development of molecular markers for authentication_chang ho_thesis

57
저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다. 다음과 같은 조건을 따라야 합니다: l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다. l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다. 저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 이것은 이용허락규약 ( Legal Code) 을 이해하기 쉽게 요약한 것입니다. Disclaimer 저작자표시. 귀하는 원저작자를 표시하여야 합니다. 비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

Upload: xprakash

Post on 20-Nov-2015

27 views

Category:

Documents


4 download

DESCRIPTION

Molecular Markers

TRANSCRIPT

  • -- 2.0

    l , , , , .

    :

    l , , .

    l .

    .

    (Legal Code) .

    Disclaimer

    . .

    . .

    . , .

    http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcodehttp://creativecommons.org/licenses/by-nc-nd/2.0/kr/

  • - I -

    Dissertation for the Degree

    of Master

    Development of Molecular Markers for Authentication

    of Korean Ginseng and Japanese Ginseng

    by

    Chang-Ho Ahn

    Department of Forestry

    Graduate School

    Kangwon National University

    February, 2009

  • Under the Guidance of

    Professor Yong-Eui Choi

    Development of Molecular Markers for Authentication

    of Korean Ginseng and Japanese Ginseng

    A DISSERTATION

    Submitted to the Graduate School of

    Kangwon National University in Partial

    Fulfillment of the Requirements

    for the Degree of

    Master of Chang-Ho Ahn

    by

    Chang-Ho Ahn

    Department of Forestry

    February, 2009

  • - III -

    Approved by Committee of the Graduate School of

    Kangwon National University in Partial Fulfillment of

    the Requirements for the Degree of

    Master of Agriculture

    Chang-Ho Ahn

    December, 2008

    Thesis Committee ;

    (Signature)

    (Signature)

    (Signature)

  • - I -

    Development of Molecular Markers for Authentication of

    Korean Ginseng and Japanese Ginseng

    Chang-HoAhn

    DepartmentofForestry

    GraduateSchool,KangwonNationalUniversity

    Abstract

    PanaxginsengC.A.Meyer,commonlyknownasKoreanginseng,isa

    perennialherbnativetoKoreaandChina.Itsrootsarehighlyprizedfor

    various medicinalproperties.The internationaltrade of ginseng is

    increasingyearly.Duetothisfact,disguisedChineseginsengintoKorean

    ginseng became a problem in world and also in Korean market.

    Therefore,an efficientmethod is required to distinguish between P.

    ginsengandotherPanaxspeciesataDNA level.Themolecularmarkers

    wereaccepted asmoreconfidentmethodsthan themorphologicaland

    chemicalanalysis.MolecularauthenticationsofdifferentPanaxspecies

    werereportedinsomeextentusingRAPD,PCR-RFLP,genesequences.

    However,molecularmarkerto authenticate the Korean ginseng from

    otherforeignginsengisremainedtobeclear.Amplifiedfragmentlength

    polymorphism (AFLP)analysis hastheadvantageofdetecting length

  • - II -

    differencesassmallas1bp,andisabletodetectmoreindependentloci

    forpolymorphism than othercurrentlyavailablePCR-basedtechniques.

    Microsatellites are highly polymorphic,codominantmarkers thathave

    provenusefulforavarietyofpurposesincludingfinger-printing.

    Inthisstudy,wedevelopedageneticmarkersasafast,efficientand

    easymethodsfortheauthenticationamongdifferentPanaxspeciesby

    usingtheAFLPandmicrosatelliteanalysistechnique.AFLPanalysiswas

    carriedouttoauthenticatetheP.japonicusamongP.ginseng andP.

    quinquefolius.A clearspecies-specificAFLPbandsforP.japonicuswas

    generated.AfterisolationandsequencingoftheAFLPfragment,aDNA

    sequence(293bp)wasobtainedandnamedJG14.Oligonucleotideprimer

    (23mer)wasdesignedforamplifying191bpofthesequenceofJG14.

    PCRanalysisrevealedaclearamplifiedbandforP.japonicusbutnotin

    3otherPanaxspecies(P.ginseng,P.quinquefoliusandP.notoginseng).

    Thissequencecharacterized amplified regions(SCAR)markerwillbe

    usedforrapidauthenticationofP.japonicusamongotherrelatedPanax

    species.This is the first report of species-specific SCAR marker

    developmentinP.japonicus.

    Ontheotherhands,microsatellitefragments(252clones)wereisolated

    from genomic library. Then sequence of these fragments was

    determinated.Baseuponsequenceinformation,38microsatelliteprimers

    were obtained. Among the primers tested, 6 highly polymorphic

    microsatellitemarkers(calledSSRmarker)suchasPG409,PG450,PG491,

    andPG582wereselectedforanalysisofginseng.SSRanalysisrevealed

  • - III -

    thatthesemarkerscouldbeappliedtodistinguishKoreanginsengfrom

    Chineseginseng.

    Conclusively,thesekindsofmarkerwillofferanefficientapproachto

    authenticateKoreanginsengfrom chineseginsengandJapaneseginseng.

  • - IV -

    ABSTRACT

    LIST OFTABLES

    LIST OFFIGURES

    I

    INTRODUCTION 1

    Chapter1.DevelopmentofspeciesspecificAFLP-derived

    SCARmarkerforauthenticationofPanaxjaponicusC.A.

    Meyer 4

    Abstract

    1.1Introduction

    1.2MaterialsandMethods

    1.2.1PlantmaterialsandextractionofgenomicDNA

    1.2.2GenomicDNAdigestionandadapterligation

    1.2.3AFLPanalysis

    1.2.4Cloning,DNAsequencingandSCARprimerdesign

    1.2.5PCRanalysis

    1.3ResultsandDiscussion

    1.3.1AFLPanalysis

    1.3.2IsolationofAFLPfragmentforSCARmarkerdesign

    1.3.3PCRamplificationusingSCARprimers

    4

    5

    6

    6

    7

    7

    8

    9

    10

    10

    11

    11

    Chapter2.Developmentofnew microsatellitemarkersfor

    Panaxginseng20

    Abstract

    2.1Introduction

    2.2MaterialsandMethods

    2.2.1PlantmaterialsandextractionofgenomicDNA

    2.2.2PrimerdesignandPCRamplification

    20

    21

    22

    22

    23

    CONTENTS

  • - V -

    2.2.3Electrophoresisandsilverstaining

    2.3ResultsandDiscussion

    2.3.1Primerdesign

    2.3.2AuthenticationofKoreanginsengfrom Chineseginseng

    2.3.3AnalysisinYangyang-gun(A.D.T.C.)samples

    23

    24

    24

    24

    25

    Literaturecited 37

  • - VI -

    LISTOFTABLE

    Table1.1Dataofcollectedsamplesofvariouskindsofginsengrootsfor

    AFLP13

    Table1.2OligonucleotideadaptersandprimersusedforAFLPanalysis

    14

    Table2.1SamplesofvariousginsengforMicrosatelliteanalysis27

    Table 2.2 Yangyang-gun (A.D.T.C.)samples ofvarious ginseng for

    Microsatelliteanalysis28

    Table2.3Microsatelliteprimers,nucleotidesequences,coremotifsand

    numberofrepeatsandexpectedproductsizeforSSR29

  • - VII -

    LISTOFFIGURE

    Fig.1.1AFLP analysisoftheP.japonicus,P.quinquefolius,and P.

    ginsengusingprimercombinationMseI+GTT/EcoRI+TA15

    Fig.1.2SequenceofthespeciesspecificDNA fragmentsofP.japonicus.

    16

    Fig.1.3PCRanalysisusingJG14primers17

    Fig.1.4PCRanalysisfrom variouskindsofsamplesusingJG14primers

    18

    Fig.1.5PCRamplificationofSCAR fragmentindifferentsamplesofP.

    japonicus19

    Fig.2.1GeneticdiversityofSSR analysisusingPG409primerbetween

    Korean-andChineseginseng30

    Fig.2.2GeneticdiversityofSSR analysisusingPG450primerbetween

    Korean-andChineseginseng31

    Fig.2.3GeneticdiversityofSSR analysisusingPG491primerbetween

    Korean-andChineseginseng32

    Fig.2.4GeneticdiversityofSSR analysisusingPG582primerbetween

    Korean-andChineseginseng33

    Fig.2.5GeneticdiversityofSSR analysisusingPG491primeramong

    theYangyang-gunsamplesprovidedfrom A.D.T.C.andChinese

    ginseng34

    Fig.2.6GeneticdiversityofSSR analysisusingPG582primeramong

    theYangyang-gunsamplesprovidedfrom A.D.T.C.andChinese

    ginseng35

  • - 1 -

    INTRODUCTION

    Panax(Araliaceae)isagenusofabout12speciesdistributedinthe

    worldandeachofthem hasbeenusedastraditionalmedicines.Panax

    ginseng, commonly known as Korean and Asian ginseng. P.

    quinquefolium is an another important ginseng species (American

    ginseng),whichisdistributedinNorthAmerica.P.japonicusisavailable

    inJapanandSouthernareaofChina.

    Panaxspecieshavebeenusedastonicsforanti-stress,anti-fatigue,and

    anti-aging purposes.Ginseng productshavebecomevery popularand

    haveattracted worldwideconsumption.However,Orientalginseng and

    Americanginsengareknowntohavedifferentpropertiesandmedicinal

    values.The red form ofOrientalginseng,produced by steaming,is

    "warm"andknowntoreplenishthe"vitalenergy",whereasAmerican

    ginsengis"cool"andismainlyusedforreducingthe"internalheat"and

    promotingthesecretionofbodyfluids.

    In addition,ginsenosides (ginseng saponins)are known to be the

    bioactive components ofginseng.According to the difference in the

    aglyconeinthesesaponins,ginsenosidesareclassifiedintothreetypes:

    the20(S)-protopanaxadioltype(e.g.,ginsenosidesRb1,Rc,Rb2,andRd),

    the20(S)-protopanaxadioltype(e.g.,ginsenosidesRg1,Rf,andRe),and

    the oleanolic acid type (e.g.,ginsenosides Ro) (Chan etal.,2000).

    GinsenosidesRg1,Re,Ro,Rb1,Rc,Rb2,and Rd arepresentin both

    Oriental and American ginsengs in different proportions, whereas

    ginsenosideRfcanonlybefoundinOrientalginseng(Chuangetal.,

    1995).Incontrast,Americanginsengcontains24-(R)-pseudoginsenoside

    F11,anocotilloltypetriterpenewhichisabsentinOrientalginseng(Dou

    etal.,1998;Chenetal1981).

    AmongPanaxspecies,KoreanP.ginseng isthebest-knownproduct

  • - 2 -

    with high medicinalvalues in the world.However,in the ginseng

    marketsworldwide,Americanginsengusuallycommandsamuchhigher

    price than the sun-dried Orientalginseng.Since the roots ofthese

    ginsengs are similar in appearance and many commercialginseng

    productsareinform ofpowderorshreddedslices,identificationofthe

    originsoftheginsengproductsisnotaneasytask.Duetothisfact,

    disguisedChineseandAmericanginsengintoKoreanginsengbecamea

    problem inworldandalsoinKoreanmarket.InKorea,wild-grownand

    wild-cultivatedKoreanginsengissoldwithhighpricesandthedisguise

    ofChinesewildginsengintoKoreanginsengisseriousproblem inKorea,

    whichmayberesultedinthedepressionofginsengmarket(Kim etal.,

    2005).

    Therefore,itisveryimportanttoauthenticatetheKoreanginsengfrom

    Chinese ginseng and from otherdifferentginseng species.Thereare

    somereportsonthemorphologicalandchemicalauthenticationofKorean

    ginsengbetweenotherforeignP.ginsenganddifferentginsengspecies.

    TherearesomedifferencesbetweenP.ginsengandP.quinquefoliusin

    morphological characters and saponins (Chung et al.,1995,1998).

    However,itisvery difficulttodifferentiatethecharactersofginseng

    withinsamespeciesalthoughtheywerecultivatedindifferentcountry.

    Themolecularmarkerswereacceptedasmoreconfidentmethodsasthe

    morphologicalandchemicalanalysis.Molecularauthenticationsofdifferent

    PanaxspecieswerereportedinsomeextentusingRAPD (Shim etal.,

    2003;Um etal.,2001),PCR-RFLP (Nganetal.,1999;Fushimietal.,

    1997),genesequences(Komatsyetal.,2001;Shuetal.,1997).However,

    molecularmarkerto authenticate the Korean P.ginseng from other

    foreignP.ginsengisremainedtobeclear.

    Amplifiedfragmentlengthpolymorphism (AFLP)isaPCR basedtool

    usedin geneticsresearch,DNA fingerprinting,and in thepracticeof

  • - 3 -

    geneticengineering.AFLP-PCRisahighlysensitivemethodfordetecting

    polymorphismsinplantspecies.

    Microsatellites,alsoknown asSSRs(simplesequencerepeats)area

    smallarray oftandemly arranged 1-6 bases spread throughoutthe

    genomes.MicrosatellitesasDNA markersareadvantageousovermany

    other markers as they are highly polymorphic, highly abundant,

    co-dominant inheritance,analytically simple and readily transferable.

    MicrosatellitesarereportedtobemorevariablethanRFLPsorRAPDs,

    andhavebeenwidelyutilizedinplantgenomicstudies.

    Inthepresentstudy,thecombinationofthesemarkersdeterminatedby

    twotechniqueswillofferan efficientapproachtoauthenticateKorean

    ginsengfrom foreignginseng.

  • - 4 -

    Chapter 1. Development of species specific

    AFLP-derivedSCAR markerforauthenticationof

    PanaxjaponicusC.A.Meyer

    Abstract

    Panaxjaponicusisanimportantmedicinalplant.Theaim ofthisstudy

    was to develop species-specific molecular markers for P.japonicus.

    Amplifiedfragmentlengthpolymorphism (AFLP)wascomparedamongP.

    japonicus,P.ginsengandP.quinquefolius.Aclearspecies-specificAFLP

    markerforP.japonicuswasgenerated.Afterisolationandsequencingof

    theAFLPfragment,aDNA sequence(293bp)wasobtainedandnamed

    JG14.Oligonucleotideprimer(23mer)wasdesignedforamplifying191bp

    ofthesequenceofJG14.PCRanalysisrevealedaclearamplifiedbandfor

    P.japonicus but not in 3 other Panax species (P.ginseng, P.

    quinquefoliusandP.notoginseng).Thissequencecharacterizedamplified

    regions (SCAR)markerwillbe used forrapid authentication ofP.

    japonicusamongotherrelatedPanaxspecies.Thisisthefirstreportof

    species-specificSCARmarkerdevelopmentinP.japonicus.

  • - 5 -

    1.1Introduction

    Panaxisagenuscomprisingseveralspeciesofslow-growingperennial

    medicinalplants,inthefamilyAraliaceae.Theygrow intheNorthern

    HemisphereineasternAsia(Korea,northernChina,easternSiberiaand

    Japan)andNorthAmerica,typicallyincoolerclimates.P.japonicusC.A.

    Meyer(Japanese name;Chikusetsuninjin)is distributed in Japan and

    south-western China,and has a long rhizome,being morphologically

    similartobamboorhizome.IthasbeenreportedthattherhizomesofP.

    japonicus have an antiulcer action and have been used to treat

    fibrinolysis(Yamaharaetal.,1987;Matsudaetal.,1989),antiobesity(Han

    etal.,2005),and suppression ofapoptosis(Hosono-Nishiyama etal.,

    2006)andtosmoothcoughsandreducephlegm (ChangandBut,1986)

    Themain activecomponentin P.japonicusisocotillol-typesaponins

    (Zouetal.,2002).

    Theidentification ofspecies-specificDNA markersofPanaxspecies

    wouldbeofgreatimportancetodiscriminatethespecies.Analysisof

    well-characterizedcompounds,ginsenosides,isthemostpopularmethod

    foridentifyingthePanaxspeciesandqualitycontrolofginsengproducts

    (Chanetal.,2000).TheprofilesofginsenosidesinrootsofPanaxspecies

    are very similar and affected significantly by growth and storage

    conditions,and harvesttimes.Genetictoolsareconsidered toprovide

    more standardized and reliable methods for authentication of plant

    materialsattheDNA level.UsingPanaxspecies,themethodsdeveloped

    previously includelow-CotDNA fingerprinting (Hoand Leung,2002),

    randomlyamplifiedpolymorphicDNA(RAPD)(Baietal.,1997;Shaw and

    But,1995)orarbitrarily primed polymerase chain reaction (AP-PCR)

    (Cheungetal.,1994),PCR-random fragmentlengthpolymorphism (RFLP)

    (Fushimietal.,1997;Ngan etal.,1999),amplified fragmentlength

  • - 6 -

    polymorphism (AFLP)(Kim etal.,2005)andmicrosatellitemarkers(Hon

    etal.,2003)andinternaltranscribedspacers(ITS)sequencesofribosomal

    DNA (WenandZimmer,1996),andmicrochipelectrophoresis(Qinetal.,

    2005).

    Paran and Michelmore (1993) developed a technique known as

    sequence-characterized amplified regions(SCAR).SCAR markershave

    beenderivedfrom RAPD andAFLPmarkersandhaveprovenusefulin

    identifyingtheplantsattheintraorinter-specificlevel.SCARasaPCR

    basedgeneticmarkerisagenomicDNA fragmentthatisidentifiedby

    PCR amplificationusingapairofspecificoligonucleotideprimers(Paran

    and Michelmore,1993).Theconversion ofsuch markersinto SCARs

    based on the markersequence information significantly improves the

    reproducibility and reliability ofPCR assays (Paran and Michelmore,

    1993).SCAR markers are highly advantageous for quick and easy

    assessment(ParanandMichelmore,1993).Wangetal.(2001)developeda

    SCAR markerfrom RAPD fragmentstoauthenticateP.ginsengandP.

    quinquefoliusspecies.

    In thisstudy,aspecies-specificSCAR marker(named JG14)forP.

    japonicuswasobtainedfrom AFLP fragments.PCR amplificationusing

    JG14 specific primers clearly demonstrated the specific band for P.

    japonicusbutnotforP.ginseng,P.quinquefoliusandP.notoginseng

    1.2MaterialsandMethods

    1.2.1PlantmaterialsandextractionofgenomicDNA

    Seeds of P.ginseng were collected from Kangwon-do (Hambaek

    mountain),Kyungi-do(Ansungginsengcultivatedfield)ofSouthKorea,

    JilinProvince(ChangBaimountain)ofChinaandPrimorye(Ussuriysk)

  • - 7 -

    in Russia(Table1.1).SeedsofP.quinquefoliuswerecollected from

    Wisconsin(fieldcultivatedginsengandwild-simulatingginseng)inthe

    UnitedStates.SeedsofP.japonicuswerecollectedfrom Tochigi(Nikko

    NationalPark) and Nagano (two samples from different plants in

    Nyuugasayama),andHokkaido(NopporoForestPark)inJapan.Seedsof

    P.notoginsengwerecollectedfrom Yunnanprovince(twofieldcultivated

    plants)ofsouthwestern China.Dehisced seeds moisture-chilled for6

    monthsweresowedinsoil.Aftertwomonthsofculture,rootsofthe

    plantswereusedtostudytheAFLPanalysis.TotalgenomicDNA was

    extractedfrom ginsengrootswithaDNeasyPlantMinikit(Qiagene,

    Germany) using the procedure specified by the manufacturer.Two

    hundredmilligramsofsampleswerefrozeninliquidnitrogen,groundinto

    powder,and then the procedure ofthe manufacturerfollowed.DNA

    concentrationwasdeterminedbyabsorbanceat260nm.

    1.2.2GenomicDNAdigestionandadapterligation

    TheAFLPprocedureusedwasthatdescribedbyVosetal.(1995).To

    obtain the restriction fragments, 500 ng of genomic DNA was

    double-digested with 5 units ofEcoRI(TaKaRa,Japan)and MseI

    (TaKaRa,Japan)for12hat37.Afteradditionofethanol,DNA was

    precipitated by centrifuge at14000 rpm for 30 min.The ends of

    double-digested DNA fragments were ligated with EcoRIand MseI

    adaptersfor12hat14 (Table1.2).Afterligation,a10-folddiluted

    DNA solutionwasusedforpre-amplification.

    1.2.3AFLPanalysis

    Each20 PCRmixturecontained5 DNA,2 dNTP(0.2mM),

  • - 8 -

    0.5 DNA primers(Table1.2),and2 TaqDNA polymerase(EX

    Taq,TaKaRa,Japan).AmplificationwasperformedinaDNA thermal

    cycler(AppliedBiosystems9800,FosterCity,CA,U.S.A.)for20cycles.

    Theinitialcyclewas2minat94.Subsequentcycleswere30sat9

    4,1minat60,and1minat72,followedby10minat96 for

    thelastcycles.Pre-amplificationPCRproductswerediluted50-foldwith

    waterand usedforselectiveamplification.Theamplification mixture

    (20,finalvolume)contained5 pre-amplificationmixture,2.0

    10buffer,2 dNTP,0.5 DNA primer(E1-5andM1-2ofTable

    1),and2 TaqDNA polymerase(EX Taq,TaKaRa,Japan).After30

    sat94,30sat65,1minat72 forthefirstcycle,followedbya

    loweringoftemperature(1)inthenext12cycles,thenat56 forthe

    remaining23cycles;extension for1minat72.Amplifiedsamples

    were loaded onto a 6% denaturing polyacrylamide gel (5.75% Long

    Ranger,BMA U.S.A.,7M urea,1TBE)andelectrophoresedfor4hat

    15mA.Thegelwasfixedin10%aceticacidandsilverstained.

    1.2.4Cloning,DNAsequencingandSCARprimerdesign

    Amplifiedspecificbandswereexcisedfrom AFLPgelwitharazorblade

    andtheDNA extractedusingtheQIA quickGelExtractionkitaccording

    to the manufacturer's instructions (Qiagen, Valencia, CA, U.S.A.).

    Ligation ofthePCR productwascarried outwith apGEM-T Easy

    vector (Promega) according to manufacturer's instructions and then

    re-amplified alongsidetheoriginalAFLP reactionstoensurethatthe

    correctbandshadbeencloned.Thepurifiedligationreactionwasdiluted

    with50 water,anda5 aliquotwassubsequentlymixedwith40

    competentcellsandplacedonicefor1handthenplacedintoa

    cuvetteand electroporated(GenePulser;BioRad,Hercules,CA,U.S.A.).

  • - 9 -

    One milliliter of LB medium was added immediately following

    electroporationandincubatedfor1hat37 withshaking,afterwhicha

    200 aliquotwasplated ontoLB agarplatescontaining ampicillin,

    IPTG and X-galand incubated overnightat37.Up to six white

    coloniesfrom eachtransformationreactionwerestreakedontoLBplates

    toproducesinglecolonies.

    Plasmid DNA wasextracted from overnightculturesoftransformed

    bacterialcellsusingtheminiprepprocedure(SambrookandRussell,2001)

    ,andsampleswerediluted1:50insterilewater.Ten-microliteraliquots

    ofthedilutedminiprepweremixedwith6 sterilewater10buffer

    (Roche)and2 EcoR1restrictionenzyme(Roche)andthereactions

    incubatedat37 for1h.Theentirereaction,alongwith5 ofa

    1-kbladder(Gibco-BRL,Gaithersburg,MD,U.S.A.),waselectrophoresed

    ona1% horizontalagarosegelandstainedwithethidium bromide.Two

    sequencingreactionsweresetupusing1 ofplasmidDNA combined

    with 4 ofM13 forward and reverse primer,respectively.These

    reactionswerebroughtuptoatotalvolumeof18 withsterilewater.

    DNAsequencingwasperformedusingpUC/M13primersonanautomated

    sequencer(AppliedBiosystems9700).Theforwardandreverseprimers

    weredesignedusingprimerselect(DNAStar).

    1.2.5PCRanalysis

    ThedesignedSCARprimerpairs(oneforwardandonereverseprimer)

    wereusedtotestthefourPanaxspecies(P.ginseng,P.quinquefolius,

    P. notoginseng and P. japonicus). Testing was done to ensure

    amplificationofthebandwiththeexactmolecularweightanddetermine

    optimalannealingtemperature.Twodifferentannealingtemperatures(5

    8,62)werescreenedtodeterminetheoptimalannealingtemperature.

  • - 10 -

    ThePCR reactiontoamplifytheSCAR markerconsistedof32cycles,

    eachoneconsistingofa30sstepat94,a1minstepat58 or62,

    anda1minat72.PCRproductswererunona1.5% (w/v)agarose

    gelandstainedinethidium bromideasstatedabove.Thepresenceor

    absence oftheSCAR band was visually scored and compared with

    samplesofeachspecies.

    1.3ResultsandDiscussion

    1.3.1AFLPanalysis

    AFLP isbasedonselectivePCR amplificationofrestrictionfragments

    from adigestoftotalgenomicDNA using PCR.TheAFLP analysis

    procedureismoretime-consumingthanRAPD (ParanandMichelmore,

    1993).However,amajoradvantageofAFLPmarkersistheircapacityto

    revealmanypolymorphicbandsinonelanecomparedtoRAPD markers

    (ParanandMichelmore,1993).TheAFLPprimersshowninTable1were

    screenedforpolymorphism amongPanaxspecies.ThenumberofAFLP

    bandsgenerated from Panax samplesranged from 65to 73in each

    primercombination.Everyprimershoweddistinctpolymorphicfragments.

    EcoRI+TA/MseI+GTT primercombinationshowedabout15polymorphic

    AFLPbandsinP.japonicuscomparedtothoseofP.quinquefoliusand

    P.ginseng.Polymorphism wasgreaterinP.japonicuscomparedtoP.

    quinquefoliusandP.ginseng.Thisconfirmsthatthedistinctpolymorphic

    bandsbytheAFLPtechniqueamongthedifferentPanaxspeciescanbe

    used as a molecularmarkerto authenticate the Panax species.We

    previouslydescribedclearpolymorphicbandsbetweenSouthKoreanP.

    ginsengandChineseP.ginsengbyAFLPanalysisthatcouldbeapplied

    toauthenticateKoreanP.ginsengfrom ChineseP.ginseng(Kim etal.,

  • - 11 -

    2005).

    1.3.2IsolationofAFLPfragmentforSCARmarkerdesign

    AnAFLPfragment(JG14,arrow markedinFig.1.1)forP.japonicus

    wasuniqueinP.japonicusandnotconservedintheotherspecies.The

    JG14fragmentwasclonedandsequenced.A 293bpDNA fragmentwas

    obtained. Forward and reverse oligonucleotide primers (23 mer)

    (underlinedinFig.1.2)weredesignedfrom 192bpofthesequenceof

    JG14toamplifythisAFLPfragment.Theprimersequenceswere:JG14-

    F:5-GGAATGGCATGCATAGATATGGA-3andJG14-R:5-GTGTG

    CATGTCATTACCCCGAAA-3. BLAST results revealed that the

    sequenceshadnohomologywithknownplantnucleotidesequencesat

    sequence-similaritylevels.

    1.3.3PCRamplificationusingSCARprimers

    Among the four kinds of Panax species tested,P.ginseng,P.

    quinquefolius,P.japonicusandP.notoginseng,theJG14SCAR marker

    primersisolatedfrom theAFLPfragmentfrom P.japonicusshoweda

    clearband(191-bp)byPCRforP.japonicusbutnobandinP.ginseng,

    P.quinquefolius,andP.notoginseng(Fig.1.3).PCR analysisusingthe

    JG14SCAR markerprimersusing varioussamplesofP.ginseng,P.

    quinquefoliusandP.notoginsengcollectedatdifferentplacesshowedno

    PCRbandexceptforsamplesfrom P.japonicus(Fig.1.4).Theoptimized

    protocolisdescribedasfollows.Eachreactionconsistedof2 genomic

    DNA,10.3 sterilewater,2.5 10PCR buffer(12 mM MgCl2

    added),2 ofboththeforwardandreverseprimers,and0.2 Taq

    polymerase.The optimized amplification program requires an initial

  • - 12 -

    denaturationof5minat94;32cyclesof30sat94,1minstepat

    62 and1minat72;afinalextensionof5minat72 (Fig.1.3B).

    Lowering theannealing temperatureto58 wasalsoshoweddistinct

    PCRproductinP.japonicus(Fig.1.3A).

    PCR analysis ofdifferentsamples ofP.japonicus collected from

    differentplacesinJapanindicatedthattheJG14SCAR fragmentwas

    conserved in allsamplesofP.japonicusdistributed throughoutJapan

    (Fig.1.5).TheSCAR primerswereused to amplify P.ginseng,P.

    quinquefolius,P.notoginsengandP.japonicus.

    Speciesauthentication ofP.japonicusamong theotherthreePanax

    specieswasclearlydemonstratedusingthisJG14specificprimer.This

    report is the first describing SCAR marker development for the

    authenticationofP.japonicus.SCARmarkershavebeendevelopedfrom

    RAPD fragmentsfortheauthenticationofP.quinquefolius(Wangetal.,

    2001).

    Inconclusion,aspecies-specificSCAR markerforP.japonicuswas

    obtainedfrom AFLPfragments.PCR amplificationJG14specificprimers

    clearlydemonstratedtheuniquebandonlyinP.japonicusandnotinP.

    ginseng,P.quinquefoliusandP.notoginseng.TheSCARmarkersforP.

    japonicuswillbeusedforrapidauthenticationofthisspecies.

  • - 13 -

    Table 1.1. Samples of various ginseng roots for AFLP analysis

    No. Samples Scientific name Collecion site

    1Cultivated ginseng

    in Korea

    Panax ginseng Hambaek mountain

    Kangwon-do

    2Ansung

    Kyungi-do

    3Cultivated ginseng

    in China

    Panax ginseng Chang Bai mountain

    Jinlin

    4Cultivated ginseng

    in Russia

    Panax ginseng Ussuriysk

    Primorye

    5Cultivated ginseng

    in U.S.A.

    Panax quinquefolius Wisconsin

    U.S.A.

    6Cultivated ginseng

    in Japan

    Panax japonicus Nikko National Park

    Tochigi

    7Nyuugasayama

    Nagano

    8Nopporo Forest Park

    Hokkaido

    9Cultivated ginseng

    in China

    Panax notoginseng Yunnan

    Southwestern China

  • - 14 -

    Table1.2.OligonucleotideadaptersandprimersusedforAFLPanalysis

    Adapter (5' to 3') Primer sequences (5' to 3')

    EcoRI-adapter E0: GAC TGC GTA CCA ATT C Forward: E1: GAC TGC GTA CCA ATT CAT

    CTCGTAGACTGCGTACC E2: GAC TGC GTA CCA ATT CAC

    Reverse: E3: GAC TGC GTA CCA ATT CTA AATTGGTACGCAGTCTAC E4: GAC TGC GTA CCA ATT CTG

    E5: GAC TGC GTA CCA ATT CACA

    MseI-adapter Forward: M0: GAT GAG TCC TGA GTA A

    GACGATGAGTCCTGAG M1: GAT GAG TCC TGA GTA ACT G

    Reverse: M2: GAT GAG TCC TGA GTA AGT T TACTCAGGACTCAT

  • - 15 -

    Fig.1.1.AFLP analysisoftheP.japonicus,P.quinquefolius,andP.

    ginseng using primercombination MseI+GTT/EcoRI+TA.Arrowheads

    indicatespecificbandforgenesequencing.

  • - 16 -

    Fig.1.2.SequenceofthespeciesspecificDNA fragmentsofP.japonicus.

    Totallength ofthe fragmentis 293 bp.Designed primers forPCR

    analysisareunderlinedandnamedJG14.

  • - 17 -

    Fig.1.3.PCRanalysisusingJG14primers.A:PCRamplificationofSCAR

    fragmentinP.japonicus.M isthe100-bpmarker.PgisP.ginsengfrom

    Kangwon-do(Hambaekmountain).PqisP.quinquefoliusfrom Wisconsin

    (wild-simulatingginseng)inU.S.A.PnisP.notoginsengfrom Yunnan

    provinceofsouthwesternChina.PjisP.japonicusfrom Tochigi(Nikko

    NationalPark)in Japan.Black arrowhead indicatesexpectedamplified

    band(191-bp)byJG14primers.

  • - 18 -

    Fig.1.4.PCRanalysisfrom variouskindsofsamplesusingJG14primers.

    M isthe100-bpmarker.SamplesofP.ginsengwascollectedfrom (Pg1)

    Kangwondo (Hambaek mountain),(Pg2)Kyungi-do (Ansung ginseng

    cultivated field) of South Korea,(Pg3) Jilin Province (Chang Bai

    mountain)ofChinaand(Pg4)Primorye(Ussuriysk)inRussia.Samples

    ofP.quinquefoliuswerecollected from cultivated ginseng (Pq1)and

    wild-simulating ginseng (Pq2)in Wisconsin (U.S.A.).Samples ofP.

    japonicuswerecollectedfrom (Pj1)Tochigi(NikkoNationalPark),(Pj2)

    Nagano(Nyuugasayama).SamplesofP.notoginsengwerecollectedfrom

    (Pn1andPn2)YunnanprovinceofsouthwesternChina.

  • - 19 -

    Fig.1.5.PCRamplificationofSCARfragmentindifferentsamplesofP.

    japonicus.SamplesofP.japonicuswerecollectedfrom NikkoNational

    Park(Pj1)andNagano(Pj2,Pj3),andNopporoForestParkofHokkaid

    (Pj4) in Japan.Black arrowhead indicates expected amplified band

    (191-bp)byJG14primers.M isthe100-bpmarker.

  • - 20 -

    Chapter 2. Development of new microsatellite

    markersforPanaxginseng

    Abstract

    Microsatellites,also called simplesequencerepeats (SSRs),arevery

    usefulmolecular genetic markers commonly used in plant breeding,

    speciesidentificationandlinkageanalysis.Becausetheyareco-dominant,

    multiallelic,easilyscoredandhighlypolymorphic.Inthepresentstudy,

    we constructed a microsatellite-enriched genomic library of Panax

    ginseng.Tri-ntrepeatunitswerethemostabundant(57.9%),followedby

    di-nt repeats (27.8%) and tetra-nt repeats (14.3%).After sequence

    analysison 992randomly pickedpositivecolonies,126(12.7%)ofthe

    colonieswerefound tocontain microsatellitesequences,and 6primer

    pairs were designed.By polymorphism assessment,4 primer(PG409,

    PG450,PG491,andPG582)testedwereshown tobepolymorphicand

    Korean ginseng wasclearly distinguished from chineseginseng.This

    studyrepresentsthefirstreportofthebulkisolationofmicrosatellitesby

    screening a microsatellite-enriched genomic library in P.ginseging.

    These microsatellite markers provide powerfultools to authenticate

    Koreanginsengfrom Chineseginseng.

  • - 21 -

    2.1Introduction

    Panaxginseng,commonly known asKorean orAsian ginseng,isa

    perennialherbnativetoKoreaandChinaandhasbeenusedasanherbal

    remedy ineastern Asiaforthousandsofyears.TherootsofKorean

    ginsengarehighlyprizedforseveralmedicinalproperties.Traditionally,

    thecrophasbeenharvestedfrom thewild,however,intherecentyears

    increasing demand in the world markethad led to its uncontrolled

    harvestingthatresultedinthevirtualextinctionoftheplantinitsnative

    habit.Asaresult,ginsengisbeingdevelopedasahorticulturalcropnow

    days.Furthermore,thedisguiseofChineseandAmericanginsenginto

    Koreanginseng hadbecameaproblem in recentyearsin Koreaand

    abroad.Therefore,anefficientmethodisrequiredtodistinguishbetween

    P.ginsengandotherPanaxspeciesataDNAlevel.

    Themolecularmarkerswereacceptedasmoreconfidentmethodsasthe

    morphologicalandchemicalanalysis.Molecularauthenticationofdifferent

    Panax species werereported in some extentusing random amplified

    polymorphism (RAPD)(Kim andSohn,2005;Mihalovetal.,2000;Um et

    al.,2001),restrictionfragmentlengthpolymorphisms(RFLPs)(Fushimiet

    al.,1997;Ngan etal.,1999),amplifiedfragmentlength polymorphisms

    (AFLPs)(Kim etal.,2005;Choietal.,2008),amplificationofminisatellite

    regionDNA (DAMD)(Haetal.,2002).However,molecularmarkerto

    authenticatetheKoreanginsengfrom otherforeignginsengisremained

    tobeclear.

    Microsatellites,also referred to as shorttandem repeats (STRs)or

    (SSRs),arepolymorphiclocipresentinnuclearandorganellarDNA that

    consistofrepeatingunitsof1-6basepairsinlength(Turnpennyand

    Ellard,2005).Theyhavebeenwidelyusedforpositionalcloningofgenes

    ofinterest,and construction ofgenome-wide physicalmap,and to

  • - 22 -

    improve understanding ofgenome evolution (Bonierbale etal.,1988;

    Kurataetal.,1997;Martinetal.,1993;Tanksleyetal.,1996).Despite

    theirimpotance,thedevelopmentofmicrosatellitemarkersystemsfor

    manyplantshasbeenlimitedbecauseitisnecessarytoisolate,clone,

    sequenceand characterizemicrosatellitelociin mostspeciesthatare

    being examined forthe firsttime.The relatively low frequency of

    microsatellitesinplantgenomescomparedtohumanoranimalgenomes

    may presentan additionaltechnicalproblem (Powelletal.,1996).To

    increase the efficiency of microsatellite marker development, novel

    approachestoenrichSSRshavebeenproposedandsuccessfullyapplied

    inmanyplants(Edwardsetal.,1996;Hamiltonetal.,1999).Therefore,it

    maybeusefultosearchformicrosatellitesinpublishedDNAdatabases.

    Inthepresentstudy,wedevelopedasetofmicrosatellitemarkersfrom

    KoreanputativewildP.ginsengversusChineseP.ginseng.

    2.2MaterialsandMethods

    2.2.1.PlantmaterialsandextractionofgenomicDNA

    ThePanax ginseng samplesused wereeitherfresh ordried roots.

    SamplesofputativewildP.ginsengsampleswereobtainedasleaffrom

    Punggi-eup,Inje-gun,Hwacheon-gunandcultivatedP.ginsengsamples

    were purchased in China (Table 2.1).Furthermore,10 samples of

    mountain cultivated P.ginseng were provided from Yangyang-gun

    (AgriculturalDevelopment and Technology Center) (Table 2.2).The

    samples were ground into fine powders after freezing with liquid

    nitrogen.GenomicDNA wasthenextractedusingaDNeasyplantDNA

    isolationkit(Qiagen,Germany).

  • - 23 -

    2.2.2.PrimerdesignandPCRamplification

    Theflankingsequencesoftherepeatmotifswereusedtodesignspecific

    primers.Base upon database,various microsatellites were obtained.

    Amongthem,6primerswereselectedforanalysis(Table2.3).

    PCRreactionswereperformedin25 volumemadeinDNAfreewater

    containing10-20ngofgenomicDNA,0.5pmolesofeachprimer(Table

    2.3),0.2mM ofeachdNTP,2mM MgCl2 and0.5unitofTaqDNA

    polymerase(EX Taq,TaKaRa,Japan).ReactionswererunonaDNA

    thermalcycler (Applied Biosystems 9800,Foster City,CA,U.S.A.).

    Cyclingconditionswere94 for5min;followedby35cyclesof94 for

    30s,appropriateannealingtemperature58 for30s,72 for1minand

    finalextensionstepat72 for5min.

    2.2.3.Electrophoresisandsilverstaining

    Microsatellite PCR amplified products were electrophoresed in 6%

    denaturingpolyacrylamidegelcontaining7M ureain1TBEbufferata

    constantvoltageof1000-1500Vfor2-3h.

    Afterelectrophoresis,carefullyseparatetheplatesusingaplasticwedge.

    The gelshould beattached strongly to theshortglassplate.After

    placing thegelplateina10% aqueousaceticacid,thesolution was

    shakenlightlyuntilloadingdyedisappeared.Afterthreewashingsofgel

    platewithtwominuteintervalsusingultrapurewaterandallmoistures

    wereremoved.Afterabout90minutesofdyeinginasolutionof2Lof

    ultrapurewater,3 of37% formaldehydeand2gofsilvernitrate,gel

    platewasgainwashedwithultrapurewater.A mixedsolutionof2Lof

    ultrapurewater,60gofsodium carbonate,3 of37% formaldehydeand

    400 ofsodium thiosulfate(10mg/)thathadbeencooledinadvance

  • - 24 -

    wasseparatedintotwodevelopingsolutionsof1L.Gelplatewasplaced

    insidethefirstdevelopingsolution.OncethefirsttemplateDNA beganto

    appear,theplatewasplacedinthesecondsolutionanddevelopeduntil

    thebandappeared.Developedgelplatewasprocessedinafixsolution

    for2-3minutesandwashed2-3timesusingultrapurewater.Locationof

    bandwasinterpretedaftercompletelydryingthegelplate.

    2.3ResultsandDiscussion

    2.3.1Primerdesign

    Theflankingsequencesoftherepeatmotifswereusedtodesignspecific

    primers.Among the38SSR primers,six microsatelliteprimerswere

    analysedtoauthenticatetheKoreanginsengfrom Chineseginseng.From

    six primers,fourKoreanginsengspecificSSR markerswereobtained,

    which was clearly distinguished the Korean ginseng from Chinese

    ginseng.

    2.3.2AuthenticationofKoreanginsengfrom Chineseginseng

    SSR analysisrevealedthattherearecleardifferencesinbandpatterns

    ofKoreanginsengandChineseginseng.DependedupontheSSRmarkers

    (PG409,PG450,PG491andPG582)tested,specificbandsforKoreanor

    Chineseginsengweregeneratedprimers(Figs.2.1-2.4).

    Amongthefourprimerstested,PG409primerwereclearlydemonstrated

    themoleculardifferencesbetweenKoreanginsengandChineseginseng

    (Fig2.1).However,amongtheKoreanginsengsamples,thesamplefrom

    Inje-gunwasexceptionallydifferentfrom othersamples(Fig2.1,arrow).

    Moreover, thebandpatterninonesample(China3)ofChineseginseng

  • - 25 -

    wassameintheKoreanginsenginall4primers(PG409,PG450,PG491

    andPG582).ThisresultindicatesthatsomeamountofKoreanginseng

    seedsarecultivatedinChina,whichsamplescanmakenew problem to

    distinguishtheChineseginsengbymolecularanalysis.

    Also,incaseofPG409andPG450,specialbandsforInje-gunginseng

    werefound(Figs.2.1,2.2).ThespecialbandsinInje-gunginsengmight

    indicatethenew wildvarityofKoreanmountainginseng.In caseof

    PG491,thebandpatternwasgenerallysimilarbetweentheKoreanand

    Chinese ginsengs,butthere were darkerand specific bands in the

    Chineseginseng (Fig 2.3).Todistinguish theKorean ginseng among

    Chineseginseng,itseemsthatanalysisofbandpatternsusingseveral

    primersisimportanttoclearlydistinguishtheKoreanginsengs.

    IncaseofPG582,thebandpatternwasdifferentbetweentheKorean

    and Chineseginsengs,and therewasspecific bands fortheChinese

    ginseng(Fig.2.4).

    ThefourSSR primers(PG409,PG450,PG491and PG582)canbe

    developedasthemarkertodistinguishtheKoreanginsengfrom Chinese

    ginseng.However,itisnotappropriatetodistinguishtheKoreanginseng

    usingsingleprimerset.EspeciallyinPG450,italsoseemsinappropriate

    for the marker because ofminute difference between Korean- and

    Chineseginseng.Therefore,theseveralprimersshouldbeusedasthe

    markertodistinguishtheKoreanandChineseginsengs.

    Formoresecureandclearidentificationofreproductivity,itisnecessary

    tousemorediversesamplesinadditiontothoseusedinthisstudy,and

    todevelopmorenew SSRmarkers.

    2.3.3AnalysisinYangyang-gun(A.D.T.C.)samples

    Differentbanding patterns were compared in 10 randomly selected

  • - 26 -

    ginseng from Yangyang-gun (provided from A.D.T.C.)using primer

    PG491andPG582.

    In caseofPG491,theband pattern revealed thatthere werethree

    specificbandsin theChineseginseng although generalband patterns

    weresimilar(Fig2.5).Especiallythesamplefrom Myeonokchi-rishowed

    thesametendencyofbandpatternasthatoftheChineseginseng.

    Finally,inthebandpatterngeneratedbyPG582,Myeonokchi-risample

    also showed the same band pattern to the Chinese ginseng.This

    indicatesthatKorean ginseng iscultivated in Chinaand imported to

    Korea.

    Inconclusion,4SSR primer(PG409,PG450,PG491,andPG582)were

    showntodistinguishtheKoreanginsengamongtheChineseginseng.

  • - 27 -

    Table 2.1. Samples of various ginseng for Microsatellite analysis

    No. Samples Scientific name Collection site

    1Wild ginseng

    in Korea

    Panax ginseng Punggi-eup,

    Gyeongsang-do

    2Hwacheon-gun 1,

    Kangwon-do

    3Samcheok-si,

    Kangwon-do

    4Inje-gun,

    Kangwon-do

    5Hwacheon-gun 2,

    Kangwon-do

    6Hwacheon-gun 3,

    Kangwon-do

    7Hwacheon-gun 4,

    Kangwon-do

    8Hwacheon-gun 5,

    Kangwon-do

    9Cultivated ginseng

    in China

    Panax ginseng Chang bai mountain 1,

    Jinlin

    10Chang bai mountain 2,

    Jinlin

    11Chang bai mountain 3,

    Jinlin

  • - 28 -

    Table 2.2. Yangyang-gun (A.D.T.C.) sample of various ginseng for

    Microsatellite analysis

    No. Samples Scientific name Collection site

    1

    Cultivated ginseng

    in Korea

    Panax ginseng

    Songhyun-ri

    2Myeonokchi-ri

    3Beopsuchi-ri

    4Songhyun-ri

    5Wol-ri

    6Myeonokchi-ri

    7Songhyun-ri

    8Cultivated ginseng

    in China

    Panax ginseng Hunchun

    9Cultivated ginseng

    in Korea

    Panax ginseng Beopsuchi-ri

    10Jukjeongja-ri

  • - 29 -

    Table2.3.Microsatelliteprimers,nucleotidesequences,coremotifsand

    numberofrepeatsandexpectedproductsizeforSSR

    SSR

    designationSequence(5'3')

    Repeatmotif

    andno.of

    repeats

    Expected

    size(bp)

    PG22 ATCAAGTTGGAAATCAGGTGGG (TC)22107

    GTGTCTATGCAAGTTGCGGCTGPG281 AAACTCTCTTCTAGTCTTCTTGCC (CTAT)12

    201GTAGGTATACATACATGTACGGAA

    PG409 GATCAATCAGAAACAAAGAAAGCT (TGA)7195

    GCTGCTCTTTCTGGGTATGCTTPG450 GATCTTCTGGATGATTTCGACAT (GA)13

    172TTGCCCACCCCTTTCTCCACC

    PG491 AGGGAGTACGGAAGGATGGAAG (TC)14211

    GCTCAGTGTTTACAGACACAATT

    PG582 GAATTCATGCTCGGACTCAGTC (GGA)7298

    CCACTATTCTCCATCTCTCACC

  • - 30 -

    Fig.2.1.GeneticdiversityofSSR analysisusingPG409primerbetween

    Korean-andChineseginseng.Thefigureshowstheallelicprofileofa

    microsatellitelocusin P.ginseng specieson 6% polyacrylamidegels

    silver-stained. Polymorphism was detected clearly in Korean- and

    Chineseginseng.Arrow ()indicatesexpectedamplifiedChineseginseng

    specificbands.Arrow heads( )indicateChineseginsengspecificbands

    indicatesexpectedamplifiedKoreanginsengspecificbands.

  • - 31 -

    Fig.2.2.GeneticdiversityofSSR analysisusingPG450primerbetween

    Korean-andChineseginseng.Thefigureshowstheallelicprofileofa

    microsatellitelocusin P.ginseng specieson 6% polyacrylamidegels

    silver-stained.Polymorphism wasdetectedbetweenKorean-andChinese

    ginseng.Arrow ()indicatesexpectedamplifiedChineseginsengspecific

    bands.Allow heads( )indicatesexpectedamplifiedInje-gunginseng

    specificbands.

  • - 32 -

    Fig.2.3.GeneticdiversityofSSR analysisusingPG491primerbetween

    Korean-andChineseginseng.Thefigureshowstheallelicprofileofa

    microsatellitelocusin P.ginseng specieson 6% polyacrylamidegels

    silver-stained.Polymorphism wasdetectedbetweenKorean-andChinese

    ginseng.Arrow ()indicatesexpectedamplifiedChineseginsengdarker

    andspecificbands.

  • - 33 -

    Fig.2.4.GeneticdiversityofSSR analysisusingPG582primerbetween

    Korean-andChineseginseng.Thefigureshowstheallelicprofileofa

    microsatellitelocusin P.ginseng specieson 6% polyacrylamidegels

    silver-stained.Polymorphism wasdetectedbetweenKorean-andChinese

    ginseng.Arrow ()indicatesexpectedamplifiedChineseginsengspecific

    bands.

  • - 34 -

    Fig.2.5.GeneticdiversityofSSRanalysisusingPG491primeramongthe

    Yangyang-gun samples produced from A.D.T.C.and Chinese ginseng.

    ThefigureshowstheallelicprofileofamicrosatellitelocusinP.ginseng

    species on 6% polyacrylamide gels silver-stained.Polymorphism was

    detected in samplesofYangyang-gun.Arrow ()indicatesexpected

    amplifiedChineseginsengdarkerandspecificbands.Arrow heads( )

    indicateMyeonokchi-riginsengspecificbands.

  • - 35 -

    Fig.2.6.GeneticdiversityofSSRanalysisusingPG582primeramongthe

    Yangyang-gun samples produced from A.D.T.C.and Chinese ginseng.

    ThefigureshowstheallelicprofileofamicrosatellitelocusinP.ginseng

    species on 6% polyacrylamide gels silver-stained.Polymorphism was

    detected in samplesofYangyang-gun.Arrow ()indicatesexpected

    amplifiedChineseginsengdarkerandspecificbands.Arrow heads( )

    indicateMyeonokchi-riginsengspecificbands.

  • - 36 -

    Literaturecited

    Bai,D.P.,Brandle,J.,andReeleder,R.(1997)GeneticdiversityinNorth

    Americanginseng(PanaxquinquefoliusL.)growninOntariodetectedby

    RAPDanalysis.Genome,40,111-115.

    Bonierbale,M.W.,Plasisted,R.L.,andTanksley,S.D.(1988)RFLP

    mapsbasedonacommonsetofclonesrevealmodesofchromosomal

    evolutioninpotatoandtomato.Genetics120,1095-1103.

    Chan,T.W.,But,P.P.H.,Cheng,S.W.,Kwok,I.M.,Lau,F.W.,and

    Xu,H.X.(2000)Differentiation and authentication ofPanaxginseng,

    Panaxquinquefolius,andginseng productsby using HPLC-MS.Anal.

    Chem.,72,1281-1287.

    Chang,H.,andBut,P.(1986)PharmacologyandapplicationofChinese

    materialmedica.Vol.1,WorldScientificPublishing,Singapore,1986,p.

    17.

    Chen,S.E.,Staba,E.J.,Taniyasu,S.,Kasai,R.,andTanaka,O.(1981)

    Furtherstudyondammarane-saponinsofleavesandstemsofAmerican

    ginseng,Panaxquinquefolium.PlantaMed.42,406-409.

    Cheung,K.S.,Kwan,H.S.,But,P.P.H.,andShaw,P.C.(1994)

    PharmacognosticalidentificationofAmericanandOrientalginsengroots

    by genomic fingerprinting using arbitrarily primed polymerase chain

    reaction(AP-PCR).J.Ethnopharmacol.42,67-69.

    Chuang,W.C.,Wu,H.K.,Sheu,S.J.,Chiou,S.H.,Chang,H.C.,and

  • - 37 -

    Chen,Y.P.(1995)A comparative study on commercialsamples of

    ginsengradix.PlantaMed.61,459-465.

    Chung,Y.Y.,Lee,M.G.,Chung,C.M.,andJo,J.S.(1998)Comparison

    ofplantgrowth and morphologicalcharacteristics among the Korean

    ginseng,theAmericanginsengandtheBambooginseng.J.GinsengRes.

    22,147-153.

    Chung,Y.Y.,Chung,C.M.,Ko,S.R.,Choi,K.T.(1995)Comparisonof

    agronomiccharacteristicsandchemicalcomponentofPanaxginseng C.

    A.Meyer and Panax quinquefolium L.Korean J.Ginseng Sci.19,

    160-164.

    Choi,Y.E.,Ahn,C.H.,Kim,B.B.,andYoon,R.S.(2008)Development

    ofspecies specific AFLP-derived SCAR markerforauthentication of

    PanaxjaponicusC.A.Meyer.Biol.Pharm.Bull.31,135-138

    Dou,D.Q.,Hou,W.B.,Chen,Y.J.(1998)Studiesonthecharacteristic.

    constituentsofChineseginsengandAmericanginseng.PlantaMed.64,

    585-586.

    Edwards,K.J.,J.H.Baker,A.Daly,C.Jonesand A.Karp (1996)

    Microsatellite libraries enriched forseveralmicrosatellite sequences in

    plants.Biotechniques20,758-760.

    Fushimi,H.,Komatsu,K.,Isobe,M.,andNamba,T.(1997)Applicationof

    PCR-RFLPandMASA analyseson18SribosomalRNA genesequence

    forthe identification ofthree ginseng drugs.Biol.Pharm.Bull.20,

    765-769.

  • - 38 -

    Ha,W.Y.,Shaw,P.C.,Liu,J.,Yau,F.C.,and Wang,J.(2002)

    AuthenticationofPanaxginsengandPanaxquinquefoliususingamplified

    fragment length polymorphism (AFLP) and directed amplification of

    minisatelliteregionDNA(DAMD).J.Agric.FoodChem.50,1871-1875.

    Hamilton,M.B.,Pincus,E.L.,Di-Fiore,A.andFleischer,R.C.(1999)

    UniversallinkerandligationproceduresforconstructionofgenomicDNA

    librariesenrichedformicrosatellites.Biotechniques27,500-507.

    Han,L.K.,Zheng,Y.N.,Yoshikawa,M.,Okuda,H.,andKimura,Y.

    (2005)Anti-obesity effects ofchikusetsusaponins isolated from Panax

    japonicusrhizomes.BMCComplement.Altern.Med.5,9.

    Ho,I.S.H.,andLeung,F.C.(2002)Isolationandcharacterizationof

    repetitiveDNA sequencesfrom Panaxginseng.Mol.Genet.Genomics

    266,951-961.

    Hon,C.C.,Chow,Y.C.,Zeng,F.Y.,andLeung,F.C.C.(2003)Genetic

    authentication ofginseng and othertraditionalChinesemedicine.Acta

    Pharmacol.Sin.24,841-846.

    Hosono-Nishiyama,K.,Matsumoto,T.,Kiyohara,H.,Nishizawa,A.,

    Atsumi,T.,andYamadaH.(2006)SuppressionofFas-mediatedapoptosis

    ofkeratinocytecellsby chikusetsusaponinsisolated from therootsof

    Panaxjaponicus.PlantaMed.72,193-198.

    Kim,B.B.,Jeong,J.H.,Jung,S.J.,Yun,D.W.,Yoon,E.S.,andChoi,

    Y.E.(2005)AuthenticationofKoreanPanaxginsengfrom chinesePanax

  • - 39 -

    ginsengandPanaxquinquefoliusbyAFLPanalysis.J.PlantBiotechnol.

    7,81-86.

    Kim,J.J.,Jo,B.H.,Lee,K.L.,Yoon,E.S.,Ryu,G.H.,andChung,K.

    W.(2007)Identificationofnew microsatellitemarkersinPanaxginseng.

    Mol.Cells24,60-68.

    Kim,S.M.,andSohn,J.K.(2005)Identificationofaricegene(Bph1)

    conferringresistancetobrownplanthopper(NilaparvatalugensStal)using

    STSmarker.Mol.Cells20,30-34.

    Komatsu,K.,Zhu,S.,Fushimi,H.,Qui,T.K.,Cai,S.,andKadota,S.

    (2001)Phylogeneticanalysisbasedon18S rRNA geneandmatK gene

    sequencesofPanaxvietnamensisandfiverelatedspecies.PlantaMed.67,

    461-465.

    Kurata,N.,Umehara,Y.,Tanoue,H.,and Sasaki,T.(1997)Physical

    mapping ofthe rice genome with YAC clones.PlantMol.Biol.35,

    101-113.

    Martin,G.B.,Brommonschenkel,S.H.,Chunwongse,J.,Frary,A.,Ganal,

    M.W.,etal.(1993)Map-based cloning ofa protein kinase gene

    conferringdiseaseresistanceintomato.Science262,1432-1436.

    Matsuda,H.,Samukawa,K.,Fukuda,S.,Shiomoto,H.,Tung,C.N.,and

    Kubo,M.(1989)StudiesofPanaxjaponicusfibrinolysis.PlantaMed.55,

    18-21.

    Mihalov,J.J.,Marderosian,A.D.,and Pierce,J.C.(2000) DNA

  • - 40 -

    identificationofcommercialginseng samples.J.Agric.FoodChem.48,

    3744-3752.

    Ngan,F.,Shaw,P.,But,P.P.H.,and Wang,J.(1999)Molecular

    authenticationofPanaxspecies.Phytochemistry50,787-791.

    Paran,I.,and Michelmore,R. W. (1993) Development of reliable

    PCR-basedmarkerslinkedtodownymildew resistancegenesinlettuce.

    Theor.Appl.Gen.85,985-993.

    Powell,W.W.,Machery,G.C.,Provan,J.(1996)Polymorphism revealed

    bysimplesequencerepeats.TrendsGenet.1,215-222.

    Qin,J.,Leung,F.C.,Fung,Y.,Zhu,D.,and Lin,B.(2005)Rapid

    authentication ofginseng speciesusing microchip electrophoresiswith

    laser-inducedfluorescencedetection.Anal.Bioanal.Chem.381,812-819.

    Sambrook,J.,andRussell,D.W.(2001)"MolecularCloning:ALaboratory

    Manual,"ColdSpringHarborLaboratoryPress,New York.

    Shaw,P.C.,andBut,P.P.H.(1995)AuthenticationofPanaxspecies

    andtheiradulterantsbyrandom-primedpolymerasechainreaction.Planta

    Med.61,466-469.

    Shim,Y.H.,Choi,J.H.,Park,C.D.,Lim,C.J.,Cho,J.H.,andKim,H.

    J.(2003)MoleculardifferentiationoPanaxspeciesbyRAPD analysis.

    Arch.Pharm.Res.26,601-605.

    Shu,Z.,Hirotoshi,F.,Shaoqing,C.,andKatsuko,K.(2003)Phylogenetic

  • - 41 -

    relationshipinthegenusPanax:inferredfrom chloroplasttrnK geneand

    nuclear18SrRNAgenesequences.PlantaMed.69,647-653.

    Tanksley,S.D.,Grandillo,S.,Fulton,T.M.,Zamir,D.,Eshed,Y.,etal.

    (1996)AdvancedbackcrossQTL analysisinacrossbetweenanelite

    processinglineoftomatoanditswildrelativeL.pimpinellifolium.Theor.

    Appl.Genet.92,213-224.

    Turnpenny,P.and Ellard,S.(2005) Emery's Elements of Medical

    Genetics,12th.ed.Elsevier,London

    Um,J.Y.,Chung,H.S.,Kim,M.S.,Na,H.J.,Kwon,H.J.,etal.(2001)

    MolecularauthenticationofPanaxginsengspeciesbyRAPDanalysisand

    PCR-RFLP.Biol.Pharm.Bull.24,872-875.

    Vos,P.,Hogers,R.,Bleeker,M.,Reijans,M.,VandeLee,T.,Hornes,M.,

    Frijters,A.,Pot,J.,Peleman,J.,Kuiper,M.,andZabeau,M.(1995)AFLP:

    a new technique for DNA fingerprinting.Nucleic Acids Res.23,

    4407-4414.

    Wang,J.,Ha,W.Y.,Ngan,F.N.,But,P.P.H.,andShaw,P.C.(2001)

    Applicationofsequencecharacterizedamplifiedregion(SCAR)analysisto

    authenticatePanaxspeciesandtheiradulterants.PlantaMed.67,781-783.

    Wen,J.,andZimmer,E.A.(1996)PhylogenyandbiogeographyofPanax

    L.(theginseng genus,araliaceae):inferencesfrom ITS sequencesof

    nuclearribosomalDNA.Mol.Phylogenet.Evol.6,167-177.

    Yamahara,J.,Kubomura,Y.,Miki,K.,andFujimura,H.(1987)Anti-ulcer

  • - 42 -

    actionofPanaxjaponicusrhizome.J.Ethnopharmacol.19,95-101.

    Yun,T.K.(2001)BriefintroductionofPanaxginsengC.A.Meyer.J.

    KoreanMed.Sci.16,3-5.

    Zou, K., Zhu, S., Tohda, C., Cai, S., and Komatsu, K. (2002)

    Dammarane-typetriterpenesaponinsfrom Panaxjaponicus.Nat.Prod.65,

    346-351.

  • - 43 -

    (PanaxginsengC.A,Meyer) (Araliaceae)

    ,

    . 12

    .

    (Panaxginseng) ,,

    .

    , .

    .

    .

    , ,,,,

    AFLP microsatellite

    .

  • - 44 -

    AFLP primer JG14 PCR

    , .

    microsatellite 4 priemr , PG409

    . primer

    marker

    marker

    .

  • - 45 -

    2

    . ,

    .

    .

    .

    ,

    .

    , ,

    .

    .

    , Dr.Anbu,Dr.Harada,

    , .

    ,Dr.

    Faisal, , , , ,

    .

    , ,

    , , , , ,

    , , , , ,

    , , , ,

    , , .

  • - 46 -

    , , , , ,

    , , , ,

    .

    ,, ,

    , ,,

    .

    .

    ,

    ,

    .

    INTRODUCTIONChapter 1. Development of species specific AFLP-derived SCAR marker for authentication of Panax japonicus C. A. MeyerAbstract1.1 Introduction1.2 Materials and Methods1.2.1 Plant materials and extraction of genomic DNA1.2.2 Genomic DNA digestion and adapter ligation1.2.3 AFLP analysis1.2.4 Cloning, DNA sequencing and SCAR primer design1.2.5 PCR analysis

    1.3 Results and Discussion1.3.1 AFLP analysis1.3.2 Isolation of AFLP fragment for SCAR marker design1.3.3 PCR amplification using SCAR primers

    Chapter 2. Development of new microsatellite markers for Panax ginsengAbstract2.1 Introduction2.2 Materials and Methods2.2.1 Plant materials and extraction of genomic DNA2.2.2 Primer design and PCR amplification2.2.3 Electrophoresis and silver staining

    2.3 Results and Discussion2.3.1 Primer design2.3.2 Authentication of Korean ginseng from Chinese ginseng2.3.3 Analysis in Yangyang-gun (A.D.T.C.) samples

    Literature cited

    12INTRODUCTION 1Chapter 1. Development of species specific AFLP-derived SCAR marker for authentication of Panax japonicus C. A. Meyer 4 Abstract 4 1.1 Introduction 5 1.2 Materials and Methods 6 1.2.1 Plant materials and extraction of genomic DNA 6 1.2.2 Genomic DNA digestion and adapter ligation 7 1.2.3 AFLP analysis 7 1.2.4 Cloning, DNA sequencing and SCAR primer design 8 1.2.5 PCR analysis 9 1.3 Results and Discussion 10 1.3.1 AFLP analysis 10 1.3.2 Isolation of AFLP fragment for SCAR marker design 11 1.3.3 PCR amplification using SCAR primers 11Chapter 2. Development of new microsatellite markers for Panax ginseng 20 Abstract 20 2.1 Introduction 21 2.2 Materials and Methods 22 2.2.1 Plant materials and extraction of genomic DNA 22 2.2.2 Primer design and PCR amplification 23 2.2.3 Electrophoresis and silver staining 23 2.3 Results and Discussion 24 2.3.1 Primer design 24 2.3.2 Authentication of Korean ginseng from Chinese ginseng 24 2.3.3 Analysis in Yangyang-gun (A.D.T.C.) samples 25Literature cited 36