device&technology&for&gan3based&...

21
The Hong Kong University of Science and Technology Kevin J. Chen PowerSOC’12 1 Device Technology for GaNbased Integrated Power Electronics Kevin J. Chen The Hong Kong University of Science and Technology

Upload: lythien

Post on 20-Jul-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

The Hong Kong University of Science and Technology

Kevin  J.  Chen  PowerSOC’12   1  

Device  Technology  for  GaN-­‐based  Integrated  Power  Electronics  

Kevin  J.  Chen  The  Hong  Kong  University  of  Science  and  Technology  

The Hong Kong University of Science and Technology

Kevin  J.  Chen  PowerSOC’12   2  

Outline  

•  GaN’s  benefits  for  power  electronics  •  Technology  challenges  and  soluDons  

– Discrete  power  transistors  –  IntegraDon  of  power  switches  and  recDfiers  – Smart  power  ICs  

•  Summary  

The Hong Kong University of Science and Technology

Kevin  J.  Chen  PowerSOC’12   3  

Trends  in  Power  Converters  

•  High  voltage,  large  capacity,  high  frequency  •  Compact  size,  smart  control  and  low-­‐cost  •  High-­‐temperature  operaDon  and  low-­‐cost  cooling  systems  

GaN  Power  Devices  and  ICs  on  Si  

New  semiconductor  materials  with  fundamental  advantages  over  Si:  GaN  and  SiC  

The Hong Kong University of Science and Technology

Kevin  J.  Chen  PowerSOC’12   4  

GaN:  superior  material  properDes  Physical Properties   (Si)   (GaAs)   (4H-SiC)   (GaN)  

Bandgap  (eV)   1.11   1.43   3.26   3.4  Thermal  Cond.  (W/cm⋅K  )  

1.5   0.46   3.5   1.5  

Breakdown  E-­‐field  (MV/cm)  

0.3   0.3   2.5   2.5~3  

e  saturaDon  velocity  (×107cm/s)  

1.0   2.0   2.0   2.5  

e  Mobility  (cm2/V⋅s)   1300   5000 (2DEG)  

600-900   2000 (2DEG)  

BHFFOM*  (µEc2)   1   9.5 45   98  *BHFFOM: Baliga’s high frequency figure of merit

The Hong Kong University of Science and Technology

Kevin  J.  Chen  PowerSOC’12   5  

GaN  for  Power  Electronics    Breaking  the  Si  Limit  

*  N.-­‐Q.  Zhang,  et  al.  IEDM  Technical  Digest,  pp.  25.5.1  (2001).  

n  Lower  loss,  higher  switching  frequency,  higher  operaDng  temperature  

101 102 103 104 10510-2

10-1

100

101

102

103

4H-SiCLimit

AlGaN/GaN lateral limit

Si Limit

Spec

ific R O

N (mΩ

.cm

2 )

Breakdown Voltage (V)

GaN Limit

0 500 1000 1500

102

104

106

108

1010

1012

1014

Diamond/AlN

GaN6H SiCInNGaAs

Intri

nsic

Car

rier C

onc.

(cm

-3)

Temperature (oC)

Si

The Hong Kong University of Science and Technology

Kevin  J.  Chen  PowerSOC’12   6  

GaN  and  III-­‐nitride:  strong  polarizaDon  Charge  PolarizaDon  •  Spontaneous  •  Piezoelectric  

Commercial  AlGaN/GaN-­‐on-­‐Si  wafers:  •  Ga-­‐face:  PosiKve  polarizaKon  charges  at  the  

AlGaN/GaN  interface  à  high  2DEG  density  •  Normally-­‐on  2DEG  channel  without  any  

intenKonal  doping  

Ga-face

[0001]

N Ga

Substrate Negative Vth

Normally-on

The Hong Kong University of Science and Technology

Kevin  J.  Chen  PowerSOC’12   7  

Challenges  for  lateral  AlGaN/GaN  power  HEMTs  

•  Gate  control:  normally-­‐off  operaKon,  low  gate  leakage  and  large  gate  swing  

•  Surface  passivaDon:  low  current  collapse  and                            low  dynamic  RON    

•  Buffer:  low  “OFF”  state  leakage,  low  trap  state  density  and  stress  compensaKon/release  

•  Substrate:  (111)  Si  -­‐-­‐-­‐  how  to  integrate  with  Si  CMOS  (on  (100)  Si)?  

The Hong Kong University of Science and Technology

Kevin  J.  Chen  PowerSOC’12   8  

GaN  normally-­‐off  transistor  technologies    

Si Substrate

GaN Buffer2DEG

AlGaN BarrierS DPassivation

Gp-cap (AlGaN or GaN)

P-type cap

Si Substrate

GaN Buffer2DEG

AlGaN BarrierS DPassivationG

Si Substrate

GaN Buffer2DEG

AlGaN BarrierS DPassivation

GGate dielectric

Si Substrate

GaN Buffer2DEG

AlGaN Barrier

F

S DPassivation

G

Si Substrate

GaN Buffer2DEG

AlGaN Barrier

G

F

S DPassivation

Gate dielectric

Gate recess

Fluorine plasma ion implant.

HEMT MIS-HEMT

The Hong Kong University of Science and Technology

Kevin  J.  Chen  PowerSOC’12   9  

Normally-­‐off  transistor  performance  (by  F  implant)    

0 2 4 6 80

100

200

300

400

-2 0 2 40

100

200

300

400

I D (m

A/m

m)

VDS (V)

VDS = 10 V

ID,max:310mA/mm

Gm,max:186mS/mm

VGS = 1V

VGS = 1.5V

VGS = 2V

VGS = 2.5V

Gm

(mS/

mm

)

VGS(V) 100 100010-­‐1

100

101

102

@  ID  =  10  µA/mm

>  2.5  µA/mmHR L  '11  

G aN4H-­‐S iC

S i

 

 

Ron,  s

p  (mΩ⋅cm

2 )

B V  (V )

HK US T :

-4 -2 0 2 4 6 8 101E-7

1E-5

1E-3

0.1

10

1000

Vth = + 0.77 V Vth = +1.2 V

I DS

(mA

/mm

)

VGS (V)

I DS

(mA

/mm

)

0

100

200

300

400

500

0 2 4 6 8 100

100

200

300

400

500

LGD= 15 µm

I D (

mA

/mm

)

VDS (V)

VGS=-1~9V Step: 2V

HEMT

MIS-HEMT

Hysteresis:    traps  at  the    dielectric/(Al)GaN  interface  

The Hong Kong University of Science and Technology

Kevin  J.  Chen  PowerSOC’12   10  

GaN buffer

i-AlGaNS G D

AlGaN/GaN HEMT

SiNx

Mechanisms of passivation Ø Surface states compensation --- charge balance Ø Field-plate: passivation enhancement by E-field modification

Si Substrate

GaN Buffer

i-AlGaN

Source Gate DrainSiNx/AlN

Surface  passivaDon:  current  collapse  reducDon  

The Hong Kong University of Science and Technology

Kevin  J.  Chen  PowerSOC’12   11  

Current  collapse  reducDon  –  low  dynamic  RON  

•   R.  Chu,  et  al.,  IEEE  EDL,  vol.32,  p.632,  2011   •     S.  Huang,  et  al.,  IEEE  EDL,  vol.  33,  p.  516,  2012  

SiNx passivation PEALD-AlN passivation

The Hong Kong University of Science and Technology

Kevin  J.  Chen  PowerSOC’12   12  

Challenge  of  GaN  power  device  integraDon  n Transistor  Switches    

v Normally-­‐off  HEMT,  MIS-­‐HEMT  n RecFfiers  

v ConvenKonal  candidates:  GaN  Scho^ky  barrier  diode  (SBD)  and  PIN  diode  

HEMT SBD PIN

Incompatible

Schottky

Undoped GaN

Ohmic OhmicN+ GaN layerBuffer layerSubstrate

Ohmic

Undoped GaNOhmic Ohmic

N+ GaN:SiBuffer layerSubstrate

GaN:Mg++

GaN:Mg

The Hong Kong University of Science and Technology

Kevin  J.  Chen  PowerSOC’12   13  

Silicon Substrate

GaN Buffer 2DEGAlGaN

F-

LOFF LAC

A C

HEMT-compatible rectifiers V+ V-

n Lateral  field-­‐effect  recFfier  (L-­‐FER)    

   -­‐  Low  turn-­‐on  voltage  and  on-­‐resistance  

   -­‐  Sub-­‐surface  forward  conducKon  –  improved  reliability  

n SchoMky  barrier  diode  (SBD)  on  HEMT    

   -­‐  Higher  turn-­‐on  voltage      -­‐  ON-­‐state  reliability  issue  

The Hong Kong University of Science and Technology

Kevin  J.  Chen  PowerSOC’12   14  

L-FER performance

Ø  RON,sp: 2.04 mΩ·cm2 Ø  BV : 470 V

-500 -400 -300 -200 -100 0

0

50

100

150

200

250

Cur

rent

(mA/

mm

)Voltage ( V )

L=2 µmLD=15 µm

470 V

-3 -2 -1 0 1 2 3

0

50

100

150

200

L-FER SBD

Cur

rent

(mA

/mm

)

Voltage ( V )

L=1.5 µmLD=10 µm

0.2 V 1.3 V

( a )

The Hong Kong University of Science and Technology

Kevin  J.  Chen  PowerSOC’12   15  

Monolithic  integraDon  of  HEMT  and  L-­‐FER  

W. Chen, et al., APL, 2008, IEEE EDL 2009 W. Chen, et al., IEDM 2008.

+- 0V2.5V

Vout

Monolithic Integration

L

Normally-offHEMT

L-FER

C

VRec+ -

+

-VHEMT

The Hong Kong University of Science and Technology

Kevin  J.  Chen  PowerSOC’12   16  

GaN  Smart  Power  IC  Pladorm  

Core  power  devices   Peripheral  devices  

v     Normally-­‐off  HEMT  v     Lateral  Field-­‐Effect                  RecDfier  (L-­‐FER)  

Digital:    All-­‐n-­‐channel  direct-­‐coupled  FET  logic  (DCFL)  

Analog:    Sensing  &    ProtecDon  

 

*K. Y. Wong et al. ISPSD’09

The Hong Kong University of Science and Technology

Kevin  J.  Chen  PowerSOC’12   17  

Performance  of  integrated  devices  

 Well  behaved  devices  within  a  wide  range  of  operaDng  temperature    

0 2 4 6 80

50

100

150

200

250

300

350

400

-3 -2 -1 00

50

100

150

200

250

300

350

400

I D (m

A/m

m)

VDS (V)

Gm (m

S/m

m)

VGS (V)

VDS = 10V

D-mode25 oC

250 oCVGS = 0 V

-0.5 V

-1 V-1.5 V

VGS = 0 V

-0.5 V

-1 V

-1.5 V

25 OC

250 OC

(b)

0 1 2 30

50

100

150

200

250

300

350

-2 0 20

100200300

RT 50 oC 75 oC 100 oC 125 oC 150 oC 175 oC 200 oC 225 oC 250 oC 275 oC

Cur

rent

(mA

/mm

)

Voltage (V)

Voltage (V)

RTForward  Voltage  (V)

RT  to  275oC25oC  step

0                                    1                                    2                                    3    Forward  Voltage  (V)

350300250200150100500

I D(m

A/mm)

0 1 2 30

50

100

150

200

250

300

350

-2 0 20

100200300

RT 50 oC 75 oC 100 oC 125 oC 150 oC 175 oC 200 oC 225 oC 250 oC 275 oC

Cur

rent

(mA

/mm

)

Voltage (V)

Voltage (V)

RTForward  Voltage  (V)

RT  to  275oC25oC  step

0                                    1                                    2                                    3    Forward  Voltage  (V)

350300250200150100500

I D(m

A/mm)

0 2 4 6 80

50

100

150

200

250

300

350

400

-1 0 1 2 30

50

100

150

200

250

300

350

400E-mode

I D (m

A/m

m)

VDS (V)

VGS = 3 V

2.5 V

2 V

1.5 V

1 V

25 oC

250 oCVGS = 3 V

2.5 V

2 V

1.5 V1 V

VDS = 10V

Gm (m

S/m

m)

VGS (V)

25 OC

250 OC

L-FER

The Hong Kong University of Science and Technology

Kevin  J.  Chen  PowerSOC’12   18  18  

Digital  IC  :  Direct-­‐Coupled  FET  Logic  

Proper operation: from room temp. to 350 oC (equipment limit)

*  Y.  Cai,  et  al.  IEDM  Technical  Digest,  (2005)  and  EDL,  (2007).  

350ºC VDD = 3.5V

Output Signal

DCFL Inverter17 Stage DCFL Ring Oscillator

The Hong Kong University of Science and Technology

Kevin  J.  Chen  PowerSOC’12   19  

Some  basic  GaN  mixed-­‐signal  funcDonal  blocks  

VRef

VDD

Q 1

D 1

D 2

D 3

D 4

VSS

Voltage  reference   Bootstrap  comparator  

2-­‐bit    quanDzer    

VDD

GND

Q Q

S R

600  μm

470  μm

flip-­‐flop  

The Hong Kong University of Science and Technology

Kevin  J.  Chen  PowerSOC’12   20  

Over-­‐temperature  protecDon  IC  VDD

M4M3

M1 M2

Ms

M5

Vo L-FER1

L-FER2

VOUT

VREF

VB

Temperature Sensor

Bootstrapped Comparator

*  X.  Liu  et  al.  EDL,  (2011).  50 100 150 200 250

4

6

8

10

12

V OU

T (V)

Temperature (oC)

VREF=2.25V VREF=2.15V VREF=2.05V VREF=1.95V VREF=1.85V

Tcrit

The Hong Kong University of Science and Technology

Kevin  J.  Chen  PowerSOC’12   21  

•  GaN-­‐on-­‐Si  power  devices  and  ICs:  an  enabler  for  GaN-­‐based  PowerSOC  – high  efficiency,  small  size  and  simple  thermal  management  

•  IntegraKon  of  normally-­‐off  HEMTs  and  HEMT-­‐compaDble  field-­‐effect  recDfiers  enables  single-­‐chip  soluKon  to  switch-­‐mode  power  converters.  

•  GaN  smart  power  ICs  with  mixed-­‐signal  protecKon/control  funcKons  will  enable  more  robust  power  converter  soluKon.    

Summary