detection of muons in phenix (& alice)web.utk.edu/~kamyshko/p627/l35.pdf · 2020. 7. 8. · light...

37
 Detection of muons in PHENIX (& ALICE) Kyle Schmoll University of Tennessee 04/18/12

Upload: others

Post on 18-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  •    

    Detection of muons in PHENIX (& ALICE)

    Kyle Schmoll

    University of Tennessee

    04/18/12

  •    

    Outline● Why Muons?

    muon properties

    what can we learn?

    simulation

    ● Muon Detection in PHENIXtracking

    identification

    ● Differences in ALICEtracking

    identification

  •    

    Muon Properties

    ● Same charge as electron, mμ = 105.658 MeV

    ● Lifetime:     = 2.2 μs τ

    ● mμ >> m

    e and long lifetime   small crosssection→

    ● Live long enough to be detected● Easy to discriminate from electrons and hadrons

  •    

    What can we learn?● Study J/  production using ψ

    J/    μψ → +μ (5.93%)● Measure cross section of 

    open heavy flavor using     D

    0   → Kμ+ν

    μ , etc (17.6%)

    ● Can also look at stopped hadrons in muon arms

  •    

    Momentum Correlation

  •    

    Angular Correlation

    ● Magnitude of pt is not 

    strongly correlated

    ● Direction of pt in lab 

    frame is● Due to relatively low 

    mass of muon

    mμ 

  •    

    Muon Detection in PHENIX

  •    

    Tracking (CSC)● Cathode strip chamber in magnetic field● Passage of muon produces ionization

    ● Anode collects charge ● Induced charge 

    distribution on cathode

    ● Cathodes are read out● Fit signal to determine 

    position

  •    

    Tracking (PHENIX)● 3 stations● 3 gaps per station● Gap consists of cathode 

    anode sandwich● Gaps seperated into 

    octants

  •    

    Specs● Copper coating used for cathode plane● Gold plated CuBe wires for anodes with 1 cm 

    spacing

    ● 104 X0 allows for low multiple scattering

    ● Operated with 50:30:20 mix of Ar:CO2:CF

    4 at a 

    bias of 1.71.85kV● Fitting signal to Mathiason function determines 

    position to high accuracy (~130 μm)

  •    

    Mathiason fit

    ● Resolution ~ 130 μm

  •    

    Magnet

    ● Used for momentum measurement

    ● Composed of iron piston

    ● Asymetric to accomodate asymetric muon arm

  •    

    Muon Tracking Readout● ~ 21,000 cathode strips readout through Front End 

    Electronics (FEE)● Signal from cathode connected to Cathode 

    Preamplifier (CPA) of a Cathode ReadOut Card (CROC)

    ● CROC stores signal in Analog Memory Unit/Analog to Digital Converter (AMUADC)

    ● This combination is Front End Module (FEM)● South arm utilizes 168 FEMs

  •    

    MuTr Readout

  •    

    Identification (PHENIX)● Absorbers used to stop 

    hadrons● Streamer tubes used to 

    reconstruct tracks● Cuts on data made 

    accordingly

  •    

    Absorber● Total absorber is ~1.5 m of steel

    ● ΛI ~ 16 cm in steel for pions

    ● 1  e3.75 = 97.6% rejected before tracker● 99.99% rejected by

    gap 4

    ●  π →μνμ (99.98%) 

    contributes to

    background

  •    

    Iarocci streamer tubes

    ● Used for track reconstruction for event rejection

    ● Graphite coated inside of tube forms cathode● 100 μm gold plated CuBe wire is anode● Particles produce ionization which is collected on 

    anode

    ● Operated with 91.5% CO2 8.5% isobutane at 4.5 kV 

    (proportional mode)

  •    

    MuID Readout● Amplified signal is 250 mV● 30 m twistedpair cables to FEE● ROC digitizes signal into 0 or 1 (hit/no hit)

  •    

    Differences in ALICE

  •    

    ALICE● ALICE uses the same concept as PHENIX with 

    different detector technology● Momentum measurement first● Track ID after

    ● Only 1 muon arm!!!

  •    

    Tracking in ALICE● Cathode Pad Chambers instead of Cathode Strip Chambers

    ● Readout a million channels at order of kHz

    ● 16channel Multiplexed ANAlogic Signal (MANAS) chip used as:

    amplifier

    shaper

    filter

    ● Digitized on board, read by Muon Arm Readout Chip (MARC)

    ● This chain is mounted on front end boards (MANU)

    ● 17,000 MANU's needed to readout 1.08 million channels

    ● 5 stations instead of 3

  •    

    Identification in ALICE● Resistive Plate Chambers (RPC) used instead of 

    drift tubes● Trigger detector consists of 4 RPC planes in 2 

    stations● Track resolution ~ 1 cm (better than PHENIX)● Signal sent through discriminator to trigger 

    electronics which reconstruct track based on info from 4 planes

  •    

    Sources● A. M. Glenn, Single Muon Production and Implications for 

    Charm in 200 GeV Au+Au Collisions, PhD thesis, University of Tennessee, 2004.

    ● D. Hornback, A measurement of open charm using single muons at forawrd angles for p+p collisions at center of mass energy 200 GeV, PhD thesis, University of Tennesse, 2009.

    ● The ALICE collaboration et al, The ALICE experiment at the CERN LHC, 2008 JINST 3 S08002.

    ● The ALICE collaboration et al, Heavy flavour decay muon production at forward rapidity in protonproton collisions at √s = 7 TeV, Phys. Lett. B 708 (2012) 265.

  • # 35L35.pdfP627 YK4/18/2012

    Average abundance ratio Dark Natter / Ordinary Matter  6

  • http://en.wikipedia.org/wiki/Dark_matter

    Galactic rotation curves

    Gravitational lensing

    Galaxy clustering and collisions

    CMBR

  • Most popular for the last two decades was the hypothesis that DM consist of LSP (Lightest Super-Symmetric – stable particles). More generalized name: WIMPs (Weakly Interacting Massive Particles) is frequently used. In different models of super-symmetry breaking SUSY masses are parameters.

    Generic features of SUSY models:colored particles are heavy; non-colored – light;neutralino is LSP;the overall scale is a free parameter.Neutralino is a Majorana fermion, mixture of photino, Zino, higgsino. Lightest stable neutralino is expected to have mass 80-120 GeVand be invisible at LHC (detected asmissing energy/mass)

  • • Cross section is ~ weak but unknown (model-predictable in SUSY)• Mass of target: (a) heavy to enhance

    (b) optimum to maximize the energy transfer

    ( )24

    (max) ; - mass of nucleus; M - mass of DM particlerecoil DM

    mMT T m

    m M= ⋅

    +

    2

    Maximum of "maximum energy transfer":

    0 4 ( ) 4 2( ) 0

    ( ) 2 0;

    dTM m M mM m M

    dm

    m M m M m

    = + - ⋅ + =

    + - = = T

    Yukawa potential:dNdT

    Coulomb-like potential:

    2

    1dNdT T

    µ

  • “Velocity distribution of dark matter”Malcolm Fairbairn

    Escape velocity of our galaxy lies within the range 498 km/s < vesc < 608 km/s (90 per cent confidence)RAVE Survey: http://arxiv.org/abs/astro-ph/0611671v2

    131

    2

    2

    2

    E.g. 100 GeV scatters on 122 GeV

    40.99 ;

    ( )

    2

    100 25035

    2 300, 000

    DM

    DM

    MXe

    mM

    m M

    MT v

    GeVKeV

    +

    = =

    æ ö÷ç ÷= »ç ÷ç ÷çè ø

  • http://arxiv.org/abs/1109.0702

  • From Mariangela Lisanti / Princeton, BLV-2011 talk, September 2011, Gatlinburg TN

  • From Mariangela Lisanti / Princeton, BLV-2011 talk, September 2011, Gatlinburg TN

    CoGeNT and DAMA/Libra observations

  • LHC implications for DM detection

    SUSY paradigm might not work… Other possible DM paradigm is e.g. Mirror Matter (Z. Berezhiani…): DM consists of H, He, etc. light mirror nuclei.DAMA, CoGeNT, CRESST might see some “light DM”

  • If DM is light (M < 10 GeV) then target nuclei should be also light

  • 2

    Thermalized DM: 2Hm v

    kT= =E

  • Light Dark Matter Detector

    Gas detector filled with Hydrogen (or methane CH4) under high pressure.

    A. H2 gas at 20C and 1 atm has =0.0838 g/l (compare with liquid is 0.0708 g/cm3)

    Assume detector with length 1 m and diameter 0.8 mVolume V= 1042 liters 500 lAssume working pressure 50 atm, then density =4.2 g/lThen, fiducial mass is 2 kg.

    B. Compare with DAMA/Libra; they have 250 kg of NaI where Na is 15.3%.So, the light nuclei (Na) mass in DAMA/Libra is 38.3 kg

    C. Number of electronics channels is:With cell radius 2 cm 400 channels

    D. Electrodes structure:

  • Prototype of such a detector - NA6 Experiment at CERN (ITEP-Freiburg Collab.)

    55

    2

    source 5.9 KeVin ~ 40 atm H (HV 29 kV, gain ~600)A. Bamberger et al, NIM 156 (1978) 107-110

    Fe

    (a) High Pressure Proportional Counters Operating in Pure Hydrogen.A. Bamberger et al, Nucl.Instrum.Meth.156:107-110,1978.

    (b) A Hydrogen High Pressure Proportional Drift Detector.A. Arefev et al, Nucl.Instrum.Meth.A224:75,1984.

    (c) Measurement of n-p elastic scattering at high-energies and very small Momentum transfers., A. Arefev et al. Nucl.Phys.B232:365,1984.

    KyleS.pdfSlide 1Slide 2Slide 3Slide 4Slide 5Slide 6Slide 7Slide 8Slide 9Slide 10Slide 11Slide 12Slide 13Slide 14Slide 15Slide 16Slide 17Slide 18Slide 19Slide 20Slide 21Slide 22Slide 23