diseÑo pavimento rigido

15
Proyect : METODO AASTHO -93 FORMULACIÓN DE DISEÑO. FORMULA GENERAL AASTHO Donde: D= Espesor de la losa del pavimento en (in) W18 = Tráfico (Número de ESAL´s) Zr = Desviación Estándar Normal So = Error Estándar Combinado de la predicción del Tráfico ∆PSI = Diferencia de Serviciabilidad (Po-Pt) Po = Serviciabilidad Inicial Pt = Serviciabilidad Final S'c = Módulo de Rotura del concreto en (psi). Cd = Coeficiente de Drenaje J= Coeficiente de Transferencia de Carga Ec = Módulo de Elasticidad de concreto K= Módulo de Reacción de la Sub Rasante en (psi). MEJORAMIENTO DE PISTAS Y VEREDAS DEL JIRON JULI DE LA CIUDAD DE J PROVINCIA DE CHUCITO - PUNO Es uno de los metodos mas utilizados y de mayor satisfaccion a nivel internac para el diseño de pavimentos rígidos. Dado que investigación de la autopista A en diferentes circuitos.es desarrollado en función a un método experimental. La ecuación básica de diseño a la que llegó AASHTO para el diseño de pavim rígidos para un desarrollo analítico, se encuentra plasmada también en nomog de cálculo, esta esencialmente basada en los resultados obtenidos de la p experimental de la carretera AASHTO. La ecuación de diseño para pavimentos rí modificada para la versión actual es la que a continuación se presenta MEMORIA DE CALCULO DEL ESPESOR ESTRUCTURAL DEL PAVIMENTO RIGIDO Log 10 ( W18 )=Zr×So +7.35×Log 10 ( D +1 )−0.06 + Log 10 ( ΔPSI 4.51.5 ) 1+ 1.624 ×10 7 ( D + 1 ) 8.46 +(4.220.32×Pt Log 10 [ 215 .63 S´c×Cd×( D 0.75 1.132 ) 215.63×J×( D 0.75 18.42 ( Ec k ) 0.25 ) ]

Upload: jose-luis-gallegos-quinonez

Post on 12-Jan-2016

62 views

Category:

Documents


8 download

DESCRIPTION

Muy Útil para Personas Afines a la Ingeniería...

TRANSCRIPT

Page 1: DISEÑO PAVIMENTO RIGIDO

Proyecto :

METODO AASTHO -93

FORMULACIÓN DE DISEÑO.

FORMULA GENERAL AASTHO

Donde:D = Espesor de la losa del pavimento en (in)

W18 = Tráfico (Número de ESAL´s)Zr = Desviación Estándar NormalSo = Error Estándar Combinado de la predicción del Tráfico

∆PSI = Diferencia de Serviciabilidad (Po-Pt)Po = Serviciabilidad InicialPt = Serviciabilidad Final

S'c = Módulo de Rotura del concreto en (psi).Cd = Coeficiente de Drenaje

J = Coeficiente de Transferencia de CargaEc = Módulo de Elasticidad de concretoK = Módulo de Reacción de la Sub Rasante en (psi).

MEJORAMIENTO DE PISTAS Y VEREDAS DEL JIRON JULI DE LA CIUDAD DE JULI - PROVINCIA DE CHUCITO - PUNO

Es uno de los metodos mas utilizados y de mayor satisfaccion a nivel internacional para el diseño de pavimentos rígidos. Dado que investigación de la autopista AASHTO en diferentes circuitos.es desarrollado en función a un método experimental.

La ecuación básica de diseño a la que llegó AASHTO para el diseño de pavimentos rígidos para un desarrollo analítico, se encuentra plasmada también en nomogramas de cálculo, esta esencialmente basada en los resultados obtenidos de la prueba experimental de la carretera AASHTO. La ecuación de diseño para pavimentos rígidos modificada para la versión actual es la que a continuación se presenta

MEMORIA DE CALCULO DEL ESPESOR ESTRUCTURAL DEL PAVIMENTO RIGIDO

Log10 (W18)=Zr×So+7 .35×Log10(D+1 )−0 .06+Log10(

ΔPSI4 .5−1 .5

)

1+ 1 .624×107

(D+1)8 .46

+(4 .22−0 .32×Pt )×Log 10 [215 .63S´c×Cd×(D0 .75−1.132 )

215 .63×J×(D0 .75−18 . 42

(Ec k)0 .25

)]

Page 2: DISEÑO PAVIMENTO RIGIDO

VARIABLES DEL DISEÑOESPESOR (D).

TRAFICO (W18).

TRAFICO ESAL

Donde:ESAL`s= Numero estimado de ejes equivalentes de 8.2 toneladas

TPD= Transito promedio diario inicialA= Porcentaje estimado de vehiculos Pesados (buses camiones)B= Porcentaje de vehiculos pesados que emplean el carril de diseñor= Tasa anual de crecimiento de transiton= Periodo de diseño

FC= Factor camion

VALOR (B)TPD= 350

NUMERO DE CARRILESA= 25%B= 50%r= 3% 2 50n= 20 años 4 45

FC= 2.3 C-4 6 a mas 40

ESAL`s = 1,001,629.02

FACTOR DE CRECIMIENTO DEL TRÁFICO (r).

CASO TASA DE CRECIMIENTOCrecimiento Normal 1% al 3%Vias complet. saturadas 0% al 1%Con trafico inducido 4% al 5%Alto crecimiento mayor al 5%

r = 3%

El espesor de losa de concreto, es la variable “D” que pretendemos determinar al realizar un diseño de pavimento rígido. El resultado del espesor se ve afectado por todas las demás variables que interviene en los cálculos. Es importante especificar lo que se diseña, ya que a partir de espesores regulares una pequeña variación puede significar una variación importante en la vida útil.

El método AASTHO diseña los pavimentos de concreto por fatiga. La fatiga se entiende como el número de repeticiones ó ciclos de carga que actúan sobre un elemento determinado. Al establecer una vida útil de diseño, en realidad lo que se esta haciendo es tratar de estimar, en un periodo de tiempo, el número de repeticiones de carga a las que estará sometido el pavimento. La vida útil mínima con la que se debe diseñar un pavimento rígido es de 20 años, en la que además se contempla el crecimiento del tráfico durante su vida útil, que depende del desarrollo socio-económico de la zona.

PORCENTAJE DE VEHICULOS PESADOS EN EL CARRIL DE

DISEÑO

El factor de crecimiento del tráfico es un parámetro que considera en el diseño de pavimentos, los años de periodo de diseño más un número de años adicionales debidos al crecimiento propio de la vía.

ESAL's=TDP×A×B×365×(1+r )n−1Ln (1+r )

×FC

Page 3: DISEÑO PAVIMENTO RIGIDO

PERÍODO DE DISEÑO (Pd).

Pd = 20.00

FACTOR DE SENTIDO (Fs).

CIRCULACION FACTORUn sentido 1.0Doble sentido 0.5

Fs = 0.50

FACTOR CARRIL (Fc).

Es un coeficiente que permite estimar que tanto el tráfico circula por el carril de diseño.

No CARRIL FACTOR CARRIL1 1.002 0.80 a 1.003 0.60 a 0.804 0.50 a 0.75

Fc = 1.00

FACTOR DE EQUIVALENCIA DE TRÁFICO.

CONFIABILIDAD:

DESVIACION ESTANDAR (Zr)Confiabilidad R (%) Desviac. Estan. (Zr)

50 0.00060 -0.25370 -0.52475 -0.67480 -0.841

TIPO DE PAVIMENTO CONFIABILID. 85 -1.037Autopistas 90% 90 -1.282Carreteras 75% 91 -1.340Rurales 65% 92 -1.405Zonas industriales 60% 93 -1.476Urbanas principales 55% 94 -1.555Urbanas secundarias 50% 95 -1.645

96 -1.75197 -1.88198 -2.05499 -2.327

99.9 -3.09099.99 -3.750

En el presente proyecto se considera un período de diseño de 20 años. (Recomendable)

Del total del tráfico que se estima para el diseño del pavimento deberá determinarse el correspondiente a cada sentido de circulación

Formulas que permiten convertir el número de pesos normales a ejes equivalentes los que dependen del espesor del pavimento, de la carga del eje, del tipo del eje y de la serviciabilidad final que se pretende para el pavimento.

Se denomina confiabilidad (R%) a la probabilidad de que un pavimento desarrolle su función durante su vida útil en condiciones adecuadas para su operación. También se puede entender a la confiabilidad como un factor de seguridad, de ahí que su uso se debe al mejor de los criterios.

Page 4: DISEÑO PAVIMENTO RIGIDO

R (%) = 50DESVIACIÓN ESTANDAR( Zr). Es función de los niveles seleccionados de confiabilidad.

Zr = 0.000

ERROR ESTÁNDAR COMBINADO (So):

Para pavimentos rígidos 0.30 – 0.40En construcción nueva 0.35En sobre capas 0.4

So = 0.35

SERVICIABILIDAD (∆ PSI):

INDICE DE SERVICIO CALIFICACION5 Excelente Entonces:4 Muy bueno3 Bueno Po = 42 Regular Pt = 2.01 Malo0 Intransitable ∆ PSI = Po - Pt

∆ PSI = 2.00

MÓDULO DE RUPTURA (MR)

Concreto a Utilizar F`c = 210 Kg/cm2

AASHTO propuso los siguientes valores para seleccionar la Variabilidad o Error Estándar Combinado So, cuyo valor recomendado es:

La serviciabilidad se define como la habilidad del pavimento de servir al tipo de tráfico (autos y camiones) que circulan en la vía. La medida primaria de la serviciabilidad es el Índice de Serviciabilidad Presente. El procedimiento de diseño AASHTO predice el porcentaje de perdida de seviciabilidad (∆ PSI) para varios niveles de tráfico y cargas de ejes.

Como el índice de serviciabilidad final de un pavimento es el valor más bajo de deterioro a que puede llegar el mismo, se sugiere que para carreteras de primer orden (de mayor tránsito) este valor sea de 2.5 y para vías menos importantes sea de 2.0; para el valor del índice de serviciabilidad inicial la AASTHO llegó a un valor de 4.5 para pavimentos de concreto y 4.2 para pavimentos de asfalto.

Es una propiedad del concreto que influye notablemente en el diseño de pavimentos rígidos de concreto. Debido a que los pavimentos de concreto trabajan principalmente a flexión, es recomendable que su especificación de resistencia sea acorde con ello, por eso el diseño considera la resistencia del concreto trabajando a flexión, que se le conoce como resistencia a la flexión por tensión (S´c) ó módulo de ruptura (MR) normalmente especificada a los 28 días

S'c = 32(F'c)1/2

Page 5: DISEÑO PAVIMENTO RIGIDO

TIPO DE PAVIMENTO S`c RECOMENDADOPsi

Autopistas 682.70Carretera 682.70Zonas Industriales 640.10Urbanos principales 640.10Urbanos Secundarios 597.40

S`c = 463.7 PsiDRENAJE (Cd)

Menor a 1% 1% a 5% 5% a 25% Mayor a 25%Excelente 1.25 – 1.20 1.20 – 1.15 1.15 – 1.10 1.10

Bueno 1.20 – 1.15 1.15 – 1.10 1.10 – 1.00 1.00Regular 1.15 – 1.10 1.10 – 1.00 1.00 – 0.90 0.90Pobre 1.10 – 1.00 1.00 – 0.90 0.90 – 0.80 0.80

Muy pobre 1.00 – 0.90 0.90 – 0.80 0.80 – 0.70 0.70

Cd = 1.00

COEFICIENTE DE TRANSFERENCIA DE CARGA (J).

Este concepto depende de los siguientes factores:Cantidad de Tráfico.Utilización de pasajuntas.Soporte lateral de las Losas.

La AASTHO recomienda un valor de 3.1 para pavimentos rígidos

J = 3.1

MODULO DE ELASTICIDAD DEL CONCRETO (Ec).

Las relaciones de mayor uso para su determinación son:

Ec = 1700 x ( 210 )^1/2 Ec = 246,353.40 Kg/cm2

Ec = 3,503,968.23 Psi

Calidad de Drenaje

% de tiempo del año en que el pavimento está expuesto a niveles de saturación

Para el caso los materiales a ser usados tiene una calidad regular de drenaje y esta expuesto en un 30% durante un año normal de precipitaciones.

losas adyacentes, lo que repercute en minimizar las deformaciones y los esfuerzos en las estructuras del pavimento, mientras mejor sea la

Se denomina Módulo de elasticidad del concreto a la tracción, a la capacidad que obedece la ley de Hooke, es decir, la relación de la tensión unitaria a la deformación unitaria. Se determina por la Norma ASTM C469. Sin embargo en caso de no disponer de los ensayos experimentales para su cálculo existen varios criterios con los que pueda estimarse ya sea a partir del Módulo de Ruptura, o de la resistencia a la compresión a la que será diseñada la mezcla del concreto.

F´c = Resistencia a la compresión del concreto (Kg/cm2) = 210 Kg/cm2Ec = 5500 x (f’c)1/2 (En MPa)Ec = 17000 x (f’c)1/2 (En Kg/cm2)

Page 6: DISEÑO PAVIMENTO RIGIDO

MODULO DE REACCION DE LA SUB RASANTE (K)

K = 2.55 + 52.5(Log CBR) Mpa/m →Mpa/m → CBR > 10

CBR sub rasante= 4.0 CBR DE TERRENO DE FUNDACIONSegún estudio realizado Laboratorio de Mecanica de suelo .

K = 34.16

ESPESOR DEL PAVIMENTO

Según la formula General AASHTO:

Haciendo tanteos de espesor hasta que (Ec. I) Sea aproximadamente Igual a ( Ec. II):D = 5.150 in

6.061 …….. Ec. I

5.122 …….. Ec. II

Espesor de la Losa de Concreto Calculado D = 13.08 Cm

Espesor de la Losa de Concreto Adoptado D = 20.00 Cm por proceso constructivo.

Se han propuestos algunas correlaciones de “ K “ a partir de datos de datos de CBR de diseño de la Sub Rasante, siendo una de las más aceptadas por ASSHTO las expresiones siguientes:

CBR ≤ 10K = 46.0 + 9.08(Log CBR) 4.34

Log10 (W 18 )=Zr×So+7 .35×Log10 (D+1 )−0.06+Log10 (

ΔPSI4 .5−1 .5

)

1+ 1 .624×107

(D+1)8 .46

7.35×Log10(D+1)+Log10(ΔPSI4 .5−1.5 )1+ 1.624x107

(D+1 )8 .46

Log10(W18 )−Zr×So+0 .06=

+(4 .22−0 .32×Pt )×Log10 [ 215.63S ´ c×Cd×(D0 .75−1.132)

215.63×J×(D0.75−18. 42

(Eck )0 .25

)]

+(4 .22−0 .32×Pt )×Log10 [215 .63S´c×Cd×(D0 .75−1.132 )

215 .63×J×(D0 .75−18 . 42

(Ec k)0 .25

)]=

Page 7: DISEÑO PAVIMENTO RIGIDO

RESUMEN DE DISEÑO DE ESPESOR DE PAVIMENTO RIGIDOMETODO AASHTO-93

PROYECTO:

DATOS DEL PROYECTO

PERIODO DE DISEÑO 20.00 años

TASA DE CRECIMIENTO 3.00 %

FACTOR DE SENTIDO 0.50 ----

FACTOR CARRIL 1.00 ----

SUELO DE FUNDACION: CBR DE DISEÑO: 4.00 %

DATOS DE DISEÑO

TRAFICO (ESAL's) 1,001,629.02 ----

INDICE DE SERVICIALIDAD INICIAL ( Po) 4.00 ----

INDICE DE SERVICIALIDAD INICIAL ( Pt) 2.00 ----

MODULO DE ROPTURA (S´c) 463.72 Psi

MODULO DE ELASTICIDAD (Ec) 3,503,968.23 Psi

RESISTENCIA DE LA SUBRASANTE (K) 34.16 Mpa/m

COEFICIENTE DE TRANSFERENCIA DE CARGA (J) 3.10 ----

COEFICIENTE DE DRENAJE (Cd) 1.00 ----º

NIVEL DE CONFIABILIDAD (R) 50.00 ----

DESVIACION ESTANDAR NORMAL (Zr) 0.00 ----

ERROR ESTANDAR COMBINADO (So) 0.35 ----

DISEÑO DE ESPESORES

MEJORAMIENTO DE SUB RASANTE 30.00 cmSUB BASE GRANULAR 20.00 cmLOSA DE CONCRETO 20.00 cm

MEJORAMIENTO DE PISTAS Y VEREDAS DEL JIRON JULI DE LA CIUDAD DE JULI - PROVINCIA DE CHUCITO - PUNO

Page 8: DISEÑO PAVIMENTO RIGIDO

Espesor de la Losa de Concreto Calculado: D = 7.50 Pulg

Espesor de la Losa de Concreto Calculado: D = 19.05 Cm

Espesor de la Losa de Concreto Adoptado D = 20.00 Cm por proceso constructivo.

COMPROBACION DEL DISEÑO ESTRUCTURAL DEL PAVIMENTO "METODO AASSTHO 93 USO DE SOFTHWARE"