department of organic chemistrydiposit.ub.edu/dspace/bitstream/2445/61063/28/8. organic...department...

54
Rouen Cathedral Claude Monet, 1892-94 2014-2015 Autumn 8. Oxidations Dr. Pere Romea Department of Organic Chemistry Organic Synthesis

Upload: others

Post on 20-Oct-2020

7 views

Category:

Documents


1 download

TRANSCRIPT

  • Rouen CathedralClaude Monet, 1892-94

    2014-2015 Autumn

    8. Oxidations

    Dr. Pere Romea Department of Organic Chemistry

    Organic Synthesis

  • Oxidations

    + O– H

    + O– HOH

    R1 HH

    O

    R1

    O

    R1H OH

    OH

    R1 R2H

    O

    R1

    O

    R1R2 OR2

    1ary Alcohol

    2ary Alcohol

    Aldehyde

    Ketone

    Carboxylic Acid

    Ester

    + O

    + H2O + 2 O

    + 2 O

    C CC CH OH

    C CO

    C CHO OH

    C COO

    AlkeneAlcohol

    Epoxide

    1,2-Diol

    Carbonyls

    2Pere Romea, 2014

  • Oxidations

    + O– H

    + O– H

    1ary Alcohol

    2ary Alcohol

    Aldehyde

    Ketone

    Carboxylic Acid

    OH

    R1 HH

    O

    R1

    O

    R1H OH

    OH

    R1 R2H

    O

    R1

    O

    R1R2 OR2

    Ester

    Cr(VI) Reagents

    DMSO/E+ Mixtures

    Other oxidizing agents

    3 Pere Romea, 2014

  • Carbonyls from Alcohols

    Cr(VI) Reagents

    Cr(IV)

    H

    OH

    RH R H

    O

    H

    O

    RH

    Cr

    O

    OHO

    OCrO

    O

    HOCrOH

    O

    H

    O

    RHO

    Cr

    O

    OHO

    H

    OH

    RHO R OH

    OOCrO

    O

    +

    HOCrOH

    O

    +

    Cr(IV)

    Cr(VI)

    Cr(VI)

    HOCrOH

    O

    Cr(III)Cr(IV) – Overoxidation is a problem– Aqueous media facilitate the oxidation of the resultant aldehyde

    – Chromium wastes are harmful

    4Pere Romea, 2014

  • Carbonyls from Alcohols

    – CrO3/H3O+: Jones reagent

    H

    OH

    RH R OH

    O

    R2

    OH

    R1H R1 R2

    O

    Aqueous media facilitate the oxidation of the resultant aldehyde

    5

    – CrO3/2py: Collins reagent

    H

    OH

    RH R H

    O

    R2

    OH

    R1H R1 R2

    O

    Kinetics are rather slow and high loadings are usually required

    N Cr N

    O

    O O

    These reagents are hygroscopic and can easily catch fire and burn during their preparation,so other commercially available reagents are usually employed

    Pere Romea, 2014

  • Carbonyls from Alcohols

    OTBSO

    O

    O

    O

    O

    1) TBAF, THF

    2) CrO3 2py, CH2Cl281%

    OH

    H

    O

    H

    CrO3 2py

    CH2Cl295%

    O OO

    OO

    O

    CO2t-Bu

    OHH

    O OO

    OO

    O

    CO2H

    OH

    1) Jones

    2) HCOOH

    96%

    6

    BnOOTBS

    OCO2Me

    BnO CO2HO

    CO2Me

    Jones

    –10 °C to rt

    90%

    Pere Romea, 2014

  • Carbonyls from Alcohols

    H

    OH

    RH R H

    O

    R2

    OH

    R1H R1 R2

    O

    – [pyH]+[CrO3Cl]–: pyridinium chlorochromate, PCC

    N H

    O

    CrO Cl

    O

    More reactive than the Collins reagent

    Somehow Lewis acid character

    – 2[pyH]+[Cr2O7]2–: pyridinium dichromate, PDC

    N H2 [Cr2O7]2–

    H

    OH

    RH R H

    O

    R2

    OH

    R1H R1 R2

    O

    CH2Cl2R OH

    ODMF

    7 Pere Romea, 2014

  • Carbonyls from Alcohols

    OH H

    OPDC

    CH2Cl292%

    MeO2C OH MeO2C H

    OPCC

    CH2Cl285%

    NH

    OH

    O

    HTBSO

    H

    NHCO2H

    O

    HTBSO

    HPDC

    DMF

    91%

    8

    O

    HO

    OTIPSHClNC

    O

    H

    OOTIPSH

    ClNC

    O

    H

    O

    PCC

    CH2Cl2, 4 Å MS, rt

    100%

    Pere Romea, 2014

  • Carbonyls from Alcohols

    DMSO/Electrophile mixtures

    – The activation of DMSO with an electrophile gives an alkoxysulfonium salt

    – This proceeds through a acid/base and an ene reaction

    – There is a variety of electrophiles: DCC, (COCl)2, py-SO3,...

    MeS

    Me

    OE

    MeS

    Me

    OE

    R1

    O R2H

    H

    R1

    O R2HS

    Me

    H

    R1 R2

    O

    NR3

    O

    H

    R2R1

    SMe – Me2S

    Alkoxysulfonium salt

    9

    Activated sulfoxide

    Pere Romea, 2014

  • Carbonyls from Alcohols

    Electrophile

    10

    Activated sulfoxide Reaction name

    MoffatR N C N RNHR

    NR

    MeSMe

    O

    MeSMe

    O

    MeSMe

    OE

    MeSMe

    X

    SwernMe

    SMe

    Cl

    ClCl

    O

    O

    Parikh-DoeringSO

    O O MeSMe

    OSO3

    Pere Romea, 2014

  • Carbonyls from Alcohols

    – Moffatt: DCC, cat H+

    MeSMe

    O

    R N C N R

    H

    NHRNR

    MeSMe

    O

    R1

    O R2H

    H

    R1

    O R2HS

    Me

    H

    R1 R2

    O

    OMeO

    OTBDPS

    H HOH

    OMeO

    OTBDPS

    H HO

    DMSO, DCC, H+ cat

    CH2Cl280%

    O

    HOHCO2Me

    Si-PrO

    HCHO

    CO2Me

    Si-PrO

    HCHO

    CO2Me

    Si-Pr

    DMSO, DCC

    TFA-py

    80%

    +

    9 : 1

    – It was the first– Room temperature

    11

  • Carbonyls from Alcohols

    – Swern: (COCl)2, Et3N, –78 °C

    R1

    O R2HS

    Me

    HR1 R2

    O

    NR3

    O

    H

    R2R1

    SMe – Me2S

    MeS

    Me

    O

    Cl

    R1

    O R2H

    HCl

    Cl

    O

    O

    Cl

    O

    OMe

    SMe

    O – CO2, – CO

    Cl

    ClS

    Me

    Me

    – HCl

    – Very mild conditions

    OMeTBSO

    O O

    OTIPS

    H

    MeO

    O N

    OHOH

    OMe

    O

    H

    TIPS

    OTBS

    OMeTBSO

    O O

    OTIPS

    H

    MeO

    O N

    OO

    OMe

    O

    H

    TIPS

    OTBS

    DMSO, (COCl)2, Et3N

    CH2Cl2, –78 °C

    80%

    DMSO, (COCl)2, Et3N

    CH2Cl2, –78 °C

    > 90%

    HO

    OMe

    OTBSH

    OMe

    OTBS

    O

    12

  • Carbonyls from Alcohols

    – Parikh-Doering: SO3 . py, R3N

    – Temperature: 0 °C, rt– Easy work-up

    Mechanism?

    DMSO, SO3 py, i--Pr2NEt

    CH2Cl2, –15 °C

    94%

    O

    OTBS

    ON OH

    OR

    O

    OTBS

    ON O

    ORR: N

    OO

    Bn

    13

    O

    O•

    BrHHO

    H

    H

    H

    O

    O•

    BrHO

    H

    H

    H

    H

    DMSO, SO3 py, Et3N

    CH2Cl2, rt

    99%

    Pere Romea, 2014

  • Carbonyls from Alcohols

    Iodine(V)–based reagents

    – Dess-Martin Periodinane: DMP OI

    O

    OAcAcOOAc

    I (V) I (III)

    R1

    O R2H

    H

    – AcOH R1 R2

    O

    O

    I

    O

    AcO

    OAc

    OAc

    O

    I

    O

    AcO

    OAc

    R1

    O R2H

    O

    I

    O

    OAc

    – AcOH

    – This is a very mild oxidant that can safely be used in structurally complex and sensitive substrates

    – NaHCO3 or pyridine are often added to moderate the acidity of the reaction mixture

    – The addition of one equivalent of water usually enhances the kinetics

    14 Pere Romea, 2014

  • Carbonyls from Alcohols

    i-Pr

    O

    I

    OTBS

    HOH H

    i-Pr

    O

    I

    OTBS

    H H

    H

    ODMP

    CH2Cl289%

    OI

    O

    OAcAcOOAc

    DMP

    O

    OR3SiO

    TBSOH

    H

    OH TESO

    O

    Ot-Bu2Si

    OOTES

    O OTESOMe

    OTES

    OOO

    OR3SiO

    TBSOH

    H

    O TESO

    O

    Ot-Bu2Si

    OOTES

    O OTESOMe

    OTES

    OO

    DMP, py

    CH2Cl293%

    15 Pere Romea, 2014

  • Carbonyls from Alcohols

    Iodine(V)–based reagents

    – 2-Iodoxybenzoic acid: IBX

    – There are safely concerns regarding the potentially violent decomposition upon impact or at high T

    – Low solubility in typical organic solvents.

    16

    OI

    O

    OHO

    – A mixture of PhCO2H, Ph(COOH)2, and IBX (22/29/49) has been developed

    – DMSO is the choice or polymer-supported IBX

    – Not susceptible to hydrolysis

    – Remarkable chemoselectivity: exceptionally mild oxidant for the highly selective transformation of

    primary and secondary alcohols into carbonyl compounds, and 1,2-diols into hydroxycarbonyls

    – Catalytic amounts of IBX can be used in the presence of stoichiometric amounts of ozone

    Pros and cons:

    For a review, Kirsch, S. F. ACIE 2011, 50, 1524

    Pere Romea, 2014

  • Carbonyls from Alcohols

    17

    IBX

    1:1 DMSO/THF

    O O

    OH

    OOTIPS

    MOMO

    O O

    OH

    OOTIPS

    MOMOO

    O O

    H

    OOTIPS

    MOMOPinnik Ox

    see later

    89% overall yield23 °C

    O

    1) TBAF

    2) IBX, EtOAc, reflux

    70%

    OOHO

    TBSO

    OMe

    O

    Ph

    O

    OOHO

    OMe

    O

    Ph

    O

    O

    Pere Romea, 2014

  • Carbonyls from Alcohols

    Ruthenium–based reagents

    – Tetra-n-propylammonium perruthenate: TPAP ORuO

    O ONPr4

    – Used as catalyst in the presence of stoichiometric amounts of a second oxidant (NMO, O2)

    O

    NMe O

    NMO

    TPAP, NMO

    CH2Cl2, ta

    97%

    TBSOOH

    O

    O

    TBSOH

    O

    O

    O

    CH2Cl2, 4 Å MS, ta

    TPAP (10 mol%), O2OH H

    O

    85%

    18 Pere Romea, 2014

  • Carbonyls from Alcohols

    Radicals as oxidizing agents

    – 2,2,6,6-Tetramethylpiperidinyloxy: TEMPO NO

    – TEMPO is a very mild and chemoselective

    oxidant: only 1ary and 2ary alcohols are affected

    – 1ary Alcohols are oxidized more easily than

    2ary Alcohols : chemo- & siteselective

    – TEMPO is used under catalytic premises in the

    presence of stoichiometric amounts of another

    oxidizing agent as ClO–, PhI(OAc)2, or Cu(I)/O2

    – The mechanism depends on this second reagent

    19Other mechanisms have been proposed

    NO

    NO

    NOH

    NO O

    HH R

    RCHO

    RCH2OH + B

    HB

    OxidationOxidation

  • Carbonyls from Alcohols

    20

    OHN

    O

    Boc

    HN

    O

    Boc

    O

    NaBr (1 eq), NaHCO3 (3 eq)

    EtOAc/toluè/H2O, 0 °C

    90%

    TEMPO (20 mol%), NaClO (1 eq)

    TEMPO (10 mol%), PhI(OAc)2 (2 eq)

    CH2Cl2, rt

    65%

    AcO i-Pr

    O

    HO

    HO

    AcO i-Pr

    O

    HOH

    O

    HO

    OH

    H

    OHO

    TEMPO (10 mol%)

    CH2Cl2, rt

    PhI(OAc)2 (1 eq)

    HO

    OHO

    NaClO2, NaH2PO4

    t-BuOH/H2O, rt

    76% overall

  • Carbonyls from Alcohols

    Radicals as oxidizing agents

    – 2-Azaadamantane N-oxyl radicals:

    AZADO

    21

    N O N O N O N O

    TEMPO AZADO 1-Me-AZADO 1,3-Me2-AZADO Iwabuchi, Y. JACS 2006, 128, 8412

    – Four Me groups flanking the nearby catalytic center in TEMPO prevent bulky substrates forming the key intermediates

    – AZADO family, a structurally less hindered class of nitroxyl radicals, may overcome this problem

    5 mol% AZADO

    NaClO2, pH 4.6

    HOCO2H CO2Me

    TMSCHN2MeOH

    67% overall

    Structurally hindered alcohol Sodium chlorite acts as the stoichiometric oxidant and

    transforms the resulting aldehyde into a carboxylic acid. See next slide

  • Carboxylic Acids from Carbonyls

    Pinnik oxidation: sodium chlorite, NaClO2:

    – Sodium chlorite is a cheap, mild, and chemoselective oxidizing reagent: only aldehydes are affected

    – 2-Methyl-2-butene is usually added to remove the resultant sodium hypochlorite

    RCHO + ClO2– RCO2H + ClO

    22

    O

    TBSOCO2MeCHO

    OF3C

    OO

    TBSOCO2Me

    O

    O

    1) NaClO2, NaH2PO4, 2-methyl-2-butenet-BuOH, H2O

    95%

    2) CF3CH2OH, 2,6-lutidine

    O

    CHO

    H

    TBSO

    O

    CO2H

    H

    TBSO

    NaClO2, NaH2PO4, 2-methyl-2-butene

    t-BuOH, H2O

    80%

    Pere Romea, 2014

  • Carboxylic Acids from Carbonyls

    – Pinnik oxidation is often the second step of an oxidizing sequence

    leading from primary alcohols to carboxylic acids

    23

    O

    PGO OMe OH

    O

    O

    O

    OOPG

    OMe

    CO2Me

    O

    PGO OMe

    O

    O

    O

    OOPG

    OMe

    2) NaClO2, NaH2PO4, 2-methyl-2-butenet-BuOH, H2O

    95%

    3) CH2N2

    1) DMP, py, CH2Cl2

    O O

    Bu3Sn

    HOH O O

    Bu3Sn

    CO2HH1) TPA, NMO, CH2Cl2

    55%

    2) NaClO2, NaH2PO4, 2-methyl-2-buteneTHF, t-BuOH, H2O

    Pere Romea, 2014

  • Esters from Ketones

    Baeyer-Villiger oxidation: Peracids, RCO3H:

    R1 R2

    O

    R1 R2

    OO O

    RO

    HRCO3H

    – RCO2H R1 OR2

    O

    (H) > tertiary > secondary > benzyl ≈ phenyl > vinyl > primary > Me

    – Although steric factors can come in to play, the propensity to migrate is enhanced by EDG groups

    – Migration of R2 proceeds with retention of the configuration

    – The oxidation is catalyzed by acids

    – Electronically poor peracids and electronrich ketones give faster oxidations

    – Peracids react with olefines very easily

    24 Pere Romea, 2014

  • Esters from Ketones

    25

    m-CPBA

    95%

    CH2Cl2

    MeO

    OO

    MeO

    O

    OAcO

    I

    MeO

    OO

    AcO

    MeO

    O2) I2, KI1) NaOH

    3) Ac2O, py

    n-Bu3SnH

    99%

    benzene,rt

    EtO

    OTBDPS

    OH

    O

    O

    Et

    OTBDPSOH

    CO2Me

    OTBDPS

    TESOTMSO Et

    1) MeOH, K2CO3

    74% overall

    2) TESCl, base, TMSCl

    m-CPBA

    AcOH

    – A variety of peracids can be used …

    O

    O

    O

    CH3CO3H

    85%

    NCO2Me

    Boc

    O

    NCO2Me

    Boc

    OH

    1) CF3CO3H, CH2Cl2

    58%

    2) Na2HPO4, H2O

    … but mCPBA is the most common one

    Pere Romea, 2014

  • 1

    Oxidations

    + O– H

    + O– H

    + O

    + H2O + 2 O

    + 2 O

    OH

    R1 HH

    O

    R1

    O

    R1H OH

    OH

    R1 R2H

    O

    R1

    O

    R1R2 OR2

    1ary Alcohol

    2ary Alcohol

    Aldehyde

    Ketone

    Carboxylic Acid

    Ester

    C CC CH OH

    C CO

    C CHO OH

    C COO

    AlkeneAlcohol

    Epoxide

    1,2-Diol

    Carbonyls

    Pere Romea, 2014

  • Oxidations

    + O

    + H2O + 2 O

    + 2 O

    C CC CH OH

    C CO

    C CHO OH

    C COO

    AlkeneAlcohol

    Epoxide

    1,2-Diol

    Carbonyls

    Epoxidation of alkenes

    Dihydroxylation of alkenes

    Other oxidations

    2 Pere Romea, 2014

  • Epoxidation of Alkenes

    With peracids

    – The third oxygen of peracids has a remarkable electrophilic character and the carboxylate is a good leaving group …

    – Since alkenes have a nucleophilic character (remember electrophilic additions to C=C), they react with peracids and an oxygen is transferred in a syn concerted step.

    HO

    O

    O R

    R1R2

    R1R2 R

    1 R2O

    + RCO2HR O

    OH

    O

    syn Addition

    mCPBA

    CF3 OOH

    O

    Me OOH

    O

    Cl

    O

    OOH

    H

    OO

    O

    RNu NuOH + O

    O

    R

    electrophilic oxygen good leaving group

    3 Pere Romea, 2014

  • Epoxidation of Alkenes

    – This epoxidation is sensitive to electronic effects. It proceeds faster with electronically poor peracids (CF3CO3H > mCPBA > CH3CO3H)

    and electronically rich alkenes

    Me

    Me

    Me

    Me

    Me

    H

    Me

    Me

    H

    H

    Me

    Me

    H

    Me

    Me

    H

    H

    H

    Me

    H

    > >> >�

    4

    CO2Me CO2MeOCH2Cl2, Δ

    84%

    CF3CO3H

    O

    CHCl3,rt

    72%

    mCPBA

    OCHCl3,rt

    86%

    mCPBA

    Pere Romea, 2014

  • Epoxidation of Alkenes

    5

    – This epoxidation is also sensitive to steric effects. The peracids generally approach from the less hindered side of the olefin …

    … unless other functional groups near the olefin can direct the orientation of the incoming reagent

    CO2HH

    HHO

    O CO2HH

    HHO

    O

    OmCPBA

    benzene/dioxane, 24 h, rt

    80%

    O

    RR RR

    O

    RR

    mCPBA+

    R : HR : Me

    20 min, rt24 h, rt

    99< 10

    1> 90

    Pere Romea, 2014

  • Epoxidation of Alkenes

    – This happens in allylic and homoallylic alcohols: hydroxyl group can direct the approach of the peracids overcoming the steric hindrance of the system

    t-Bu

    OR

    t-Bu

    OAc

    O

    t-Bu

    OH

    O

    RCO3H

    R: Ac

    O

    H

    t-BuO

    HO

    O H

    R

    RCO3H

    R: H

    OAc

    OH

    OAc

    OHO

    mCPBA

    CH2Cl2

    78%

    6

    OH

    R3

    R2

    R1

    R1R2 R3 O

    H

    OR

    OOH

    OH

    R3

    R2

    R1O

    RCO3H

    this hydrogen bond determinesthe stereochemical outcome of the epoxidation

    Pere Romea, 2014

  • Epoxidation of Alkenes

    With peroxides and bases: ROOH / OH–

    TBHP

    HOOHMe O

    OH

    Me

    Me

    – The geometry of the alkene does not control de configuration of the resulting epoxide because it is a stepwise process

    H

    R2

    R1

    R1R2

    H

    R3

    O

    R3

    OO

    R3R2

    O

    HR1

    O

    R

    O OR

    O OR

    7

    – Is it possible to transfer any nucleophilic oxygen?

    O

    R2

    nucleophilic oxygen

    R1O

    OH + B R1

    OO + HB

    R1O

    O

    R2

    O

    R1O

    O R2

    O

    R1O

    O R2

    O

    OR1

    O +

    Pere Romea, 2014

  • Epoxidation of Alkenes

    O OO

    H2O2, NaOH

    85%

    O

    OCbzHN

    N OMe

    O

    O

    OCbzHN

    N OMe

    O

    OTBHP, BnNMe3OH

    95%

    THF, –20 °C

    8 Pere Romea, 2014

  • Epoxidation of Alkenes

    With peroxides in a neutral medium: dioxiranes

    Shi

    O

    O CF3

    CH3

    O

    O CH3

    CH3O

    OO

    OO

    OO

    DMDO

    TFDO

    – Dioxiranes are three membered–rings peroxides

    – They can be prepared by oxidation with Oxone.

    They can be isolated in solution or prepared in situ

    CH3

    CH3OO

    O CH3

    CH3KHSO5, KHSO4, K2SO4

    NaHCO3, H2O

    Oxone

    – Dioxiranes show an strong electrophilic character: electronrich alekenes are easily oxidized

    – They are no compatible with amines or sulfur-derived compounds

    – The epoxidations are carried out under very mild conditions

    – The reduced system is a carbonylic compound: acetone in the case of DMDO!

    R1R2

    R1R2

    O

    O CH3

    CH3O

    O CH3

    CH3

    R1R2

    OO

    CH3

    CH3+

    syn Addition

    9

  • Epoxidation of Alkenes

    10

    OSiMe3

    OSiMe3O

    DMDOacetone, CH2Cl2

    –40 °C, 3 h100%

    O

    Cl

    HO

    O

    Cl

    HOO

    DMDOacetone, Δ, 57 h

    100%

    O

    O

    Ph O

    O

    PhO

    Oxone, NaHCO3

    CH3CN/H2O, 0 C, 1.25 h

    99%

    CH3

    CF3O

    CO2Me CO2MeODMDO

    acetone

    100%

    Pere Romea, 2014

  • Epoxidation of Alkenes

    HO

    O OH

    O

    O

    N

    S

    HO

    O OH

    O

    O

    N

    SO

    DMDO

    97%

    11

    HOOH

    HOOH

    O O

    O O O

    OHO HO

    HO

    H HO H O H OH

    CSA, toluene, 0 °C 31% overall

    Shi, Oxone CH3CN, H2O, pH 10.5, 0 °C

    Pere Romea, 2014

  • Epoxidation of Alkenes

    Enantioselective epoxidation of allylic alcohols: Sharpless epoxidation

    12

    R2 OH

    R1

    R3TBHP

    5-10 mol% Ti(i-PrO)4

    TBHP

    5-10 mol% Ti(i-PrO)4

    EtO2CCO2Et

    OH

    OH

    (2R,3R) Diethyl TartrateL-(+)-DET

    (2S,3S)-Diethyl TartrateD-(–)-DET

    6-12 mol% 6-12 mol%

    R2 OH

    R1

    OR3

    R2 OH

    R1

    R3O

    EtO2CCO2Et

    OH

    OH

    MS, CH2Cl2, –20 °C MS, CH2Cl2, –20 °C

    R1R2 R3

    OH

    (2R,3R) Diethyl TartrateL-(+)-DET

    (2S,3S)-Diethyl TartrateD-(–)-DET

    Pere Romea, 2014

  • Epoxidation of Alkenes

    – Unless disubstituted Z alkenes, any other alkene can be submitted to Sharpless AE

    OH OH

    OH

    OH OH

    OH OH OH

    Not appropriate

    OH OHO

    5 mol % TiL4 (+)-DIPT 0 °C 2 h 90% ee 65%

    5 mol % TiL4 (+)-DIPT –20 °C 3 h > 98% ee 89%

    10 mol % TiL4 (+)-DET –10 °C 24 h 86% ee 74%

    5 mol % TiL4 (+)-DET –10 °C 12 h 95% ee 88%

    OHO

    PhOHPh

    OHO

    H15C7

    OH

    H15C7

    OHO

    Pr

    OH

    Pr

    13Pere Romea, 2014

  • Epoxidation of Alkenes

    - The asymmetric induction imparted by the TBHP, TiL4, tartrate system is pretty high

    OHO

    O OHO

    O

    OOH

    OO

    O

    mCPBA

    TBHP, Ti(i-PrO)4

    TBHP, Ti(i-PrO)4, (–)-DIPT

    TBHP, Ti(i-PrO)4, (+)-DIPT

    1 : 1.4

    1 : 2.3

    1 : 90

    22 : 1

    +

    OOHR

    OOHR

    OO

    SPhR

    OH

    OHTi(i-PrO)4

    (+)-DIPT, TBHPCH2Cl2, –20 °C

    > 95% ee 92%

    PhSH, NaOH

    t-BuOH/H2O, Δ

    71%R: CHPh2

    OH OHOTi(i-PrO)4

    (–)-DET, TBHP, MSCH2Cl2, –20 °C

    > 98% ee 92% 14Pere Romea, 2014

  • Oxidations

    + O

    + H2O + 2 O

    + 2 O

    C CC CH OH

    C CO

    C CHO OH

    C COO

    AlkeneAlcohol

    Epoxide

    1,2-Diol

    Carbonyls

    Epoxidation of alkenes

    Dihydroxylation of alkenes

    Other oxidations

    15 Pere Romea, 2014

  • Dihydroxylation of Alkenes

    syn Diols with OsO4

    16

    NMO

    Catalytic version: OsO4 is costly and toxic, so it is advantageous to use it as catalyst with a cooxidant (NMO)

    syn Addition

    R1R2 R3

    R4

    OsO

    O

    O

    O

    R1R2 R3

    R4

    OOs

    O

    O O

    R1R2 R3

    R4

    OHHO

    Oxidation

    N

    O

    OH2O

    OsO

    O

    O

    OOs(VIII)

    Os(VI)Os(VIII)

    Stoichiometric version: recall MnO4–

    R1R2 R3

    R4

    OsO

    O

    O

    O

    R1R2 R3

    R4

    OOs

    O

    O O

    R1R2 R3

    R4

    OHHOHydrolysis

    OHOs

    HO

    O OOs(VI)

    Os(VIII)

    syn Addition

    Pere Romea, 2014

  • Dihydroxylation of Alkenes

    PhPh

    PhPh

    OH

    OH

    PhPh

    OH

    OH

    OsO4 cat, NMO

    t-BuOH, H2O+

    Racemic mixtureIs it possible to obtain a diol stereoselectively?

    - OsO4 is costly, toxic, and volatile! The only interesting way to use it is under catalytic premises

    OH

    OH

    OsO4 cat, NMO

    t-BuOH, H2Osyn Addition

    17

    OOH

    OO

    OOH

    OO

    HOHO

    OsO4 cat, NMO

    t-BuOH, H2O

    84%

    Substrate–controlled dihydroxylation

    Pere Romea, 2014

  • Dihydroxylation of Alkenes

    Sharpless enantioselective dihydroxylation

    – Asymmetric Sharpless dihydroxylation uses osmium(VIII) complexes containing chiral tertiary amines as ligands– Iron(III) acts as oxidant– The mechanism is complex

    O

    OsO O

    O O OsOO

    O

    L

    L quiral

    Os(VIII)

    O OsOO

    O

    L

    OH

    HO

    2 H2O, 2 OH

    H4OsO62

    + L +

    Os(VI)

    2 [Fe(CN)6]3 , 2 OH2 [Fe(CN)6]

    4 , 2 H2O

    Fe(III)Fe(II)

    NNO O

    N

    N NEt

    H

    OMe

    N

    MeO

    H

    EtNN

    O O

    N

    N N

    H

    OMe

    N

    MeO

    H

    EtEt

    (DHQ)2-PHAL(DHQD)2-PHAL

    Chiral tertiary amines

    18

  • Dihydroxylation of Alkenes

    AD-mix-α : K2[H4OsO6], (DHQ)2-PHAL, K3[Fe(CN)6], K2CO3

    AD-mix-β : K2[H4OsO6], (DHQD)2-PHAL, K3[Fe(CN)6], K2CO3

    – Commercially available mixtures of oxidants are ligands are commonly used

    – The most suitable alkenes for the Sharpless AD are

    Not appropriateNot appropriate

    RLRS RM

    H

    AD-mix-β(DHQD)2-PHAL

    AD-mix-α(DHQ)2-PHAL 19Pere Romea, 2014

  • Dihydroxylation of Alkenes

    AD-mix-a (DHQ)2-PHAL

    AD-mix-b (DHQD)2-PHAL

    H17C8 80 (S) 84 (R)

    Ph 97 (S) 97 (R)

    Ph 93 (S) 94 (R)

    BuBu 93 (S) 97 (R)

    Bu 95 (S) 98 (R)

    ee % ee %

    ArCO2Et Ar

    CO2EtOH

    OH

    AD-mix-α

    t-BuOH, H2O

    99% ee 72%

    ArCO2Et

    OH

    OH

    AD-mix-β

    t-BuOH, H2O

    98% ee 89%

    20 Pere Romea, 2014

  • Dihydroxylation of Alkenes

    O

    O

    OMe

    OO

    O

    O

    OMe

    OO

    O

    O

    OMe

    OO

    OH

    OH

    OH

    OH

    OsO4 – NMO AD mix α AD mix β

    anti

    sin

    (1.9 : 1) 88% (54 : 1) 86% (1 : 35) 86%

    OH

    OH

    OEt

    O

    OEt

    OOH

    OH

    OEt

    O

    OEt

    OOH

    OH

    HOOH

    AD-mix-β

    93% ee 78%

    AD-mix-β

    92% ee 78%

    AD-mix-β

    95% ee 93%

    AD-mix-β

    98% ee 70%

    21Pere Romea, 2014

  • 22

    Oxidations

    + O

    + H2O + 2 O

    + 2 O

    C CC CH OH

    C CO

    C CHO OH

    C COO

    AlkeneAlcohol

    Epoxide

    1,2-Diol

    Carbonyls

    Epoxidation of alkenes

    Dihydroxylation of alkenes

    Other oxidations

    22 Pere Romea, 2014

  • Carbonyls from Alkenes

    Ozonolysis

    C CO3

    C C

    OOO

    C CO

    OO O O

    COC C O CO

    CO

    O CO

    O

    COH

    CHO

    H HRED

    red

    OXID

    RED: NaBH4, Zn/AcOH. red: Me2S, Ph3P. OXID: H2O2

    1,3-dipolar cycloadditionmolozonide

    This is a mild, reliable, and minimal side products or waste producing process

    23

    NTBSO

    O

    Ph

    OMeN

    TBSOO

    OH

    OMe1) O3, MeOH/CH2Cl2, –78 °C

    2) Me2S, then NaBH4

    92%

    OMe

    OTMS

    CHO

    OMeHO

    O1) O3, MeOH/CH2Cl2, –78 °C

    2) Me2S, –78 °C to rt

    92%

  • Carbonyls from Alkenes

    Wacker Process

    R

    O

    RPdCl2 cat, Cu (II) cat

    O2, H2O, HClMethyl Ketone

    R

    Pd(II)L4

    RPd(II)L3

    R

    OHPd(II)L3

    OH Pd(II)L2H

    H Pd(II)L3

    Pd(0)Ln

    R

    H2O

    β-Hydride eliminationR

    OH

    R

    O

    HL

    Cu(I)

    Cu(II)

    O2

    24

    Originally developed by Wacker Chemie in the 50s and 60sThis Wacker process involves

    a series of redox steps with oxygen serving as the terminal oxidant

  • Carbonyls from Alkenes

    SPhO

    PMBO

    TBSO

    SPhO

    PMBO

    TBSOO

    15 mol% PdCl2, CuCl, O2DMF, H2O

    40%Forsyth, C. J. OL 2013, 15, 1178

    Occasionally, highly regioselective Wacker oxidations of internal alkenes are possible ...

    H

    H

    O NO CO2Me

    OH

    H

    H

    O NO CO2Me

    OH

    O

    25 mol% PdCl2, CuCl, O210:1 DMF/H2O, rt

    79%Li, A. JACS 2012, 134, 920

    O O O O O10 mol% PdCl2, Cu(OAc)2, O27:1 AcNMe2/H2O

    84% Smith, A. B, III. JACS 1999, 121, 10648

    25For an interesting analysis, see: Grubbs, R. H. ACIE 2014, 53, 8654

  • Oxidation of Diols

    Oxidative cleavage with NaIO4

    C C

    OI

    OC O CO

    OI

    O

    O

    O

    HOC C

    OHHO OHO O

    OI

    HO

    OH

    O

    26

    – When using with OsO4, alkenes can be transformed into carbonyls

    NOTE: RuO2/NaIO4 pair works in a similar manner

    OTBS

    PMBO

    CHOOTBS

    PMBO

    OsO4, NaIO4, 2,6-lutidine

    Dioxane/H2O, rt

    90%

    O

    OC8H15

    PMBO

    OH

    OH

    O O

    OC8H15

    CHOPMBO

    ONaIO4, NaOH

    EtOH, rt

    95%

  • Allylic Oxidation

    Oxidation of allylic and benzylic alcohols with MnO2

    – A heterogeneous mixture of MnO2 under neutral conditions can selectively oxidize allylic, benzylic, and other activated alcohols to the corresponding aldehydes or ketones

    89%

    Bu3Sn OH Bu3Sn CHOMnO2

    CH2Cl2

    27

    H

    OHHO

    OH

    H

    OHHO

    O

    MnO2, acetone

    75%

    acetone, rt

    94%

    OHMeO

    MeO

    OH

    OHMeO

    MeO

    O

    MnO2

    Pere Romea, 2014

  • Allylic Oxidation

    – Allylic positions can be oxidized with stoichiometric SeO2 or cat SeO2/TBHP

    Oxidation of allylic positions with SeO2

    – The oxidation usually affects the most substituted part of the double bond– Reactivity ranking: CH2 > CH3 > CH– Risk: overoxidations

    28

    HO

    SeO

    SeO OH

    OSe

    HO OH

    Ene reaction [2,3]-Sigmatropic Hydrolysis

    50%

    SeO2, TBHP

    CH2Cl2CO2Me CO2Me

    HO + Aldehyde (5%)

    OO

    R

    O

    OO

    O

    R

    O

    O

    OH

    95%

    SeO2, TBHP

    dioxane, rt

    Pere Romea, 2014

  • α-Oxidation of Ketones

    Oxidation with mCPBA: Rubottom oxidation

    R1R2

    O

    R1R2

    OSiR3

    R1R2

    OSiR3

    OR1

    R2OSiR3

    O

    R1R2

    O

    OSiR3

    mCPBA

    R1

    OSiMe3

    Pd(II)R1

    OSiMe3

    PdIIR1

    OPdII

    R1 H

    O

    PdIIR1

    O

    Oxidation with Pd(II): Saegusa process

    29

    TESOH

    R OH

    R

    70%mCPBA, NaHCO3

    EtOAc

    HO

    TMSO

    OPMB

    HOTIPS

    OPMB

    HOTIPS

    O5 mol% Pd(dba)2 . CHCl3, diallyl carbonate

    CH3CN90%

    Pere Romea, 2014

    Chapter 8. Oxidations Part AChapter 8. Oxidations Part B