department of electrical engineering, national taiwan university 1 學生 : 黃仕澔 指導教授 :...

34
1 RTO RTCVD poly RTCVD nitride Clean Module Load lock ellipso- meter foup Department of Electrical Engineering, National Taiwan University 學學 : 學學學 學學學學 : 學學學 學學 Novel Metal-Oxide- Semiconductor Device

Upload: sophie-cannon

Post on 17-Jan-2016

225 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

1

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

學生 : 黃仕澔指導教授 : 劉致為 博士

Novel Metal-Oxide-Semiconductor Device

Page 2: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

2

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

Strained Si/SiGe Heterojunction Tri-gate FETs

High-k Reliability

Electrical Characteristics of High-k Material

Page 3: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

3

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

Strained Si/SiGe Heterojunction Tri-gate FETs

Page 4: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

4

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

OUTLINE

• INTRODUCTION

• DEVICE STRUCTURE

• NMOS DEVICES

• PMOS DEVICES

• SUMMARY

Page 5: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

5

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

INTRODUCTION

• By incorporating the strained Si channels

⇨ enhance the carrier mobility

⇨ Strained Si/SiGe heterojunction to control the channel position

NMOS:

(1) Enhanced current drive

(2) Improved subthreshold swing

PMOS:

Very limited enhancement of current drive

Page 6: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

6

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

DEVICE STRUCTUREThe strained Si/SiGe FinFET structure. (a) 3D schematic diagram (The spacers between source/drain and

gate are not shown in order to reveal the fin structure) (b) Cross-section view along A-A’

DrainA

oxide

Poly gate

{SOI

Source

}SOI

F

T

StrainedSi

H

Poly gate

oxide SiGe

Sioxide

Fin

(a) (b)

Gate length

A’

Page 7: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

7

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

3D Simulation : A fully strained Si and a fully relaxed SiGe are used in simulation assumption:(1) strained-Si is thin enough (2) strained Si/ relaxed SiGe i

s in the metastable state due to the low thermal budget

- Structure Details (1) channel doping of 1016cm-3

(2) dual polysilicon gate (n+ for NMOS, p+ for PMOS) (3) 1.5 nm gate oxide (4) abrupt source/drain-to-channel junctions (5) and a Si0.8Ge0.2 body with fixed 5 nm surrounding Si

- Physics Model (1)The mobility enhancement factors - In starined Si: electron:1.7x hole:2x - In SiGe body: electron : 0.25x hole: 0.6x (2) Drift-Diffusion Model (3) Heterojunction band alignment

DEVICE STRUCTURE

Page 8: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

8

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

NMOS DEVICES

• Electron distribution along the A-A’ cross-section under 3 bias conditions for

(a) control device (b) strained Si/ SiGe NMOS • Bias conditions:(i) subthreshold region: VGS-VT = -0.1V(i) @ threshold: VGS-VT= 0V (i) > threshold region: VGS-VT = 0.3V.

-0.02 -0.01 0.00 0.01 0.021013

1014

1015

1016

1017

1018

1019

Elec

tron

conc

entra

tion

(cm

-3) (a)

Background doping

Lg=100 nm T=40 nm H=80 nm

Elec

tron

conc

entra

tion

(cm

-3)

Position (m)

VGS

-VT = -0.1 V

VGS

-VT = 0 V

VGS

-VT = 0.3 V

-0.01 0.00 0.01 0.021013

1014

1015

1016

1017

1018

1019

Position (m)

(b)

Page 9: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

9

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

• Dependence of subthreshold swing on fin width T

•A narrower fin width shows lower subthreshold swing •The subthreshold swing is improved in the strained Si/SiGe device as compared to the control device

20 25 30 35 40

65

70

75

80

85

90

NMOS Lg=80 nm H=80 nm

Su

bth

resh

old

sw

ing

S (

mV

/dec

)

Fin wdith T (nm)

Control Strain

NMOS DEVICES

Page 10: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

10

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

•Dependence of subthreshold swing on channel length Lg•A shorter channel length shows higher subthreshold swing•The subthreshold swing is improved in the strained Si/SiGe device as compared to the control device

60 70 80 90 100

70

80

90

100

110

120

130NMOS T=40nm H=80nm

Su

bth

resh

old

Sw

ing

S (

mV

/dec

)

Gate length Lg (nm)

Control Strain

NMOS DEVICES

Page 11: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

11

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

• Threshold voltage roll-off characteristics. • Strained Si/SiGe device has a slightly smaller roll-off

20 30 40-0.25

-0.20

-0.15

-0.10

Lg=80 nm

NMOS H=80nm

Th

resh

old

vo

ltag

e V

T (

V)

Fin width T (nm)

Strain Control

60 80 100-0.30

-0.25

-0.20

-0.15

T=40 nm

Th

resh

old

vo

ltag

e V

T (

V)

Gate length Lg (nm)

NMOS DEVICES

Page 12: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

12

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

• LD dependence on DIBL

•Larger LD has larger barrier lowering ⇨yields a more negative VT

•H is the fin height

DrainSource

small LD

large LD

more negative VT

EC

T= fin widthH= fin height

NMOS DEVICES

G. Pei et al., IEEE Trans. Electron Device, 2002.

Page 13: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

13

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

• Hole distribution along the A-A’ cross-section under three different bias conditions for

(a) control device

(b) strained Si/SiGe PMOS

• Bias conditions:

(i) subthreshold region :

VGS-VT = 0.1V

(i) @ threshold region:

VGS-VT = 0 V

(i) > threshold region:

VGS-VT = -0.3V.

-0.02 -0.01 0.00 0.01 0.021013

1014

1015

1016

1017

1018

1019

Hol

e co

ncen

trat

ion

(cm

-3)

(a)

Background doping

Lg=100 nm T=40 nm H=80 nm

Hol

e co

ncen

trat

ion

(cm

-3)

Position (m)

VGS

-VT = 0.1 V

VGS

-VT = 0 V

VGS

-VT = -0.3 V

-0.01 0.00 0.01 0.021013

1014

1015

1016

1017

1018

1019

Position (m)

(b)

PMOS DEVICES

Page 14: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

14

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

• The band diagram of the strained Si/SiGe device and control device

•Due to band offset at Si/SiGe heterojunction

⇨ the hole inversion layer can be formed at less negative gate voltage

PMOS DEVICES

120meV

EF

-eVGS

Si

Str-Si Relx-Si0.8Ge0.2

80meV120meV

Page 15: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

15

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

• Dependence of subthreshold swing on fin width T

•A narrower fin width shows lower subthreshold swing •The strained Si/SiGe device shows higher subthreshold swing than the control device.

PMOS DEVICES

20 25 30 35 4060

70

80

90

100PMOS L

g=80nm H=80nm

Su

bth

resh

old

sw

ing

S (

mV

/dec

)

Fin wdith T (nm)

Control Strain

Page 16: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

16

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

•Dependence of subthreshold swing on channel length Lg•A shorter channel length shows higher subthreshold swing•The the strained Si/SiGe device shows higher subthreshold swing than the control device

PMOS DEVICES

60 70 80 90 100

70

80

90

100

110

120

130PMOS T=40nm H=80nm

Su

bth

resh

old

Sw

ing

S (

mV

/dec

)

Gate length Lg (nm)

Control Strain

Page 17: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

17

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

• Threshold voltage roll-off characteristics. • Strained Si/SiGe device has a slightly larger roll-off

PMOS DEVICES

20 30 400.05

0.10

0.15

0.20

0.25

Lg=80 nm

PMOS H=80nm

Th

resh

old

vo

ltag

e V

T (V

)

Fin width T (nm)

Strain Control

60 80 1000.10

0.15

0.20

0.25

0.30

T=40 nm

Th

resh

old

vo

ltag

e V

T (V

)

Gate length Lg (nm)

Page 18: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

18

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

SUMMARY

•This novel strained Si/SiGe FinFET with the enhanced carrier mobility and heterojunction confinement is demonstrated with greatly improved performance for NMOS by 3-D simulation •The PMOS is not improved as much as NMOS due to the buried channel at the Si/SiGe heterojunction

Page 19: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

19

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

Electrical Characteristics of High-k Material

Page 20: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

20

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

OUTLINE

• INTRODUCTION

• DEVICE STRUCTURE

• RESULTS

• SUMMARY

Page 21: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

21

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

INTRODUCTION

tox

n + n +L

Gate oxide

• Speed Increases with Charge Carrying Capacity, Q = CV.

C=ε/ t

MOSFET Structure

εinsulator : 3.9~40

ε= εinsulator ․ ε0

t : Insulator thickness (<5nm)

Page 22: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

22

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

SiO2

Si

Hf (HfN) 0.5nm

1nm SiO2

Si

HfO2 (HfON)

PtDEVICE STRUCTURE

Device structure before and after oxidation

Page 23: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

23

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

Hf(0.5nm)/RTO oxide(1nm)

4000C RTO

(N2+O2(0.5%),30s)

6000C

(N2,30s)

8000C

(N2,30s)

5000C RTO

(N2+O2(0.5%),30s)

6000C

(N2,30s)

8000C

(N2,30s)

6000C RTO

(N2+O2(0.5%),30s)

6000C

(N2,30s)

8000C

(N2,30s)

-2 -1 0 1 2 30.00E+000

5.00E-011

1.00E-010

1.50E-010

2.00E-010

2.50E-010

3.00E-010

3.50E-010

4.00E-010

4.50E-010

5.00E-010

5.50E-010

6.00E-010

6.50E-010

7.00E-010

7.50E-010

8.00E-010

8.50E-010

Sample1:Hf(0.5nm)/RTO oxide(1nm)

4000C(N2+O

2(0.5%),30s)+6000C(N

2,30s)

500k 100k 10k 1k 500 Two Frequence

Cp

V

-2 -1 0 1 2 30.00E+000

5.00E-011

1.00E-010

1.50E-010

2.00E-010

2.50E-010

3.00E-010

3.50E-010

4.00E-010

4.50E-010

5.00E-010

5.50E-010

6.00E-010

6.50E-010

7.00E-010

7.50E-010

8.00E-010

8.50E-010

Sample2:Hf(0.5nm)/RTO oxide(1nm)

4000C(N2+O

2(0.5%),30s)+8000C(N

2,30s)

500kHz 100kHz 10kHz 1kHz 500Hz 100Hz 50Hz Two Frequence

Cp

V

-2 -1 0 1 2 30.00E+000

5.00E-011

1.00E-010

1.50E-010

2.00E-010

2.50E-010

3.00E-010

3.50E-010

4.00E-010

4.50E-010

5.00E-010

5.50E-010

6.00E-010

6.50E-010

7.00E-010

7.50E-010

8.00E-010

8.50E-010

Sample3:Hf(0.5nm)/RTO oxide(1nm)

5000C(N2+O

2(0.5%),30s)+6000C(N

2,30s)

500k 100k 10k 1k 500 Two Frequency

Cp

V

-2 -1 0 1 2 30.00E+000

5.00E-011

1.00E-010

1.50E-010

2.00E-010

2.50E-010

3.00E-010

3.50E-010

4.00E-010

4.50E-010

5.00E-010

5.50E-010

6.00E-010

6.50E-010

7.00E-010

7.50E-010

8.00E-010

8.50E-010

Sample4:Hf(0.5nm)/RTO oxide(1nm)

5000C(N2+O

2(0.5%),30s)+8000C(N

2,30s)

500k 100k 10k 1k 500 Two Frequency

Cp

V-2 -1 0 1 2 3

0.00E+000

5.00E-011

1.00E-010

1.50E-010

2.00E-010

2.50E-010

3.00E-010

3.50E-010

4.00E-010

4.50E-010

5.00E-010

5.50E-010

6.00E-010

6.50E-010

7.00E-010

7.50E-010

8.00E-010

8.50E-010

Sample5:Hf(0.5nm)/RTO oxide(1nm)

6000C(N2+O

2(0.5%),30s)+6000C(N

2,30s)

500k 100k 10k 1k 500 Two Frequency

Cp

V

-2 -1 0 1 2 30.00E+000

5.00E-011

1.00E-010

1.50E-010

2.00E-010

2.50E-010

3.00E-010

3.50E-010

4.00E-010

4.50E-010

5.00E-010

5.50E-010

6.00E-010

6.50E-010

7.00E-010

7.50E-010

8.00E-010

8.50E-010

Sample6:Hf(0.5nm)/RTO oxide(1nm)

6000C(N2+O

2(0.5%),30s)+8000C(N

2,30s)

500kHz 100kHz 10kHz 1kHz 500Hz 100Hz 50Hz Two FrequenceCp

V

Cet(nm):1.7 Cet(nm): 1.6 Cet(nm): 1.3 Cet(nm): 1.6 Cet(nm): 1.4

bad good bad bad bad good

*good --- the CV-curve is better. Because I get the low frequency CV-curve.

Cet(nm): 1.9

Page 24: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

24

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

HfN(0.5nm)/RTO oxide(1nm)

4000C RTO

(N2+O2(0.5%),30s)

6000C

(N2,30s)

8000C

(N2,30s)

5000C RTO

(N2+O2(0.5%),30s)

6000C

(N2,30s)

8000C

(N2,30s)

6000C RTO

(N2+O2(0.5%),30s)

6000C

(N2,30s)

8000C

(N2,30s)

-2 -1 0 1 2 30.00E+000

5.00E-011

1.00E-010

1.50E-010

2.00E-010

2.50E-010

3.00E-010

3.50E-010

4.00E-010

4.50E-010

5.00E-010

5.50E-010

6.00E-010

6.50E-010

7.00E-010

7.50E-010

8.00E-010

8.50E-010

Sample11:HfN(0.5nm)/RTO oxide(1nm)

4000C(N2+O

2(0.5%),30s)+6000C(N

2,30s)

500k 100k 10k 1k 500 Two Frequence

Cp

V

-2 -1 0 1 2 30.00E+000

5.00E-011

1.00E-010

1.50E-010

2.00E-010

2.50E-010

3.00E-010

3.50E-010

4.00E-010

4.50E-010

5.00E-010

5.50E-010

6.00E-010

6.50E-010

Sample12:HfN(0.5nm)/RTO oxide(1nm)

4000C(N2+O

2(0.5%),30s)+8000C(N

2,30s)

500kHz 100kHz 10kHz 1kHz 500Hz 100Hz 50Hz Two FrequenceCp

V

-2 -1 0 1 2 30.00E+000

5.00E-011

1.00E-010

1.50E-010

2.00E-010

2.50E-010

3.00E-010

3.50E-010

4.00E-010

4.50E-010

5.00E-010

5.50E-010

6.00E-010

6.50E-010

7.00E-010

7.50E-010

8.00E-010

8.50E-010

Sample13:HfN(0.5nm)/RTO oxide(1nm)

5000C(N2+O

2(0.5%),30s)+6000C(N

2,30s)

500k 100k 10k 1k 500 Two Frequency

Cp

V-2 -1 0 1 2 3

0.00E+000

5.00E-011

1.00E-010

1.50E-010

2.00E-010

2.50E-010

3.00E-010

3.50E-010

4.00E-010

4.50E-010

5.00E-010

5.50E-010

6.00E-010

6.50E-010

7.00E-010

7.50E-010

8.00E-010

8.50E-010

Sample14:HfN(0.5nm)/RTO oxide(1nm)

5000C(N2+O

2(0.5%),30s)+8000C(N

2,30s)

500k 100k 10k 1k 500 Two Frequency

Cp

V

-2 -1 0 1 2 30.00E+000

5.00E-011

1.00E-010

1.50E-010

2.00E-010

2.50E-010

3.00E-010

3.50E-010

4.00E-010

4.50E-010

5.00E-010

5.50E-010

6.00E-010

6.50E-010

7.00E-010

7.50E-010

8.00E-010

8.50E-010

Sample15:HfN(0.5nm)/RTO oxide(1nm)

6000C(N2+O

2(0.5%),30s)+6000C(N

2,30s)

500k 100k 10k 1k 500 Two Frequency

Cp

V

-2 -1 0 1 2 30.00E+000

5.00E-011

1.00E-010

1.50E-010

2.00E-010

2.50E-010

3.00E-010

3.50E-010

4.00E-010

4.50E-010

5.00E-010

5.50E-010

6.00E-010

6.50E-010

7.00E-010

7.50E-010

8.00E-010

8.50E-010

Sample16:HfN(0.5nm)/RTO oxide(1nm)

6000C(N2+O

2(0.5%),30s)+8000C(N

2,30s)

500kHz 100kHz 10kHz 1kHz 500Hz 100Hz 50Hz Two Frequence

Cp

V

Cet(nm): 1.4 Cet(nm): 1.8 Cet(nm): 2.1 Cet(nm): 2.1 Cet(nm): 2.61.9(at -1.8v)

Cet(nm): 2.2

bad good bad goodbad bad

*good --- the CV-curve is better. Because I get the low frequency CV-curve.

Page 25: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

25

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

-2 -1 0 1 2 310-6

1x10-5

1x10-4

10-3

10-2

10-1

100

101Hf metal oxidation

Gat

e C

urre

nt D

ensi

ty, J

g (A

/cm

2 )

sample1 sample2 sample3 sample4 sample5 sample6

Gate Voltage(V)

-2 -1 0 1 2 310-6

1x10-5

1x10-4

10-3

10-2

10-1

100

101HfN metal oxidation

Gat

e C

urre

nt D

ensi

ty, J

g (A

/cm

2 )

sample11 sample12 sample13 sample14 sample15 sample16

Gate Voltage(V)

The Jg-Vg of Hf and HfN oxidation.

Page 26: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

26

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

SUMMARY

•The C-V curve with RTO at 600oC and PDA at 800oC measured at the lowest frequency (50Hz) could be got, and its C-V in accumulation region is the flattest compared with other samples.

Page 27: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

27

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

High-k Reliability

Page 28: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

28

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

OUTLINE

• INTRODUCTION

• DEVICE STRUCTURE• EXPERIMENT and RESULTS

• SUMMARY

Page 29: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

29

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

INTRODUCTION

• ultra thin oxide, tunneling current

• negative bias at gate electrode (accumulation)

• electron tunneling

• hole + e- => h

Page 30: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

30

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

2 nm

0.7 nm

2 nm

0.7 nm

Cross-section TEM micrograph of HfO2 on p-type Si wafer, after 300 sec post deposition annealing at 600 . ℃

DEVICE STRUCTURE

Page 31: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

31

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

0 2000 4000 6000 8000 100000.50

0.75

1.00

fresh

D2-treated

(a)

Stress Time (sec)

0.50

0.75

1.00H

2-treated

fresh

(b)

No

rma

lize

d I

nte

ns

ity

(I/

I 0)EXPERIMENT and RESULTS

Time evolutions of light emission intensity for (a)H2- and (b)D2-treated devices under constant current stress at 100 mA.

Page 32: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

32

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

-3 -2 -1 0 1 2 310-9

10-7

1x10-5

10-3

10-1

101

Gat

e C

urre

nt D

ensi

ty, J

g (A

/cm

2 )

Gate Voltage (Volt)

fresh Stress (1) PMA (H

2)

Stress (2)

EXPERIMENT and RESULTS

Recoverable Jg -Vg curves incorporating H2 treatment with constant current stress at 100 mA for 104 sec.

Page 33: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

33

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

-3 -2 -1 0 1 2 310-5

10-4

10-3

10-2

10-1

100

101

Gat

e C

urre

nt D

ensi

ty, J

g (A

/cm

2 )

Gate Voltage (Volt)

fresh Stress (1) PMA (D

2)

Stress (2)

EXPERIMENT and RESULTS

Recoverable Jg -Vg curves incorporating D2 treatment with constant current stress at 100 mA for 104 sec.

Page 34: Department of Electrical Engineering, National Taiwan University 1 學生 : 黃仕澔 指導教授 : 劉致為 博士 Novel Metal-Oxide-Semiconductor Device

34

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foupDepartment of Electrical Engineering, National Taiwan University

SUMMARY

•Deuterium -treated technology provides slightly better reliability improvement on optical reliability