xifoides y se dirigen radial y caudalmente hacia sus inserciones perifricas. Una parte de ellas se inserta en las 6 costillas inferiores y el esternn (diafragma costal), y la otra, en las primeras vrtebras lumbares (diafragma crural). Est inervado por los nervios frnicos cuyas races se originan desde C3 a C5.

    El flujo sanguneo lo recibe de las arterias mamaria interna, intercostales y frnicas inferiores, que presentan abundantes anastomosis entre ellas y forman una red alrededor del tendn central. Esta buena perfusin del diafragma permite que su flujo sanguneo pueda aumentar 5 a 6 veces cuando trabaja contra una carga respiratoria fisiolgica o patolgicamente aumentada.

    Para comprender el efecto inspiratorio de la contraccin diafragmtica es necesario tener presente la particular disposicin anatmica de este msculo (Figura 2-5).

  • 30

    Figura 2-5. Mecnica de la contraccin del diafragma. Al nivel de CRF una parte importante del diafragma est en contacto directo con la pared costal, formando la zona de aposicin (Z.A.).Al descender hacia el abdomen la contraccin del

    diafragma incrementa el tamao del trax aumentando su dimetro vertical. El aumento de los dimetros anteroposterior y lateral se debe a la transmisin de la presin positiva abdominal a la caja torcica a travs de la zona de aposicin, y a la elevacin de las costillas inferiores con un movimiento en asa de balde.

    Las fibras del diafragma parten del tendn central en forma radiada y, en su primera porcin, forman las cpulas diafragmticas dispuestas horizontalmente con su convexidad hacia el trax. Hacia la periferia las fibras toman una direccin crneo-caudal, adosndose a la cara interna de la caja torcica, para finalmente insertarse en las costillas inferiores. Se forma as una zona de aposicin, que permite que la presin intraabdominal acte sobre la parrilla costal inferior. En posicin de pies, la zona de aposicin representa 1/3 de la superficie endotorcica del msculo. Estas caractersticas morfolgicas determinan que la contraccin del diafragma aumente el tamao del trax en todos sus ejes a travs de los siguientes mecanismos:

    a) El acortamiento de las fibras diafragmticas produce el aplanamiento de las cpulas, que se desplazan hacia el abdomen, aumentando el eje longitudinal del trax y subiendo la presin abdominal.

    b) El acortamiento en sentido crneo-caudal de las fibras de la zona de aposicin levanta las costillas y, por la forma en que stas articulan con la columna vertebral, las desplaza hacia afuera (movimiento en asa de balde). Para que esta accin ocurra, se requiere que exista un mecanismo que impida que el tendn central del diafragma descienda libremente hacia el abdomen. Esto se logra por la resistencia que oponen en conjunto el contenido del abdomen y la tonicidad de sus msculos. La fijacin de la cpula diafragmtica as lograda provee a las fibras diafragmticas del punto de apoyo necesario para levantar las costillas.

    c) El aumento de la presin intraabdominal durante la inspiracin se transmite, a travs de la zona de aposicin, a la caja torcica inferior contribuyendo tambin a su expansin. La magnitud de este efecto depende del tamao del rea de aposicin y del grado en que aumenta la presin intraabdominal.

    Un factor que afecta importantemente la accin del diafragma es el volumen pulmonar. A medida que ste aumenta, como sucede en el enfisema, la elongacin del msculo al final de espiracin es menor con la consiguiente reduccin de eficacia en la inspiracin que sigue. Adems, el rea de aposicin se reduce progresivamente para desaparecer cuando el pulmn se acerca a su capacidad mxima (CPT). En ella las fibras diafragmticas se disponen perpendicularmente a la pared costal, y su contraccin puede traccionar hacia adentro el borde inferior de la caja torcica, en lugar de elevarlo.

  • 31

    La presin generada por el diafragma se estudia en fisiologa y fisiopatologa registrando las presiones que se generan al nivel del trax (presin intraesofgica) y del abdomen (presin intragstrica) cuando el diafragma se contrae. A medida que progresa la inspiracin la presin pleural se hace ms negativa y la abdominal ms positiva y la diferencia de presin que se produce entre el abdomen y el trax como consecuencia de la contraccin del diafragma se denomina presin transdiafragmtica (Pdi). Durante la respiracin tranquila el cambio de presin transdiafragmtica es de aproximadamente de 11 cm H2O y est determinado por un aumento de 7 cm H2O en la presin gstrica y una disminucin de 4 cm H2O en la presin torcica.

    EVALUACION DE LA FUNCION MUSCULAR RESPIRATORIA

    Por la forma de insercin y tipo de efectos que tiene la musculatura respiratoria, resulta imposible medir directamente las caractersticas que se miden fcilmente en un msculo esqueltico: fuerza generada, velocidad de contraccin y grado de acortamiento. Por ello se usan las presiones como ndice de fuerza (fuerza = presin/rea); el flujo areo alcanzado, como ndice de velocidad de contraccin, y el cambio de volumen pulmonar como expresin del acortamiento muscular.

    Al igual que otros msculos esquelticos, la fuerza de los msculos respiratorios depende de su longitud inicial. In vitro, la relacin tensin-longitud de estos msculos es del tipo Frank-Starling e in vivo se puede obtener una curva similar, relacionando las presiones transdiafragmticas mximas (tensin) con los volmenes pulmonares a que fueron medidas ya que, como se dijo, estos ltimos son ndices de la longitud de los msculos respiratorios (Figura 2-6).

    Figura 2-6. Relacin longitud-tensin del diafragma aislado. La mxima tensin activa durante una contraccin isomtrica se alcanza con una longitud levemente superior a la longitud de reposo (L), que corresponde, aproximadamente, a la longitud del diafragma al final de espiracin normal o CRF. El acortamiento del msculo hasta cerca de CPT disminuye acentuadamente su capacidad de generar tensin.

    En esta curva, se puede apreciar que el diafragma genera la mxima tensin cuando se encuentra elongado entre un 5 a 10% por encima de su longitud de reposo, o sea, al final de una espiracin forzada. Si en estas condiciones se le aplica un estmulo mximo, ya sea voluntario o elctrico, se obtiene la mxima presin que es capaz de generar. Cuando el diafragma se encuentra acortado, la presin que puede generar ante un mismo estmulo disminuye en forma considerable: al 75% de su longitud de reposo, la presin corresponde slo a un 20% de la mxima. Esto explica que los msculos inspiratorios generen su mxima presin al nivel de volumen residual, condicin en que se encuentran elongados. Por el contrario, los msculos espiratorios tienen su mxima fuerza en el nivel de capacidad pulmonar total.

    El parmetro de fuerza muscular inspiratoria ms usado en clnica es la presin inspiratoria mxima (PIMax) que se mide realizando al nivel de CRF un esfuerzo inspiratorio voluntario mximo, contra una vlvula con la rama inspiratoria ocluida. En esta maniobra se mide la fuerza de todos los msculos inspiratorios en conjunto y tiene la ventaja de ser simple y no invasiva. Adems

  • 32

    de medir el nivel mximo de presin inspiratoria alcanzada, debe determinarse el nivel que el paciente mantiene un segundo despus de alcanzado el mximo (Presin inspiratoria mxima sostenible).

    La fuerza mxima que desarrollan los msculos inspiratorios depende de la edad del individuo: el valor ms alto se alcanza alrededor de los 20 aos y decrece a razn de 0,5 cmH2O por ao de edad. Las mujeres generan aproximadamente un 75% de las presiones mximas que generan los hombres. Las cifras normales de PImax para un sujeto pueden predecirse a partir de su sexo y edad, pero el rango de variacin del valor as calculado es muy amplio por diferencias individuales de contextura general, estado nutricional y actividad fsica. En todo caso, se considera como anormal un valor inferior a 70 cm H2O para los hombres y de 50 cm H2O para las mujeres.

    Durante la respiracin tranquila existe una importante reserva muscular, ya que normalmente se utiliza menos del 10% de la presin transdiafragmtica mxima (Pdi max). En condiciones de mayor exigencia ventilatoria, este porcentaje aumenta, pero mientras no se sobrepase el 40% de la Pdi max, la ventilacin se puede mantener indefinidamente, siempre que la duracin de la espiracin sea normal (60% de la duracin total del ciclo respiratorio), ya que es en esta fase cuando los msculos inspiratorios descansan y se recuperan. El uso de presiones superiores al 40% de la capacidad mxima conduce a fatiga muscular inspiratoria: un individuo normal usando el 60-70% de su Pdi max no tolera ms de 4 a 5 minutos. Por otra parte, la fatiga se puede producir con porcentajes menores de Pdi max si se alarga el tiempo inspiratorio, reducindose el tiempo de reposo espiratorio.

    La musculatura espiratoria tiene un rol menos crtico porque la espiracin normal es un fenmeno pasivo que se produce gracias a la energa elstica acumulada durante la inspiracin. La musculatura espiratoria entra en actividad slo cuando la ventilacin est muy aumentada, cuando existen obstculos espiratorios o durante la tos. Las alteraciones de la musculatura espiratoria revisten especial gravedad en los pacientes con compromiso muscular o neurolgico, en quienes la menor eficacia de la tos facilita las infecciones respiratorias.

    En suma lo bsico es que durante la inspiracin en reposo los msculos deben vencer la fuerzas

    de retraccin elsticas y las resistencias friccionales, mientras que en la espiracin lo msculos

    no intervienen, bastando la retraccin elstica como fuerza impulsora. Slo en la espiracin

    forzada contra algn obstculo y cuando la ventilacin excede a 20 L/min se activan los

    msculos espiratorios.

  • 33

    RESISTENCIAS VENTILATORIAS

    Para lograr la movilizacin del aire, los msculos respiratorios deben vencer dos tipos de fuerzas que se oponen a ello:

    1. La elasticidad de pulmn y trax que tienden a mantener estas estructuras en su posicin de equilibrio de final de espiracin. Este obstculo, denominado elastancia, tiene la particularidad de que la energa que se invierte en vencerlo se recupera al dejar que el cuerpo deformado vuelva por s mismo a su posicin de partida. En el caso del pulmn, esta se opone a la inspiracin y es propulsora de la espiracin en cualquier nivel de volumen pulmonar. La situacin para el trax es ms compleja: en forma simplificada puede decirse que esta estructura se expande fcilmente cuando el volumen pulmonar est sobre la CRF, y que se resiste a reducir su volumen bajo este nivel.

    La elasticidad del sistema respiratorio en globo, pulmn y trax acoplados, es el balance entre la elasticidad de ambos componentes. El punto de reposo del sistema corresponde al final de una espiracin tranquila (CRF) y la elastancia del sistema se opone tanto a la inspiracin como a parte de la espiracin. En suma: la elastancia del pulmn es la principal fuerza elstica que se opone a la inspiracin normal, mientras que en la espiracin forzada bajo CRF (tos), la elastancia del trax es la principal fuerza que deben vencer los msculos espiratorios.

    2. Las resistencias friccionales que se deben principalmente al roce del aire en las vas areas y, en menor grado, a la friccin interna de los tejidos del aparato respiratorio. La energa invertida en vencer estas resistencias no es recuperable.

    Determinantes de la elasticidad pulmonar y torcica

    Como se dijo, un cuerpo elstico se caracteriza por recuperar, sin nuevo gasto energtico, su posicin o forma original cuando cesa la fuerza externa que lo deform. La elasticidad del pulmn es producto de diversos factores:

    a) La estructura fibro-elstica del parnquima pulmonar. b) La tensin superficial en la interfase aire-lquido alveolar. c) El tejido elstico y conectivo de vasos y bronquios. d) El contenido de sangre del lecho vascular pulmonar.

    Slo nos detendremos en los dos primeros factores - malla elstica y tensin superficial, pero antes veremos los mtodos que permiten estudiar la elastancia global y su resultante, la distensibilidad, con el solo objetivo de explicar mejor los conceptos ya que su ejecucin corresponde al rdea de investigacin.

    MEDICION DE LA ELASTICIDAD Y DISTENSIBILIDAD Existen varios mtodos para estudiar las propiedades elsticas del pulmn, pero solo consideraremos el ilustrado en la figura 2-9 que permite proyecciones importantes a la clnica.En ella se muestran trazados de volumen pulmonar y Ptp simultneos, obtenidos en un sujeto normal que hace una inspiracin mxima y luego espira escalonadamente, deteniendo la respiracin en volmenes decrecientes. Se registra la Ptp correspondiente a cada volumen y con estos datos se construye la curva P-V ilustrada en la Figura 2-10.

  • 34

    Figura 2-9. Medicin de curva presin-volumen pulmonar:

    Trazados de volumen pulmonar (V) y presin transpulmonar (Ptp). El sujeto inspira hasta CPT y luego espira escalonadamente hasta volumen residual.

    En cada detencin se mide el volumen pulmonar y la presin transpulmonar correspondiente, con el propsito de construir la curva presin-volumen pulmonar de la Figura 2-10.

    Figura 2-10. Curva de presin-volumen pulmonar obtenida de los trazados de la Figura 2-9. La distensibilidad pulmonar disminuye progresivamente al aumentar el volumen pulmonar:

    La distensibilidad entre 3 y 3,5 L es de 500 ml / 2 cm H2O = 250 ml/cm H2O.

    En cambio, entre 4 y 4,5 la distensibilidad es 500 / 5 =100 ml/cm H2O.

  • 35

    Se puede observar que, la distensibilidad disminuye progresivamente al aumentar el volumen pulmonar y que para lograr la capacidad pulmonar total se necesitan alrededor de 30 cm/H. Las curvas PV de individuos normales varan con la edad, ya que el pulmn se va haciendo ms distensible con el envejecimiento.La curva tambin vara por alteraciones patolgicas de las propiedades elsticas del pulmn en estudio (Fig. 2-11):

    Figura 2-11. Curvas presin-volumen pulmonar en fibrosis y enfisema pulmonar. En la fibrosis pulmonar la curva P-V se hace ms horizontal, se desplaza hacia abajo y a la derecha, con disminucin de CRF y CPT. En el enfisema pulmonar la curva P-V es ms vertical, est desplazada hacia arriba y a la izquierda con aumento de CRF y CPT.

    En el enfisema el pulmn se hace ms flcido por la destruccin de tabiques alveolares elsticos, la curva es ms vertical y est desplazada hacia la izquierda. Esto significa que para un determinado cambio de presin el cambio de volumen producido es mayor y que las presiones transpulmonares que es necesario desarrollar son bajas. Existe, por lo tanto, una distensibilidad pulmonar aumentada, que si bien facilita la inspiracin, significa una disminucin de la retraccin elstica, necesaria para la espiracin y para evitar el colapso de las pequeas vas areas que carecen de cartlago. En cambio, en la fibrosis pulmonar, en que hay reemplazo del tejido pulmonar elstico por tejido colgeno rgido, esta curva se hace ms horizontal y se desplaza hacia la derecha, lo que significa que para alcanzar un volumen determinado la magnitud de la presin transpulmonar que se deber generar ser mucho mayor, o.sea, aumenta el trabajo respiratorio

    Medida en esta forma, la distensibilidad del pulmn aparece menor en nios y personas pequeas. Ello no se debe a que sus pulmones sean ms rgidos, sino a que un determinado cambio de volumen puede significar una distensin muy importante para un pulmn pequeo, mientras que slo representa una fraccin de la distensin potencial para un pulmn grande. Este factor de distorsin se corrige calculando el cambio por litro de volumen pulmonar, o sea, dividiendo la distensibilidad absoluta por la CRF del pulmn. Se obtiene as la distensibilidad especfica, que es independiente del tamao pulmonar. Su valor, tanto en nios y adultos normales, es de 50 a 60 ml / cm H2O por cada litro de CRF.

  • 36

    En clnica slo excepcionalmente es necesario medir la distensibilidad, siendo suficiente deducir su estado segn la enfermedad del paciente y considerar las concrescencias fisiopatlgicas correspondientes.

    Hasta el momento slo hemos considerado la distensibilidad y retraccin elstica del pulmn, pero los msculos respiratorios tambin tienen que vencer la elasticidad y la resistencia friccional de los tejidos del trax., que representan alrededor de un 40% de las resistencias totales del aparato respiratorio.La figura 2-12 ilustra la inter-relacin de las resistencia pulmonares y torcicas

    Figura 2-12. Propiedades elsticas del pulmn, trax y sistema respiratorio en conjunto. En un sujeto normal la curva P-V del pulmn muestra que su posicin de reposo o colapso est por debajo del VR. En cambio, la posicin de reposo del trax est situada aproximadamente en el 60% de la CV. La curva P-V del sistema respiratorio se construye a travs de la suma algebraica de las curvas del pulmn y trax. Puede apreciarse posicin de

    reposo (CRF) del sistema respiratorio se alcanza aproximadamente a un 30% de la CV, volumen en el cual las presiones del pulmn y trax son de igual valor, pero de sentido opuesto. De lo anterior se deduce que en la inspiracin corriente que parte desde este punto la elasticidad del trax se suma a la accin de la musculatura inspiratoria.

    Puede apreciarse que la curva P-V del sistema respiratorio (trax y pulmn en conjunto) tiene forma de S itlica con su punto de reposo al nivel de capacidad residual funcional y que, a volmenes altos, el conjunto trax-pulmn ejerce una presin positiva tendiente a disminuir el volumen del sistema y volver a la posicin de reposo. Al nivel de inspiracin mxima o capacidad pulmonar total, esta presin es de alrededor de 40 cm H2O. Por el contrario, en volmenes inferiores a la CRF el sistema ejerce una presin negativa que tiende a aumentar el volumen pulmonar hasta volver a la posicin de reposo. Al nivel de volumen residual esta presin es de -40 cm H2O. La medicin de la curva P-V del sistema exige relajacin muscular total, por lo cual, en clnica, slo se usa en pacientes en ventilacin mecnica, durante la cual los msculos del paciente pueden estar inactivos. En estos pacientes, con el respirador se puede producir un cambio de volumen determinado y relacionarlo con el cambio de presin que lo produjo. Este ndice es til para seguir la evolucin de enfermedades que aumentan en forma aguda la rigidez pulmonar.

    Del grfico tambin puede deducirse que alteraciones que rigidizan el trax , como la cifoescoliosis, pueden llegar a ser el principal factor limitante de la funcin ventilatoria del sistema respiratorio

  • 37

    Estructura fibro elstica del pulmn

    Las fibras elsticas y colgenas del pulmn, aunque se encuentran acopladas, responden en forma diferente al estiramiento producido por la inspiracin. Las fibras elsticas son elongadas realmente y estn expuestas a romperse si el alargamiento es excesivo; las fibras colgenas, en cambio,se encuentran plegadas o formando redes, como un tejido de lana, que puede elongarse en globo sin que las fibras individuales lo hagan. Una vez totalmente estiradas, las fibras colgenas, de mayor firmeza, limitan la distensin del pulmn. En la Figura 2-13 se esquematiza la accin conjunta de estos dos elementos.

    Figura 2-13. Contribucin de las fibras elsticas y colgenas a la elasticidad pulmonar. A volmenes pulmonares bajos, las fibras colgenas estn plegadas, por lo que contribuyen poco a la elasticidad pulmonar, la que est determinada por las fibras elsticas. A volmenes pulmonares altos, en cambio, las fibras colgenas se despliegan y limitan la inspiracin, ya que son muy poco extensibles.

    TENSION SUPERFICIAL

    La tensin superficial es un determinante importante de la elasticidad pulmonar, que no est ligado a elementos estructurales sino que es una fuerza fsica presente en la superficie o interfase de contacto lquido-aire. Acta sobre las molculas superficiales del lquido, atrayndolas entre s y hacia su centro geomtrico, lo que explica por qu las gotas de agua o de mercurio tienden a la forma esfrica.

    Cada alvolo est internamente cubierto de una pelcula de agua, la cual se comporta como una burbuja que, por accin de la tensin superficial en la interfase lquido-aire, tiende a achicarse y colapsar. Segn la ley de Laplace, la presin necesaria para impedir el colapso de una burbuja se describe con la siguiente ecuacin:

    Presin= 2TS r

    De ella se desprende que si aumenta la tensin superficial (TS) se favorece el colapso, necesitndose mayor presin para impedirlo, mientras que si aumenta el radio , que tiene una relacin inversa, disminuye la tendencia al colapso. Esto explica que, en alvolos bien inflados, se necesite una pequea presin para impedir el colapso; en cambio, en los alvolos de radio reducido, como sucede normalmente en el recin nacido y en los alvolos basales del adulto o en algunas condiciones patolgicas (hipoventilacin, edema alveolar), la presin positiva intraalveolar o negativa perialveolar necesaria para distender esos alvolos y mantenerlos distendidos es considerablemente mayor (Fig. 2-14).

  • 38

    Figura 2-14. Influencia del radio en la presin por tensin superficial. En un pulmn sin surfactante, la presin por tensin superficial de un alvolo con radio pequeo es mayor que la de uno de radio mayor, lo que determina inestabilidad pulmonar, ya que los alvolos pequeos tienden al colapso, vacindose hacia los de mayor tamao. En condiciones normales esto no ocurre, ya que en los alvolos de menor radio el surfactante est ms concentrado, motivo por el cual la tensin superficial de stos disminuye, lo que estabiliza al pulmn.

    La tensin superficial del lquido pulmonar es menor que la del agua o la del plasma, lo que obviamente facilita la distensin del pulmn. Esto se debe a la presencia de una sustancia tensoactiva o surfactante que se dispone entre las molculas del lquido alveolar y disminuye su tensin superficial. Al disminuir el radio del alvolo estas molculas se concentran, con lo que baja aun ms la tensin superficial. De esta manera, la presin necesaria para mantener distendidos los alvolos resulta relativamente constante dentro de una amplia gama de radios alveolares, con la consiguiente estabilizacin alveolar. La accin del surfactante es similar a la del jabn que se agrega al agua para el juego de hacer pompas o globos con un tubo y agua jabonosa. El surfactante es producido por los neumocitos tipo II del epitelio alveolar y sus principales elementos activos son fosfolpidos.

    En el nivel corriente de ventilacin la tensin superficial representa ms del 50% de las fuerzas elsticas y es aun ms importante en las primeras respiraciones del recin nacido. Cuando falta el surfactante por prematuridad, se produce una grave condicin, llamada distrs respiratorio del recin nacido, con colapso alveolar difuso.

    Este efecto de la tensin superficial sobre la curva presin-volumen se ilustra en la Figura 2-15: la curva A corresponde a un pulmn normal lleno con aire, la curva B a la del mismo pulmn lleno de suero, y la C a un pulmn depletado de surfactante y lleno con aire.

    Figura 2-15. Contribucin del surfactante a la elasticidad pulmonar. La curva a muestra la relacin presin-volumen que se obtiene al inflar un pulmn normal con aire, con lo cual se produce una interfase aire-surfactante en los alvolos. La curva b es la relacin presin-volumen de un pulmn inflado con suero fisiolgico, en la cual no existe interfase aire-lquido donde acte la tensin superficial, por lo que slo representa las propiedades elsticas del tejido pulmonar. La curva c en cambio es la

    de un pulmn al que se ha removido el surfactante antes de inflarlo con aire. En este caso la interfase a nivel alveolar est constituida por aire-agua, con una alta tensin superficial, por lo cual el pulmn es mucho ms rgido que aquel con una tensin superficial disminuida por la presencia de surfactante.

  • 39

    Se puede observar que:

    a) Las presiones necesarias para distender el pulmn con aire son muy superiores a las que se necesitan para hacerlo con suero fisiolgico. Esta diferencia se debe a la tensin superficial, que se desarrolla en la interfase aire-lquido y no en la interfase lquido-lquido.

    b) La presin de colapso de la interfase aire-lquido se reduce considerablemente cuando existe surfactante en el lquido alveolar.

    Experimentalmente se ha observado que para iniciar la distensin de un pulmn colapsado debe aplicarse cambios de presin considerables antes de obtener un cambio de volumen notorio. Esto se debe a que se necesita una mayor presin para abrir vas areas y alvolos que estn con sus paredes hmedas en contacto. Una vez sobrepasado un determinado nivel de presin, las paredes adheridas se despegan y se obtienen cambios de volumen proporcionales a las variaciones de la presin transpulmonar. A volmenes pulmonares altos la elasticidad pulmonar se va acercando a su lmite, por lo que se requieren presiones mayores para lograr un mismo cambio de volumen.

    Resistencia de la va area (RVA)

    La resistencia que opone la va area al movimiento del aire se debe al roce de ste con las paredes de los conductos. Se mide a travs de la presin necesaria para obtener un flujo areo de 1 litro por segundo. Representa el 80% o ms de las resistencias friccionales que se oponen a los movimientos ventilatorios. El otro 20% corresponde a la resistencia friccional de los tejidos, que no analizaremos mayormente, por su menor importancia y dificultades para su medicin en clnica. Para medir la RVA es necesario conocer la diferencia de presin entre alvolo y boca, y el flujo areo resultante:

    RVA= P (alv) P (boca) = cm H2 Flujo areo L/seg

    De los tres factores que deben medirse en esta ecuacin el nico que constituye problema es la presin alveolar, que slo puede medirse en forma indirecta. Para ello se utiliza una cmara hermtica o pletismgrafo dentro de la cual se introduce al sujeto, quien respira el aire exterior a travs de un tubo. Los cambios de presin que se producen en la cmara como consecuencia de los cambios de volumen del trax son registrados y, por razones que no es necesario abordar, son de la misma magnitud pero de sentido inverso alos ocurridos dentro del alvolo.

    La resistencia que opone un tubo al flujo laminar de un fluido depende de varios factores, que se ilustran en la ecuacin de Poiseuille:

    L es el largo del tubo; la viscosidad del gas y r, el radio del tubo. Aun cuando esta ecuacin no se aplica exactamente a un sistema con reas de flujo turbulento como la va area, es vlida para destacar que el radio es el determinante ms importante de la resistencia, por estar elevado a la cuarta potencia, o sea, una reduccin del radio a la mitad significa que la resistencia aumenta 16 veces. La resistencia de la va area durante la respiracin tranquila es normalmente inferior a 2 cm H2O/ L /seg.

  • 40

    DISTRIBUCION DE LA RESISTENCIA EN LA VIA AEREA

    Estudios experimentales realizados en pulmones aislados han logrado establecer que la contribucin a la resistencia global es muy diferente para distintas zonas de la va area. En la Tabla 2-2 se resume la distribucin en un individuo normal. Si se respira a travs de la nariz la resistencia se duplica.

    TABLA 2-2 DISTRIBUCIN DE LA RESISTENCIA EN LA VA AREA

    rgano Resistencia

    Laringe y faringe 0,5

    Bronquios mayores de 2 mm de dimetro (hasta 9na generacin) 0,5

    Bronquios menores de 2 mm (sobre 9na generacin) 0,2

    Total 1,2 cm H2O/L/seg

    La escasa participacin de los bronquios menores de 2 mm, o va perifrica, en la resistencia total se debe fundamentalmente a los siguientes hechos:

    1. Como se destac en el captulo de morfologa, cuando un bronquio se divide en dos el rea conjunta de los bronquios hijos es mayor que la del bronquio madre. Esto va aumentando el rea total de seccin en forma muy significativa, aunque los bronquios individuales vayan siendo cada vez ms finos. El rea de la trquea es de 2,5 cm2, mientras que el rea conjunta de las vas perifricas llega a 10.000 cm2, o sea, 4.000 veces ms. Esta caracterstica ha hecho homologar la seccin total de la va area a una trompeta con un rea muy pequea cerca de de la boquilla (vas centrales) y una muy grande en el extremo contrario o pabelln (vas perifricas).

    2. Dado que la cantidad de aire que pasa por unidad de tiempo a travs de la trquea es la misma que fluye por la seccin progresivamente mayor de la periferia, la velocidad del aire va disminuyendo cada vez ms para llegar prcticamente a cero en las unidades terminales, donde las molculas se mueven por difusin gaseosa y no por flujo. La menor velocidad significa menor resistencia, la cual disminuye aun ms porque a este nivel el flujo es laminar, lo que opone mucho menos obstculo al flujo que las turbulencias asociadas a la alta velocidad del aire en los bronquios de mayor dimetro.

    3. Otro factor determinante es la ley fsica que indica que las resistencias acopladas en serie se suman en su valor absoluto, mientras que si se acoplan en paralelo se suman en su valor recproco, lo que significa una resistencia total menor. Existen slo 22 a 24 generaciones de bronquios colocados en serie que participan en la resistencia total a travs de la suma de sus valores absolutos, y 200 o ms generaciones de bronquios finos dispuestos en paralelo que participan en la resistencia total como la suma de sus valores recprocos. El efecto puede apreciarse a travs del siguiente ejemplo, en que se da un valor arbitrario de 2 a cada una de las resistencias: trquea, laringe y cada uno de los bronquios fuentes.

  • 41

    Resistencias en serie:

    R. laringe + R. trquea = R. total

    2 + 2 = 4

    Resistencia en paralelo:

    R. bronquio der. + R. bronquio izq. = R. total

    + = 1

    Como se ver ms adelante, esta caracterstica significa que fenmenos obstructivos de la regin perifrica pesan muy poco en la resistencia total y producen pocos sntomas, salvo cuando ya son muy pronunciados y extensos. Por esta razn, la pequea va area, constituida por ramas menores de 2 mm, ha sido llamada zona muda.

    RESISTENCIA DE LA VIA AEREA Y VOLUMEN PULMONAR

    La resistencia de la va area vara inversamente en relacin con el volumen pulmonar, siguiendo una curva que n