determination of annual efficiency and emission factors of ... · stand measurement method to...

27
Determination of annual efficiency and emission factors of small-scale biomass boiler DI Dr. Markus Schwarz BIOENERGY 2020+ GmbH. Gewerbepark Haag 3 3250 Wieselburg, Austria [email protected] www.bioenergy2020.eu DI Matthias Heckmann, DI (HLFL) Leopold Lasselsberger, DI Dr. Walter Haslinger Abstract In the last decades certification tests of small-scale biomass systems have impressively shown the improvement of the state of the art. Though, steady state measurements represent results only for optimal operation. In practice results differ due to varying operating conditions. Therefore, of a test stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method includes a heat loss model for thermal storages too. It can be used to test automatically fed biomass boiler, manually loaded biomass boilers and boiler / heat accumulator combinations. For the evaluation of the measurement data a calculation method based on mass flows was developed. The results of our experiments show that the newly developed method is a good tool to evaluate small-scale biomass boilers. With this method an easy and reliable instrument to determine annual system efficiencies and emission factors for realistic boiler operation is provided. The application of the method will prove that modern small-scale biomass combustion systems have the potential to significantly contribute to the reduction of air pollutants and to increase overall energy system efficiency. 1. Introduction Annual system efficiencies and emission factors are important indicators to classify biomass boilers according to the EuP Directive (2005/32/EC) [1]. Currently used data for small-scale biomass combustion systems are older than 10 years as it is difficult and expensive to determine them under real conditions. Small-scale (< 400 kW) wood boilers in general and – since 1996 – wood pellet boilers in particular have undergone significant technological improvements. The common assessment method is EN 303-5 [2], which determines efficiency and emissions under steady state operating conditions at full load and minimum load. Except for the introduction of flue gas condensation boilers a maturation of the technologies on a virtually high quality level can be recognized based on the type testing results according to EN 303-5 (see Figure 1). Figure 1: Efficiency and CO emissions of small-scale wood boilers (data source: FJ-BLT, compilation: BE2020+) The weak points of the assessment according to EN 303-5 are: Efficiency and emissions are determined under steady state conditions. Therefore they are not representative for real life operating conditions and may raise false expectations among customers.

Upload: others

Post on 20-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

Determination of annual efficiency and emission factors of small-scale biomass boiler DI Dr. Markus Schwarz BIOENERGY 2020+ GmbH. Gewerbepark Haag 3 3250 Wieselburg, Austria [email protected] www.bioenergy2020.eu DI Matthias Heckmann, DI (HLFL) Leopold Lasselsberger, DI Dr. Walter Haslinger Abstract In the last decades certification tests of small-scale biomass systems have impressively shown the improvement of the state of the art. Though, steady state measurements represent results only for optimal operation. In practice results differ due to varying operating conditions. Therefore, of a test stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method includes a heat loss model for thermal storages too. It can be used to test automatically fed biomass boiler, manually loaded biomass boilers and boiler / heat accumulator combinations. For the evaluation of the measurement data a calculation method based on mass flows was developed. The results of our experiments show that the newly developed method is a good tool to evaluate small-scale biomass boilers. With this method an easy and reliable instrument to determine annual system efficiencies and emission factors for realistic boiler operation is provided. The application of the method will prove that modern small-scale biomass combustion systems have the potential to significantly contribute to the reduction of air pollutants and to increase overall energy system efficiency. 1. Introduction Annual system efficiencies and emission factors are important indicators to classify biomass boilers according to the EuP Directive (2005/32/EC) [1]. Currently used data for small-scale biomass combustion systems are older than 10 years as it is difficult and expensive to determine them under real conditions. Small-scale (< 400 kW) wood boilers in general and – since 1996 – wood pellet boilers in particular have undergone significant technological improvements. The common assessment method is EN 303-5 [2], which determines efficiency and emissions under steady state operating conditions at full load and minimum load. Except for the introduction of flue gas condensation boilers a maturation of the technologies on a virtually high quality level can be recognized based on the type testing results according to EN 303-5 (see Figure 1).

Figure 1: Efficiency and CO emissions of small-scale wood boilers (data source: FJ-BLT, compilation: BE2020+) The weak points of the assessment according to EN 303-5 are: • Efficiency and emissions are determined under steady state conditions. Therefore they are not

representative for real life operating conditions and may raise false expectations among customers.

Page 2: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

• Steady state comparisons do not sufficiently allow the differentiation between excellent, good and poor technologies anymore. This differentiation arises in unsteady or transient operating conditions (start-up, load change, shut down).

2. Objectives In order to provide opportunities for an additional qualitative differentiation of small-scale wood combustion boilers, a method for the determination of annual efficiency and emission factors on the test bench is developed. The vision for such a method is to gain an equivalent of a roller bench test common in automotive industry to determine fuel consumption and CO2 emissions. To do so, a test cycle for a reference system configuration, the respective measurement procedures and the respective analytical procedures are developed and assessed. 3. Method Since annual efficiencies and emission factors for pollutants of biomass boilers can only be quantified in long term field tests, simplified methods for the determination are already presented in literature. DIN 4702-8 [3] describes a method based on 6 steady state measurements at different load levels. The Concise Cycle Test [4] for combined biomass and solar heating systems uses a dynamic measurement during 12 days, each representing a month, and a simulation of the boiler controller behaviour in a second evaluation step. Many individual tests and information that is difficult to obtain are required for these tests. Therefore both methods are not widely distributed and used mainly in research. The vision was the development of a “roller test stand” for biomass boilers, more precisely a method to determine annual efficiency and emission factors by measurement under dynamic conditions on a test bench. The procedure should require a minimum of expenses additional to the type test and has to be done with the measurement instruments and on the test bench also used for tests according to EN 303-5. Test object of this method is the boiler only. To get comparable results it is installed in a virtual house which is emulated by the heat intake. The heat consumption is scaled linearly by the nominal heat output of the tested boiler. An optional heat storage system is taken into account as part of the evaluation.

Figure 2: System boundaries for the developed method The interpretation of the measurement values is more extensive than in EN 303-5, as the evaluation has to take into account the amount of flue gas. Therefore a software application has been developed which calculates emission factors as sums of pollutant load. The efficiency is determined directly. 4. Test cycle There are two common types of boiler installations. Biomass boilers which are directly connected to the room heating system have to run nearly the whole day and adjust their heat output to the actual demand. Boiler installations containing a heat accumulator are operated at nominal load whereas the operation time depends on the size of the storage tank. Therefore two test cycles are necessary, one for modulating operation and the other one for full load operation.

Page 3: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

4.1 Modulating boiler operation The boiler has to react on the heat demand of the building, the test cycle is a heat demand curve. To make the test results comparable, but also adaptable to different heat demands in different climate regions, a “synthetic” test cycle was created, based on typical daily load curves and on climate data. According to VDI 4655 [5] (which is based on measurements on gas furnaces) 5 reference day curves were defined. They relate to the heat demand for room-heating and hot water generation of an average modern house in the sub-alpine area equipped with a pellet boiler. A yearly operating time of 2000 full load hours and a proper hydraulic installation of the heating system are assumed.

Code Type of day Days per year Room heating kWh/d

Water heating kWh/d

ÜxH Transition period, clear 52 26,7 7,9

ÜxB Transition period, cloudy 82 36,1 7,8

SxX Summer 86 0,0 6,1

WxH Winter, clear 35 90,9 10,2

WxB Winter, cloudy 110 86,8 9,0 Table 1: Load profiles for biomass boiler, amount per year and heat demand The 5 continuous reference day load profiles are reduced to 6 load levels according to DIN 4702-8. Weighted with the days per year (see Table 1) they are merged to a sum curve. This average day load profile for a year is further reduced to 8 hours of operation to match with the work schedule of testing institutes [6].

Figure 2: Conceptual design of the test cycle The test cycle is designed for all kinds of solid fuel boilers in residential homes. In the following Table 2 specifications on the boiler load, load change and the duration of these steps is given. Constant load Load change Constant load Load change Constant load Load change

Boiler load (%) 100 100 ► 48 48 48 ► 39 39 39 ► 63

Duration 00:04:52 00:26:00 00:50:15 00:09:00 01:13:44 00:12:00

Boiler load (%) 63 63 ► 30 30 30 ► 13 13 0

Duration 00:24:38 00:22:00 00:53:14 00:34:00 02:50:17 00:00:00 Table 2: Duration of all test cycle steps

Page 4: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

4.2 Nominal power operation In case of hydraulic systems with thermally stratified tanks the boiler is usually operated at nominal power. The storage is calculated. Test object is the boiler only. This procedure can be combined with the full load test according to EN 303-5 with only minor effort. 5. Measurement 5.1 Test bench setup The experimental setup for this test is an advanced version of the configuration in EN 303-5. The measurement methods and the positions of measuring points are consistent to make the procedures applicable in the frame of existing accreditations of testing institutes.

Figure 3: Experimental setup Differences are the need for continuous determination of flue gas humidity and flow rate. Sensors for both should be available in test institutes, as they are required for dust measurement. Unlike EN 303-5 all phases of boiler operation are monitored and the data logged to file. This includes boiler start and stop, operation at constant and changing load and the cooling down at the end of the test run. During the test cycle the flow temperature of the boiler is not stable. To control the heat demand exactly the installation of an automated heat intake on the test bench is suggested. 5.2 Test procedure The test procedure consists of two single test runs, one at full load and the other one using the defined unsteady load cycle. In both tests the boiler set temperature should be in the range of 70 to 80 °C. If there is a return flow buster installed, it should be set to 55°C. Start and end conditions have to be equal to allow mass and energy balance over the whole test run. Therefore the boiler is heated up to 45 °C before the test run and adjusted to the same temperature afterwards using an external heat source/sink. If the furnace is not set to 45°C directly after the standby test phase, the remaining energy is calculated using average boiler temperature and mass of water and steel of the boiler. Detailed information on the test run and all steps is presented in Figure 4 and Table 3, the described procedures proceed between time steps.

Page 5: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

Figure 4: Operation sequence for the test run with load cycle

Time step Point definition Procedure

External warm up of boiler t0 Boiler at 45°C

Start boiler Heat up boiler

t1 Flow temperature > return flow temperature

Load cycle or full load test

t2 Boiler operation finished

Remove useable heat at 20% load

t3 Flow temperature = return flow temperature

Cool down for 8 hours (from t2)

t4 Standby heat loss test finished

Determine remaining heat in boiler

t5 flow temperature = return flow temperature

External warm up or cool down

t6 Boiler at 45°C Test finished

Table 3: Definition of steps in the test run 6. Evaluation An automated, fast and easy to use software has been written for MS Excel to evaluate the measured data. It is specially designed for unsteady measurements and includes the interpolation of data points to allow the evaluation of exact time intervals. The evaluation is divided in a section for the load cycle test and one for full load operation. Due to the fact that the load profile is an average over a whole year the measured efficiency in this test is the annual efficiency. The data of the test at nominal power is used to calculate the efficiency of boiler operation with a heat storage tank. Since the boiler operation depends on the storage volume, the

Page 6: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

period of steady operation during the test is scaled linearly within the calculation. To estimate the annual efficiency the heat loss of the storage system has to be taken into account too. After entering the necessary data for test setup, boiler and fuel into the Excel sheet the evaluation of each test run takes place in 4 steps: • Import of measured data into file • Calculation of energy and mass flows at each time step • Balance of evaluation periods • Calculation of efficiency and emission factors The main result is the annual efficiency based on fuel and auxiliary electric energy demand. It is calculated using the direct method based on the heat output into the water by formula (1).

100EE

electricfuel

heat ⋅+

= [%] (1)

In case of an installation with a storage tank the heat loss off the storage is calculated according to the formula for daily heat losses in the OIB Guide [7]:

( )

100P2000V0,250,5365

=η-100N

0,4Puffer

Puffer ⋅⋅

⋅+⋅ [%] (2)

To calculate emission factors for carbon monoxide, nitrogen oxides, sulphur dioxide, organic carbon and dust the flow rate of the flue gas has to be taken into account as stated in formula (3). The result is related to the fuel energy input.

( ) 12

fuel

CO2CO 10

E

ρ[CO]O][H1Vf ⋅

⋅⋅−⋅= ∑

[kg/TJ] (3)

Other important parameters, e.g. electrical energy demand for operation, are calculated too. 7. Results of experimental work Few test runs were carried out with pellets, wood chip and log wood boiler. All systems were tested using the method described in this paper. The test at nominal power was evaluated according to EN 303-5 too. The following tables 4 and 5 show exemplary the test results from an older and a new pellet boiler. Efficiencies and emission factors were determined with both methods. In the case of heat storage the tank losses are calculated for a volume of 50 litres per kW nominal power of the boiler.

EN 303-5 Test cycle Heat storage

efficiency 84,7 75,2 73,7 [%]

CO 64,8 289,1 168,1 [kg/TJ]

NOx 105,8 105,2 125,4 [kg/TJ]

org. C 2,1 15,7 11,9 [kg/TJ]

PM 10 20 14 [kg/TJ] Table 4: Results of an older, widely used pellet boiler model

EN 303-5 Test cycle Heat storage

efficiency 89,7 85,6 77,6 [%]

CO 3,2 416,9 62,9 [kg/TJ]

NOx 76,9 57,9 98,4 [kg/TJ]

org. C 0,3 10,6 1,1 [kg/TJ]

PM 11 10 11 [kg/TJ] Table 5: Results of a new product on market

Page 7: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

As expected the determined annual efficiencies are 5 to 10 % lower than values obtained by the type test. The average annual system efficiency of the tested boiler is approximately 77%, which is comparable to published results from field tests [8], [9]. Both boilers show a slightly better efficiency in modulated operation than operated with heat storage because of the additional heat loss of the buffer tank. The measurements show that the emissions of unburned substances (carbon monoxide and organic carbon) are up to 6 times higher in modulated operation compared to the results of the full load steady state type tests, whereas nitrogen oxide emissions are at similar levels. The determined emission factors are still below the Austrian emission limits. This fact serves as proof for the high development level of Austrian biomass boilers. The derived annual emission factors are comparable to values from field tests. There is still a difference to published emission factors [10] caused by the small amount of tested boilers. 8. Summary and conclusions The newly developed method shall provide an easily and reliably applicable method in the short to medium term allowing an assessment of boilers under (more) realistic operating conditions additional to EN 303-5. With the method an aid for the further improvement of technologies and their integration into heating systems is given to technology providers. The application of the method will prove that modern small-scale biomass combustion systems have the potential to contribute significantly to the reduction of air pollutants and to increase the overall energy system efficiencies. Customers benefit from a more realistic assessment of different technologies and products and potentially lower fuel consumption and respectively lower expenses. Society profits from significantly increased energy efficiencies and from significantly decreased emissions of greenhouse gases and air pollutants. 9. Acknowledgement This project was performed and funded within the framework of the program „ENERGIE DER ZUKUNFT“. This program is handled by the Austrian Research Promotion Agency (FFG) by order of the Federal Ministry for Transport, Innovation and Technology (BMVIT) and the Federal Ministry of Economy, Family and Youth (BMWFJ). The project was carried out in cooperation of Arbeitsgemeinschaft Erneuerbare Energie Kärnten, Bioenergy 2020+ GmbH, Federal Research Institute for Agricultural, Agricultural Engineering and Food Technology (FJ-BLT) and Technology and Support Centre Straubing (TFZ). References [1] European Parliament and Council: Framework for the setting of ecodesign requirements for

energy-using products (2005/32/EC) [2] ÖNorm EN 303-5: Heizkessel für feste Brennstoffe, hand- und automatisch beschickte

Feuerungen, Nenn-Wärmeleistung bis 300 kW. (1999) [3] DIN 4702-8: Heizkessel, Ermittlung des Norm-Nutzungsgrades und des Norm-Emissionsfaktors.

(1990) [4] Frank, E. und Konersmann, L.: PelletSolar – Optimierung des Jahresnutzungsgrades von

Systemen mit Pelletskessel und Solaranlagen. 8th Pellets Industry Forum; Stuttgart (2008) [5] VDI 4655: Referenzlastprofile von Ein- und Mehrfamilienhäusern für den Einsatz von KWK-

Anlagen. (2008) [6] Friedl, G.; Heckmann, M. und Rossmann, P.: Nutzungsgradsteigerung bei Pelletsfeuerungen. 9th

Pellets Industry Forum, Stuttgart (2009) [7] OIB Richtlinie 6: Energieeinsparung und Wärmeschutz; OIB-300-008/07; Österreichisches Institut

für Bautechnik; Wien, (2007) [8] Schraube, C.; Jung, T.; Wilmotte, J.-Y.; Mabilat, C. und Castagno, F.: Long-term monitoring of

small pellet boiler based heating systems in domestic applications. Proceedings of the 18th European Biomass Conference and Exhibition, Lyon (2010)

[9] Kunde, R.; Volz, F.; Gaderer, M. und Spliethoff, H.: Felduntersuchungen an Holzpellet - Zentralheizkesseln. Beurteilung realer Schadstoffemissionen und Jahresnutzgrade. BWK-Energie-Fachmagazin 61 (1-2) (2009)

[10] Struschka, M.; Kilgus, D.; Springmann, M. und Baumbach, G.: Effiziente Bereitstellung aktueller Emissionsdaten für die Luftreinhaltung. UBA Texte 44/08, Dessau (2008)

Page 8: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

Central European Biomass Conference 2011

Bestimmung von Jahresnutzungsgrad und Emissionsfaktoren von Biomasse-Kleinfeuerungen

Markus SchwarzM. Heckmann, L. Lasselsberger (FJ-BLT), W. Haslinger

Page 9: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

Central European Biomass Conference 2011

Bestimmung des Jahresnutzungsgrades

Folie 2

Hintergrund

■ EN 303-5 war die Triebkraft der technischen Entwicklung, aber…

Quelle: FJ-BLT, Zusammenstellung: BE2020+

In den 1980ern und den frühen 1990ern:• Große Unterschiede der geprüften Geräte• Signifikantes Verbesserungspotential

Heute:• Kaum Unterschiede zwischen Produkten• Stagnation auf hohem Niveau

Page 10: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

Central European Biomass Conference 2011

Bestimmung des Jahresnutzungsgrades

Folie 3

Motivation

■ EN 303-5■ Etabliertes und akzeptiertes Verfahren■ Ungenügende Unterscheidungsmöglichkeit zwischen

verschiedenen Produkten■ Ausschließlich Prüfung im stationären Betrieb■ Keine Widerspiegelung realer Bedingungen■ Irreführende Information für Kunden

■ Unterscheidung zwischen Produkten /Systemen passiert unter realen / instationären Betriebsbedingungen

■ Schließen der Lücke zwischen EN 303-5 und der Realität!

Page 11: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

Central European Biomass Conference 2011

Bestimmung des Jahresnutzungsgrades

Folie 4

Ziele

■ Entwicklung einer Prüfstandsmethode für Kessel■ Basierend auf existierender Infrastruktur, Verfahren und

Messtechnik für Prüfung nach EN 303-5■ Geringer zusätzlicher Aufwand (+ 1 Versuchstag)■ Bessere Abbildung realer Betriebsbedingungen■ Zusätzliches Bewertungskriterium für die Unterscheidung der

Qualität von Biomasse Kesseln (Scheitholz / Pellets / Hackgut)

„Rollenprüfstandstests“ für Biomasse Heizungssysteme

Für die Bestimmung von Jahresnormnutzungsgrad und Jahresnormemissionsfaktoren

Page 12: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

Central European Biomass Conference 2011

Bestimmung des Jahresnutzungsgrades

Folie 5

Entwicklungsschritte für Prüfmethode

■ Definition der Systemgrenzen

■ Definition eines Versuchsablaufs (Bezugspunkte für Versuch und Auswertung)■ für automatisch und manuell befeuerte Geräte■ für Volllast- / Pufferbetrieb und modulierenden Betrieb

■ Entwicklung einer einfachen Auswertungssoftware(VBA auf MS Excel)

■ Erarbeitung eines Leitfadens

■ Experimentelle Überprüfung der Methode

Page 13: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

Central European Biomass Conference 2011

Bestimmung des Jahresnutzungsgrades

Folie 6

Systemgrenzen für die Versuchsmethode

Messung

Berechnung

Emulation

Page 14: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

Central European Biomass Conference 2011

Bestimmung des Jahresnutzungsgrades

Folie 7

Modulierender Betrieb:Jahres-Referenzlastzyklus

■ Analyse unterschiedlicher Lastverläufe aus Literatur und Praxismessungen

■ Festlegung von 5 Typtagen und zugehörigen Tageslastgängen in Anlehnung an VDI 4655

WxH … Wintertag heiterWxB … Wintertag bewölktÜxH … Übergangszeit heiterÜxB … Übergangszeit bewölktSxX … Sommertag

0

1

2

3

4

5

6

7

8

9

10

0:00 4:00 8:00 12:00 16:00 20:00 0:00

Leis

tung

[kW

]WxH WxB

ÜxH ÜxB

SxX

Page 15: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

Central European Biomass Conference 2011

Bestimmung des Jahresnutzungsgrades

Folie 8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

00:00 04:00 08:00 12:00 16:00 20:00 00:00

Leis

tung

[%]

WxH WxB

ÜxH ÜxB

SxX Jahr (TRY13)

Definition LaststufenJahres-Referenzlastzyklus

■ Reduktion auf Laststufen entsprechend DIN 4702-8

■ Gewichtete Summierung der Tages-Stufenprofile zu einem Jahres-Referenzlastzyklus

■ Reduktion des 24-stündigen Jahres-Referenzlastzyklus auf 8-Stunden

■ Festlegung der Rampen

13%

30%39%48%

63%

100%Laststufen

Page 16: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

Central European Biomass Conference 2011

Bestimmung des Jahresnutzungsgrades

Folie 9

80°C

55°C

45°C

55°C

45°C

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Zeit

Leis

tung

sanf

orde

rung

15

30

45

60

75

90

Tem

pera

tur [

°C]

t1 t2

Massenbilanz

t0 t6t3 t4TU

8h 8h

t5

Verlustbilanz

Messungen

T VL=

T RL

Energiebilanz

Umwälzpumpe einaus

Saugzug Kamin einaus

Kessel einaus

Versuchsablauf für Messung mit Jahres-Referenzlastzyklus

Referenzlastzyklus (Leistungsanforderung in %)VorlaufemperaturRücklaufemperatur

Page 17: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

Central European Biomass Conference 2011

Bestimmung des Jahresnutzungsgrades

Folie 10

0

5

10

15

20

25

0 200 400 600 800

Zeit [min]

Kon

zent

ratio

n [V

ol%

]

0

500

1000

1500

2000

2500

Kon

zent

ratio

n [p

pm]

O2 [Vol%]

CO2 [Vol%]

H2O [Vol%]

CO [ppm]

NOx [ppm]

org. C [ppm]

Volllast / Pufferbetrieb

■ Volllastversuch nach EN 303-5 und zusätzliche Abkühlphase

■ Lineare Skalierung der Stationären Betriebsphase

■ Produzierte Energiemenge entspricht Speicherkapazität des Puffers

■ Pufferverluste werden berechnet

■ Angenommene Puffergröße: ■ Automatische K. 50 l/kW■ Manuelle K. 100 l/kW

Page 18: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

Central European Biomass Conference 2011

Bestimmung des Jahresnutzungsgrades

Folie 11

Messung an Biomassekesseln

■ 3 Prüf / Versuchsstände

■ FJ-BLT, Wieselburg■ TFZ, Straubing■ BE2020+, Wieselburg

■ 5 Feuerungsanlagen

■ 1 x Hackgutkessel■ 3 x Pelletskessel■ 1 x Scheitholzkessel

■ Kesselleistung

■ Nennleistung 14,9 - 30 kW

Page 19: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

Central European Biomass Conference 2011

Bestimmung des Jahresnutzungsgrades

Folie 12

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800 900 1000Zeit [min]

Leis

tung

[kW

]

0

10

20

30

40

50

Vol

umen

stro

m [N

m³/h

]

Ist-Wärmeleistung [kW] Soll-Wärmeleistung [kW]

el. Hilfsenergie [kW] Kessel-Wärmeleistung [kW]

Abgasvolumenstrom [Nm³/h]

Kesselverhalten beim Referenzlastzyklus

Page 20: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

Central European Biomass Conference 2011

Bestimmung des Jahresnutzungsgrades

Folie 13

Emissionen bei Versuch mit Referenzlastzyklus

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800 900 1000

Zeit [min]

Konz

entra

tion

[Vol

%]

0

500

1000

1500

2000

2500

Kon

zent

ratio

n [p

pm]

Sauerstoff [Vol%] Kohlendioxid [Vol%]

Wasser [Vol%] Kohlenmonoxid [ppm]

Stickoxide [ppm] org. Kohlenwasserstoffe [ppm]

Page 21: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

Central European Biomass Conference 2011

Bestimmung des Jahresnutzungsgrades

Folie 14

Automatisierte Auswertung

■ Lastzyklus ■ Volllastbetrieb und Puffer

Volllastversuch

Datei:

Auswertezeiträume:

Kesselstart 10.06.2010 13:50Start stationärer Betrieb 10.06.2010 15:30Ende stationärer Betrieb 10.06.2010 20:00Versuchsende 11.06.2010 04:15

Wirkungsgrad / Emissionen nach EN 303-5

Wirkungsgrad (direkt) 84,7 [%]CO 64,8 [mg/MJ]NOx 105,8 [mg/MJ]SO2 1,5 [mg/MJ]org. C 2,1 [mg/MJ]Staub 10,4 [mg/MJ]

Nutzungsgrad / Emissionsfaktoren Pufferbetrieb

Puffergröße 750 [l]Nutzungsgrad Kessel 78,6 [%]el. Energiebedarf 1,0 [%]Pufferverlust 4,9 [%]Nutzungsgrad System 73,7 [%]CO 168,1 [kg/TJ]NOx 125,4 [kg/TJ]SO2 5,9 [kg/TJ]org. C 11,9 [kg/TJ]Staub 14,3 [kg/TJ]

Data@ JNG _V L.x ls

Lastzyklus

Datei:

Auswertezeiträume

Kesselstart 08.06.2010 08:29Zyklusstart 08.06.2010 08:51Zyklusende 08.06.2010 16:51Versuchsende 09.06.2010 01:00

Datenqualität

Abweichung Lastzyklus 1,1 [%]Abweichung C-Bilanz -2,8 [%]Entnahme Abkühlphase 0,2 [kW]Abweichung Anfang zu Ende 0,2 / 45,1 [°C] / [°C]

Nutzungsgrad / Emissionsfaktoren

Nutzungsgrad 75,2 [%]el. Energiebedarf 1,5 [%]CO 289,1 [kg/TJ]NOx 105,2 [kg/TJ]SO2 6,4 [kg/TJ]org. C 15,7 [kg/TJ]Staub 20,0 [kg/TJ]

Data@JNG_LZ.xls

Page 22: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

Central European Biomass Conference 2011

Bestimmung des Jahresnutzungsgrades

Folie 15

Ausgewählte Ergebnisse

■ Moderner Pelletskessel

■ PN = 14,9 kW

■ Eingebauter BS-Tank

■ Modulierender Betrieb

[kg/TJ]111110Staub[kg/TJ]0,31,110,6org. C[kg/TJ]76,998,457,9NOx

[kg/TJ]3,262,9416,9CO[%]89,777,685,6Nutzungsgrad

EinheitVolllast EN303-5

Volllast + Puffer

Referenz-Lastzyklus

Page 23: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

Central European Biomass Conference 2011

Bestimmung des Jahresnutzungsgrades

Folie 16

Vergleich mit Grenzwerten und Emissionsfaktoren

■ Gesetzliche Grenzwerte werden auch im realen Betrieb unterschritten

■ Österreichische Emissionsfaktoren sind viel zu hoch

1010,657,9

416,985,6

Referenz-Lastzyklus

[kg/TJ]906011Staub[kg/TJ]448401,1org. C[kg/TJ]10715098,4NOx

[kg/TJ]4.30350062,9CO[%]-77,477,6Nutzungsgrad

EinheitEmissions-faktorGrenzwerteVolllast +

Puffer

Page 24: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

Central European Biomass Conference 2011

Bestimmung des Jahresnutzungsgrades

Folie 17

40 60 80 100

74

67

78

79

79 Holzpellets, Hackgut14,9-30

Holzpellets /4/10-32Holzpellets /3/<15

Hackgut /1/200-4.500

Leistung Mittlerer Jahresnutzungsgrad Brennstoff[kW] (min-max) [%]

10-49 Energiepflanzen u. -korn /2/

Vergleich mit Literaturdaten

1. Good, Nussbaumer et al, 2005: Systemoptimierung automatischer Holzheizungen, Schlussbericht; bfe 2005; Werte von 30 Anlagen

2. Eder et al, 2006/08: Energiekornmonitoring (2006) und Energiepflanzenmonitoring des Landes OÖ (2008); Endberichte, ABC; Ergebnisse von Feldmessungen an 6 Anlagen

3. Kunde et al, 2009: Feldmessungen an Holzpellet-Zentralheizkesseln, in: BWK 1/2 2009; Werte von 5 Kesseln

4. Schraube et al, 2010: Long-Term Monitoring of Small Pellet Boiler Based Heating Systems in Domestic Applications; proceedings of 18th EBCE Lyon; Werte von 8 Kesseln

Page 25: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

Central European Biomass Conference 2011

Bestimmung des Jahresnutzungsgrades

Folie 18

Zusammenfassung und Schlussfolgerungen

■ EN 303-5 erlaubt heute keine genügende Unterscheidung der Produkte mehr■ Unterschiede treten unter instationären Bedingungen auf■ Deutlicher Unterschied zwischen Jahresnutzungsgrad und

Kesselwirkungsgrad

■ Prüfstandsmethode für Jahresnormnutzungsgrad und Jahresnormemissionsfaktoren wurde entwickelt■ Für Manuell und automatisch beschickte Biomassefeuerungen■ Für den Volllastbetrieb mit Pufferspeicher sowie für modulierenden

Betrieb des Kessels

■ Experimentelle Ergebnisse zeigen gute Übereinstimmung mit publizierten Daten von Feldmessungen

Page 26: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

Central European Biomass Conference 2011

Bestimmung des Jahresnutzungsgrades

Folie 19

Danksagungen

■ Projektdurchführung in Kooperation von

■ AEE Kärnten Salzburg■ Bioenergy 2020+ GmbH■ FJ-BLT Biomass-Logistics-Technology Francisco Josephinum■ Technologie- und Förderzentrum Nachwachsende Rohstoffe

■ Gefördert im Rahmen des Programms „ENERGIE DER ZUKUNFT“durch bmvit und bmwfj

■ Abwicklung durch die FFG

Page 27: Determination of annual efficiency and emission factors of ... · stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method

Central European Biomass Conference 2011

Vielen Dank für IhreAufmerksamkeit!Markus SchwarzSenior ResearcherBIOENERGY 2020+ GmbH, Standort WieselburgTel: +43 7416 [email protected]