cs ee1265 nol

101
1 EE 1265 Control Engineering

Upload: prashanth641991

Post on 10-Apr-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 1/101

1

EE 1265 Control Engineering

Page 2: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 2/101

Page 3: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 3/101

EE1265 Control Engg -R Essakiraj

3

S ystem

A system is a collection of components

which are co-ordinate together to perform

a function.

Dynamic system: A system with a memory,

i.e., the input value at time t will influence

the output at future instants.

Systems interact with their environmentacross a separating boundary.

Page 4: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 4/101

EE1265 Control Engg -R Essakiraj

4

 A control system is a system that is

used to realize a desired output or  objective

Control is an essential element of almost

all engineering systems.

Control System Concepts

Page 5: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 5/101

EE1265 Control Engg -R Essakiraj

5

T  ypes of Control S ystem

Open loop control system

Closed loop control system

Page 6: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 6/101

EE1265 Control Engg -R Essakiraj

6

Open loop control system

 Any physical system which does not

automatically correct for variation in its

output is called open loop system.

The output may be changed to any

desired value by changing the input

signal manually.

Page 7: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 7/101

EE1265 Control Engg -R Essakiraj 7

Open loop control system

Example

1. Fan with regulator 

2. Traffic light control

Controller  Process

Page 8: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 8/101

EE1265 Control Engg -R Essakiraj 8

Closed loop control system

 A system that uses a measurement of  

the output and compares it with the

desired output.I/P O /P

CONROLLER PLANT

FEEDBACK

Page 9: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 9/101

EE1265 Control Engg -R Essakiraj 9

T  ypes of feedback controlsystems

1.Negative feedback

2.Positive feedback

Page 10: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 10/101

EE1265 Control Engg -R Essakiraj 10

Examples of feedback

system1. Room temperature control system.

2. Speed control of switched reluctance

motor.

3. Automatic aircraft landing system.

4. Automatic car driven system.

Page 11: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 11/101

EE1265 Control Engg -R Essakiraj 11

T ransfer function

For linear time invariant system

transfer function is defied as the ratio of  

Laplace transform of output to the Laplace

transform of input with initial zero condition.

Transfer function T(S) = C(s) / R(s)

G(S)

Page 12: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 12/101

EE1265 Control Engg -R Essakiraj 12

Mechanical systems

T  ypes of mechanical system

1.Translation system.

2.Rotational system.

Page 13: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 13/101

EE1265 Control Engg -R Essakiraj 13

Mechanical systemsTranslation system

Input Force

Output Displacement

Physical mass, spring,Element dash pot

Physical acceleration

variable velocity.

Page 14: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 14/101

EE1265 Control Engg -R Essakiraj 14

Mechanical systems

Rotational system

Input Torque

Output Angular Displacement

Physical Moment of inertia,Element spring, dash pot

Physical Angular velocity,variable acceleration

Page 15: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 15/101

EE1265 Control Engg -R Essakiraj 15

Page 16: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 16/101

EE1265 Control Engg -R Essakiraj 16

Force-Current Analogy

Page 17: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 17/101

EE1265 Control Engg -R Essakiraj 17

Force-Voltage Analogy

Page 18: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 18/101

UNIT-2

OPEN AND CLOSED LOOP SYST EMS

Page 19: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 19/101

EE1265 Control Engg -R Essakiraj 19

FEEDBACK CONTROLSYST 

EM

Page 20: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 20/101

EE1265 Control Engg -R Essakiraj 20

BLOCK DIAGRAM

A block diagram for a system is not

unique, meaning that it may manipulated

into new forms.

Typical a block diagram will be developed

for a system. The diagram will then be

simplified through a process that is both

graphical and algebraic.

Page 21: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 21/101

EE1265 Control Engg -R Essakiraj 21

RULES FOR BLOCK

DIAGRAM REDUCT ION Negative feedback reduction

Page 22: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 22/101

EE1265 Control Engg -R Essakiraj 22

Positive feedback reduction

Moving branches before block

Page 23: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 23/101

EE1265 Control Engg -R Essakiraj 23

Moving branches after block

Moving summation function before block

Page 24: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 24/101

EE1265 Control Engg -R Essakiraj 24

Moving summation function after block

Combining sequential function block

Page 25: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 25/101

EE1265 Control Engg -

R Essakiraj

25

Example for block diagram

reduction (car speed control)

Page 26: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 26/101

EE1265 Control Engg -

R Essakiraj

26

Example for block diagramreduction (car speed control)

Page 27: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 27/101

EE1265 Control Engg -

R Essakiraj

27

Example for block diagramreduction (car speed control)

Page 28: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 28/101

EE1265 Control Engg -

R Essakiraj

28

Signal flow graph(SFG)

A signal-flow graph is a diagram consisting of  

nodes that are connected by several directed

branches and is a graph representation of a set of linear relation.

Only valid for linear system

Page 29: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 29/101

EE1265 Control Engg -

R Essakiraj

29

Basic elements of SFG

Branch: A unidirectional path segment.

Nodes: The input and output points or junctions.

Path: A branch or a continuous sequence of  

branches that can be traversed from one node to

anther node.

Page 30: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 30/101

EE1265 Control Engg -

R Essakiraj

30

Basic elements of SFG

Loop:  A closed path that originates and

terminates on the same node, and along the path

no node is met twice.

Non-touching loops: If two loops do not have a

common node.

Touching loops: Two touching loops share one

or more common nodes.

Page 31: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 31/101

EE1265 Control Engg -

R Essakiraj

31

Mason·s gain formula

The linear dependence (Tij) between the

independent variable xi (input) and the dependent

variable (output) x j is given by Mason¶s SF gain

formula

ijk ijk 

ijk 

ijk ijk 

ij

 P 

k  P 

 P 

 paththeof cofactor graphtheof tdeterninan

xtoxfrom path  ji

th

!(!(

!

(

(

Page 32: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 32/101

EE1265 Control Engg -

R Essakiraj

32

Mason·s gain formula

(=1 ±(sum of all different loop gains) +(sum

of the gain products of all combinations of 

2 nontouching loops)-(sum of the gain

products of all combinations of 3nontouching loops)«

The cofactor is the determinant with

loops touching the kth path removed

ijk (

Page 33: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 33/101

EE1265 Control Engg -

R Essakiraj

33

Example

Page 34: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 34/101

EE1265 Control Engg -

R Essakiraj

34

Solution for Example

Two paths :P1, P2

Four loops

P1 = G1G2G3G4, P2= G5G6G7G8

L1=G2H2 L2=G3H3 L3=G6H6 L4=G7H7

Det (!- (L1+L2+L3+L4)+(L1L3+L1L4+L2L3+L2L4)

Cofactor for path 1:(

1= 1- (L3+L4) Cofactor for path 2: (2= 1-(L1+L2)

T(s) = (P1(1 + P2(2)/(

Page 35: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 35/101

Unit ² III(CHARACT ERIST ICEQUAT ION AND FUNCT IONS)

Page 36: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 36/101

EE1265 Control Engg -

R Essakiraj

36

Laplace transform of a

derivative term The Laplace transform of the derivative of a

function

where y(0-) is the initial condition associated with

y(t).

Page 37: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 37/101

EE1265 Control Engg -

R Essakiraj

37

Laplace transformation

Page 38: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 38/101

EE1265 Control Engg -

R Essakiraj

38

Different T  ypes of inputs

Step input,

Impulse input,

Ramp input,

Parabolic and

Sinusoidal inputs,

Page 39: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 39/101

EE1265 Control Engg -

R Essakiraj

39

Step input

t ime

)(t  x s

Figure 3.1. Step input.

Page 40: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 40/101

EE1265 Control Engg -

R Essakiraj

40

Ramp input

Figure 3.2. Ramp input.

Page 41: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 41/101

EE1265 Control Engg -

R Essakiraj

41

Sinusoidal inputs

Figure 3.3 Sinusoidal inputs

Page 42: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 42/101

EE1265 Control Engg -

R Essakiraj

42

Impulse input

Figure 3.4 Sinusoidal inputs

Here,

It represents a short, transient disturbance

. I U  t t H !

Page 43: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 43/101

EE1265 Control Engg -

R Essakiraj

43

Response of First-OrderS

 ystemsThe standard orm or a irst-order TF is:

Where

Find y(s) and y(t) for someparticular input x(s)

Page 44: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 44/101

EE1265 Control Engg -

R Essakiraj

44

Response of First-OrderS

 ystems1. Step response

Page 45: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 45/101

EE1265 Control Engg -

R Essakiraj

45

Response of First-OrderS

 ystems.

Page 46: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 46/101

EE1265 Control Engg -

R Essakiraj

46

Response of First-OrderS

 ystems2 . Ramp response.

R f Fi t O d

Page 47: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 47/101

EE1265 Control Engg -

R Essakiraj

47

Response of First-OrderS ystems

3. Sinusoidal response.

Page 48: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 48/101

EE1265 Control Engg -

R Essakiraj

48

Response of second-Order

S ystems Standard form of the second-order transfer  

function.

Where

is the process gain.

is the time constant which determines the

speed of response of the system

is the damping factor 

Page 49: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 49/101

EE1265 Control Engg -

R Essakiraj

49

Response of second-Order

S ystems The characteristic polynomial is the denominator 

of the transfer function:

=0 

Roots:

2 2

2 1 s s

Page 50: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 50/101

EE1265 Control Engg -

R Essakiraj

50

Response of second-Order

S ystems The type o behavior that occurs depends on the

numerical value o damping coe icient,

Page 51: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 51/101

EE1265 Control Engg -

R Essakiraj

51

Response of second-Order

S ystems

Page 52: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 52/101

EE1265 Control Engg -

R Essakiraj

52

Response of second-Order

S ystems

Page 53: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 53/101

EE1265 Control Engg -

R Essakiraj

53

Response of second-Order

S ystems

Page 54: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 54/101

EE1265 Control Engg -

R Essakiraj

54

T ime domain specification

1. Rise time( ) is the time the process output

takes to first reach the new steady-state value.

2. peak time( ) is the time required for the outputto reach its first maximum value.

3. Settling time( ) is defined as the time required

for the process output reach and remain inside a

band whose width is equal to 5% of the total

change in y .

r t 

 pt 

st 

Page 55: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 55/101

EE1265 Control Engg -

R Essakiraj

55

T ime domain specification

4. Overshoot: OS = a/b (% overshoot is 100a/b).

5. Decay Ratio: DR = c /a (where c  is the height of 

the second peak).

6. Period of Oscillation: P  is the time between

two successive peaks or two successive valleys

of the response.

Page 56: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 56/101

EE1265 Control Engg -

R Essakiraj

56

T ime domain specification

1. Rise time

2. peak time.

3. Overshoot:

Page 57: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 57/101

EE1265 Control Engg -

R Essakiraj

57

T ime domain specification

4. Decay Ratio:

5. Period of Oscillation:

d

Page 58: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 58/101

EE1265 Control Engg -

R Essakiraj

58

Steady state errors(Step Reference)

d

Page 59: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 59/101

EE1265 Control Engg -

R Essakiraj

59

Steady state errors(RAMP Reference)

S d

Page 60: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 60/101

EE1265 Control Engg -

R Essakiraj

60

Steady state errors(Parabolic Reference)

Page 61: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 61/101

EE1265 Control Engg -

R Essakiraj

61

Summary of steady stateerrors for different systems

Page 62: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 62/101

Unit ² IV(CONCEPT  OF ST ABILITY)

Page 63: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 63/101

EE1265 Control Engg -

R Essakiraj

63

Basic concept of stability

Page 64: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 64/101

EE1265 Control Engg -

R Essakiraj

64

Stability

 A system is stable if any bounded

input produces a bounded output for 

all bounded initial conditions.

Page 65: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 65/101

EE1265 Control Engg -

R Essakiraj

65

Stability of the system androots of characteristic equations

Page 66: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 66/101

EE1265 Control Engg -

R Essakiraj

66

Routh-Hurwitz Criterion

It is a technique that one can use to check thestability of the system from the characteristicequation without solving it.

Let¶s consider

Determine the closed-loop stability of this system

R th H it C it i

Page 67: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 67/101

EE1265 Control Engg -

R Essakiraj

67

Routh-Hurwitz Criterionexample

The characteristic equation of the system is:

1 + G(s) = 0

s3 + s2 + 2s +24 = 0

The Routh-Hurwitz table can be formulated as

follows:

R th H it C it i

Page 68: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 68/101

EE1265 Control Engg -

R Essakiraj

68

Routh-Hurwitz Criterionexample

R h H C

Page 69: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 69/101

EE1265 Control Engg -

R Essakiraj

69

Routh-Hurwitz Criterion

exampleSince there are two changes in the sign of the first

column of the Routh-Hurwitz table, there are two

unstable poles in the closed-loop system.In fact, the roots are:

Page 70: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 70/101

EE1265 Control Engg -

R Essakiraj

70

Bode plot

Plots of the magnitude and phase characteristics

are used to fully describe the frequency response.

A Bode plot is a (semilog) plot of the transfer 

function magnitude and phase angle as a function

of frequency

The gain magnitude is many times expressed in

terms of decibels (dB)dB = 20 log10 A

Page 71: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 71/101

EE1265 Control Engg -

R Essakiraj

71

Bode plot procedure

There is 4 basic forms in an open-loop transfer 

function G( j)H( j).

1.Gain factor, K

2.( j) p factor: pole and zero at origin

3.(1+ jT ) q factor 

4.Quadratic factor r 

nn

 j

s

¼¼½

»

¬¬-

« 2

2

21[ 

[ ^ 

Th i d d h

Page 72: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 72/101

EE1265 Control Engg -

R Essakiraj

72

T he magnitude and phaseplots for some typical factorsFactor Magnitude: Phase:

Gain, K 

 j

dB jG )( [  )( [  j

0dB20logK

0dB

120 dB/decade

Factor Magnitude: Phase:

Gain, K 

 j

90º

45º

0dB

Th i d d h

Page 73: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 73/101

EE1265 Control Engg -

R Essakiraj

73

T he magnitude and phaseplots for some typical factorsFactor Magnitude: Phase:

Gain, K 

 j

dB jG )( [  )( [  j

0dB20logK

0dB

120 dB/decade

Factor Magnitude: Phase:

Gain, K 

 j

90º

45º

0dB

Page 74: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 74/101

EE1265 Control Engg -

R Essakiraj

74

T he magnitude and phase

plots for some typical factorsFactor Magnitude: Phase:

 j2 

1 /j

dB jG )( [  )( [  j

0dB

-20 dB/decade

0dB

1

40log

40 dB/decade

180º

90º

-45º

-90º

Page 75: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 75/101

EE1265 Control Engg -

R Essakiraj

75

T he magnitude and phaseplots for some typical factors

Factor Magnitude: Phase:

1 /j2 

1+jT 

90º

45º

0dB

-40log

-40 dB/decade

0.1/T 1/T 10/T

dB jG )( [  )( [  j

Th it d d h l t

Page 76: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 76/101

EE1265 Control Engg -

R Essakiraj

76

T he magnitude and phase plotsfor some typical factors

Factor Magnitude: Phase:

1 / (1+jT 

dB jG )( [ 

0.1/T

)( [ j

Th it d d h l t

Page 77: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 77/101

EE1265 Control Engg -

R Essakiraj

77

T he magnitude and phase plotsfor some typical factors

Factor Magnitude: Phase:

n[ 

0dB

-90º

-180º

0dB

40 dB/decade

180º

90º

22

2

2

21log20 ¹¹ º

 ¸©©ª

¨

¹¹

 º

 ¸

©©

ª

¨

nn[ 

[ ^ 

n[ 

22

2

2

21log20 ¹¹ º

 ¸©©ª

¨

¹¹

 º

 ¸

©©

ª

¨

nn[

[^ 

[

[

-40 dB/decade

dB jG )( [  )( [  j

2

2

21

1

nn

 j[ 

[ ^ 

G i i d Ph

Page 78: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 78/101

EE1265 Control Engg -

R Essakiraj

78

Gain margin and Phase

marginGain margin:

The gain margin is the number of dB that is

below 0 dB at the phase crossover frequency (ø=-

180º). It can also be increased before the closed-

loop system becomes unstable.

Phase margin:

The phase margin is the number of degrees

the phase of that is above -180º at the gain

crossover frequency..

G i i d Ph

Page 79: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 79/101

EE1265 Control Engg -

R Essakiraj

79

Gain margin and Phase

margin0dB

20dB

-20dB

-40dB

-60dB

-90º

-180º

-270º

Gain margin

Phase marginPhase Crossover 

with -180º line

Gain Crossover with 0dB line

Magnitudecurve

Phasecurve

Log Phase

(Degree)

Magnitude(dB)

Page 80: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 80/101

EE1265 Control Engg -

R Essakiraj

80

Root locus

The root locus is the path of the roots of the

characteristic equation traced out in the s-plane

as a system parameter is varied.

Root locus and system performanc e

1. Stability

2. Dynamic performance

3. Steady-state error 

Page 81: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 81/101

EE1265 Control Engg -

R Essakiraj

81

T he Root Locus Procedure

S tep 1: Write the characteristic equation as

S tep 2 : Rewrite preceding equation into the form of 

poles and zeros as follows:

0)(1 ! s F 

0)(

)(

1

1

1!

!

!

n

i

i

 j

 j

 p s

 z  s

 K 

Page 82: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 82/101

EE1265 Control Engg -

R Essakiraj

82

T he Root Locus Procedure

S tep 3:

Locate the poles and zeros with specific

symbols, the root locus begins at the open-loop

poles and ends at the open-loop zeros asK 

increases from 0 to infinity.

If open-loop system has n-m zeros at infinity,

there will be n-m branches of the root locus

approaching the n-m zeros at infinity.

Page 83: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 83/101

EE1265 Control Engg -

R Essakiraj

83

T he Root Locus Procedure

S tep 4:The root locus on the real axis lies in a section

of the real axis to the left of an odd number of  

real poles and zeros.

S tep 5:The number of separate loci is equal to the

number of open-loop poles.

S tep 6:

The root loci must be continuous andsymmetrical with respect to the horizontal real

axis.

Page 84: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 84/101

EE1265 Control Engg -

R Essakiraj

84

T he Root Locus Procedure

S tep 7:The loci proceed to zeros at infinity along

asymptotes centered at and with angles

mn

 z  p

n

i

m

 j

 ji

a

!

§ §! !1 1

)1,2,1,0()12( !

! mnk mn

k a .T J 

Page 85: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 85/101

EE1265 Control Engg -

R Essakiraj

85

T he Root Locus ProcedureS 

tep 8:The actual point at which the root locus crosses

the imaginary axis is readily evaluated by using

Routh criterion.

S tep 9:Determine the breakaway point d  (usually on

the real axis):

§ §! ! !

m

 j

n

i i j pd  z d 1 1

11

Page 86: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 86/101

EE1265 Control Engg -

R Essakiraj

86

T he Root Locus ProcedureS tep 10 :

Determine the angle of departure of locus from

a pole and the angle of arrival of the locus at

a zero by using phase angle criterion

i p

i z 

)(180,11

0 §§{!!

!n

i j j

 p p

m

 j

 p z  p i ji jiUN U

)(180 1,1

0

§§ !{!

!

n

 j z  p

m

i j j z  z  z  i ji ji UN N 

Page 87: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 87/101

EE1265 Control Engg -

R Essakiraj

87

T he Root Locus ProcedureStep 11:

Plot the root locus that satisfy the phase criterion.

Step 12:Determine the parameter value K 1 at a specific

root using the magnitude criterion.

.,2,1)12()( !! k k  s P  T 

1 s

11

11

)(

)(

 s s

m

 j

 j

n

i

i

 z  s

 p s

 K 

!!

!

!

Page 88: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 88/101

EE1265 Control Engg -

R Essakiraj

88

ExampleSketch the root locus of the following system

Page 89: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 89/101

UNIT-V

SAMPLED DAT A S YST EMS

Page 90: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 90/101

EE1265 Control Engg -

R Essakiraj

90

Digital control

1. More useful for computer systems

2. Time is discrete

denoted k instead of t

3. Main tool is z-transform

f (k ) ® F (z ) , where z is complex

 Analogous to Laplace transform for s-domain

§g

!

!!

0

)()()]([k 

k  z k  f   z  F k  f  Z

Page 91: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 91/101

EE1265 Control Engg -

R Essakiraj

91

Digital Controller Adv antage

1. Modern digital technology(DSP, FPGA,ADC)

2. Cost effective and precise power supply

3. High flexibility and modularity

4. High functionality5. Built in all functions for PS

Current regulator(PI, feed forwarder)

Direct PWM generation

Fast control port

Analog, Digital I/O

Block diagram of digital

Page 92: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 92/101

EE1265 Control Engg -

R Essakiraj

92

Block-diagram of digitalsystem

Two views of uniform rate

Page 93: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 93/101

EE1265 Control Engg -

R Essakiraj

93

T wo views of uniform-ratesampling:

Spectrum of a Sampled

Page 94: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 94/101

EE1265 Control Engg -

R Essakiraj

94

Spectrum of a SampledSignal

Spectrum

 ± Consider a cont. signal r(t)

 ± with sampled signal r*(t)

 ± Laplace transform R*(s) can be calculated

§

§

g

g!

g

g!

!

!

 s

 jn s RT 

 s R

k T t t r t r 

)(1

)(

)()()(

[

H r(t) r*(t)

Spectrum of a Sampled

Page 95: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 95/101

EE1265 Control Engg -

R Essakiraj

95

Spectrum of a Sampled

Signal

Page 96: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 96/101

EE1265 Control Engg -

R Essakiraj

96

Z transform

Consider a sequence of values: {xk : k = 0,1,2,... }

These may be samples of a function x(t),

sampled at instants t = k T ; thus x k  = x( k T).

The Z transform is simply a polynomial in z 

having the x k  as coefficients:

Page 97: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 97/101

EE1265 Control Engg -

R Essakiraj

97

Uses of Z transform

Analysis of Discrete & Sampled-data Systems

Transfer Function & Block Diagram

Representations

Exploit the z-plane

 ± Dynamic Analysis

 ± Root Locus Design

Z-transform of a sampled

Page 98: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 98/101

EE1265 Control Engg -

R Essakiraj

98

Z-transform of a sampledsignal

? A

 f   t  f kT  t  kT 

 F  s L f   t  f kT e

 z  e

 F  z  f kT  z 

k  sT 

 sT 

*

* *

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

!

! !

!

!

!

g

!

g

!

g

§

§

§

H 0

0

1

0

Partial table of z- and s-

Page 99: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 99/101

EE1265 Control Engg -

R Essakiraj

99

Partial table of z- and s-transforms

Page 100: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 100/101

EE1265 Control Engg -

R Essakiraj

100

z -transform theorems

Sampled-data systems and

Page 101: Cs Ee1265 Nol

8/8/2019 Cs Ee1265 Nol

http://slidepdf.com/reader/full/cs-ee1265-nol 101/101

Sampled data systems andtheir z -transforms