description of t-band in 182 os with hfb+gcm

22
Description of t-band in 182 Os with HFB+GCM Yukio Hashimoto Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan 1 Takatoshi Horibata Department of Software and Information Technology, Aomori University, Aomori, Aomori 030-0943, Japan

Upload: vin

Post on 23-Feb-2016

25 views

Category:

Documents


0 download

DESCRIPTION

Description of t-band in 182 Os with HFB+GCM . Yukio Hashimoto Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan . Takatoshi Horibata Department of Software and Information Technology, - PowerPoint PPT Presentation

TRANSCRIPT

Description of t-band in 182Os with HFB+GCM

Yukio Hashimoto    Graduate School of Pure and Applied Sciences,    University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

1

Takatoshi Horibata    Department of Software and Information Technology, Aomori University, Aomori, Aomori 030-0943, Japan

Contents

1. Introduction 2. Three-dimensional Cranking 3. Tilted states and GCM 4. Concluding remarks

2

1. Introduction: general rotation mode

3

ω

ω ω

x

y

z

y

x

x x

y y

zz

wobbling motiontilted axis rotation (high K t-band)

ω

4

Odegard et al.Phys.Rev.Lett.86(2001), 5866

wobbling band

ω

5

P.M.Walker et al., Phys. Lett. B309(1993), 17-22.

g-bandt-band

ω

6

P.M.Walker et al., Phys. Lett. B309(1993), 17-22. 7

182Os

g-band

t-band(even component )

theoretical frameworksTAC     *S. Frauendorf, Nucl. Phys. A557, 259c(1993)     *S. Frauendorf, Nucl. Phys. A677, 115(2000).     *S. Frauendorf, Rev. Mod. Phys. 73, 463(2001).

HFB+RPA    *M. Matsuzaki, Nucl. Phys. A509, 269(1990).     *Y. R. Shimizu and M. Matsuzaki, Nucl. Phys. A588, 559(1996).    *M. Matsuzaki, Y. R. Shimizu and K. Matsuyanagi,      Phys. Rev. C65, 041303(R)(2002).    *M. Matsuzaki, Y. R. Shimizu and K. Matsuyanagi,     Phys. Rev. C69, 034325(2004)

HFB+GCM    *A. K. Kerman and N. Onishi, Nucl. Phys. A361, 179(1981).    *N. Onishi, Nucl. Phys. A456, 279(1986).    *T. Horibata and N. Onishi, Nucl. Phys. A596, 251(1996).    *T. Horibata, M. Oi, N. Onishi and A. Ansari,      Nucl. Phys. A646, 277(1999); A651, 435(1999).    *Y. Hashimoto and T. Horibata, Phys. Rev. C74, 017301(2006)    *Y. Hashimoto and T. Horibata, EPJ A42, 571(2009).

8

2. Three-dimensional cranked HFBA.K.Kerman and N.Onishi, Nucl.Phys.A361(1981),179

9

Constraints for HFB calculation

x

y

z

x

y

ψ

10

Starting points of tilted wave functions

11

ω

Energy vs tilt angle18

TARyz

x

y

ψ

ψ

12

J = 18

j // ω

13

ω

24 * sin(18°) = 7.622 * sin(20°) = 7.5

18 * sin(24°) = 7.3

26 * sin(17°) = 7.6

28 * sin(16°) = 7.7

TAR

30 * sin(15°) = 7.8

TAR states and K=8 bandK ~ const.

tilt angle (degree)14

angular momentum   J

TAR states ( K=8 band)

15

t-band

g-band

even

odd

P.M.Walker et al., Phys. Lett. B309, 17-22(1993).

16

3. Tilted states and GCM

s-branches

ψ

ψ

17

22

24

26

28

Energy splitting in tunneling effect

D

V

D, V smaller ΔE larger18

ー Ψ

P.M.Walker et al., Phys. Lett. B309(1993), 17-22.

t-band

g-band

even

odd

V

19

  Energy splitting in GCM

HFB solution at awave function

generator coordinate   a : tilt angle ψ

Cf. T.Horibata et al., Nucl.Phys.A646(1999), 277.

20

M.Oi et al., Phys. Lett. B418(1998), 1.   Phys. Lett. B525(2002), 255.

GCM amplitudes   (J = 24 , 26 , 28 )

ΔE=130 keV

ΔE=252 keV

( ΔE= 93 keV )

21

4. Concluding Remarks

   1. We have microscopically calculated three-dimensional rotation.

   2. The TAR states are expected to be the members of    a band with K = 8 (t-band).     experimental results by Walker’s group.

   3. GCM calculations (refinement) are in progress.

22