displacement method of analysis: slope ......2011/11/03 · displacement method of analysis: slope...
Embed Size (px)
TRANSCRIPT
-
1
! General Case! Stiffness Coefficients! Stiffness Coefficients Derivation! Fixed-End Moments! Pin-Supported End Span! Typical Problems! Analysis of Beams! Analysis of Frames: No Sidesway! Analysis of Frames: Sidesway
DISPLACEMENT METHOD OF ANALYSIS: SLOPE DEFLECTION EQUATIONS
-
2
Slope Deflection Equations
settlement = ∆j
Pi j kw Cj
Mij MjiwP
θj
θi
ψ
i j
-
3
Degrees of Freedom
L
θΑ
A B
M
1 DOF: θΑ
PθΑ
θΒΒΒΒA B C 2 DOF: θΑ , θΒΒΒΒ
-
4
L
A B
1
Stiffness
kBAkAA
LEIkAA
4=
LEIkBA
2=
-
5
L
A B1
kBBkAB
LEIkBB
4=
LEIkAB
2=
-
6
Fixed-End ForcesFixed-End Moments: Loads
P
L/2 L/2
L
w
L
8PL
8PL
2P
2P
12
2wL12
2wL
2wL
2wL
-
7
General Case
settlement = ∆j
Pi j kw Cj
Mij MjiwP
θj
θi
ψ
i j
-
8
wP
settlement = ∆j
(MFij)∆ (MFji)∆
(MFij)Load (MF
ji)Load
+
Mij Mji
θi
θj
+
i jwPMijMji
settlement = ∆jθj
θi
ψ
=+ ji LEI
LEI θθ 24
ji LEI
LEI θθ 42 +=
,)()()2()4( LoadijF
ijF
jiij MMLEI
LEIM +++= ∆θθ Loadji
Fji
Fjiji MML
EILEIM )()()4()2( +++= ∆θθ
L
-
9
Mji Mjk
Pi j kw Cj
Mji Mjk
Cj
j
Equilibrium Equations
0:0 =+−−=Σ+ jjkjij CMMM
-
10
+
1
1
i jMij Mji
θi
θj
LEIkii
4=
LEIk ji
2=
LEIkij
2=
LEIk jj
4=
iθ×
jθ×
Stiffness Coefficients
L
-
11
[ ]
=
jjji
ijii
kkkk
k
Stiffness Matrix
)()2()4( ijFjiij MLEI
LEIM ++= θθ
)()4()2( jiFjiji MLEI
LEIM ++= θθ
+
=
F
ji
Fij
j
iI
ji
ij
MM
LEILEILEILEI
MM
θθ
)/4()/2()/2()/4(
Matrix Formulation
-
12
[D] = [K]-1([Q] - [FEM])
Displacementmatrix
Stiffness matrix
Force matrixwP(MFij)Load (MFji)Load
+
+
i jwPMijMji
θj
θi
ψ ∆j
Mij Mji
θi
θj
(MFij)∆ (MFji)∆
Fixed-end momentmatrix
][]][[][ FEMKM += θ
]][[])[]([ θKFEMM =−
][][][][ 1 FEMMK −= −θ
L
-
13
L
Real beam
Conjugate beam
Stiffness Coefficients Derivation: Fixed-End Support
MjMi
L/3
θi
LMM ji +
EIM j
EIMi
θι
EILM j
2
EILMi
2
)1(2
0)3
2)(2
()3
)(2
(:0'
−−−=
=+−=Σ+
ji
jii
MM
LEI
LMLEI
LMM
)2(0)2
()2
(:0 −−−=+−=Σ↑+EI
LMEI
LMF jiiy θ ij
ii
LEIM
LEIM
andFrom
θ
θ
)2(
)4(
);2()1(
=
=
LMM ji +
i j
-
14
Conjugate beam
L
Real beam
Stiffness Coefficients Derivation: Pinned-End Support
Mi θi
θj
LM i
LMi
EIM i
EILMi
2
32L
θi θj
0)3
2)(2
(:0' =−=Σ+ LLEI
LMM iij θ
i j
0)2
()3
(:0 =+−=Σ↑+ jiiy EILM
EILMF θ
LEIM
EILM
ii
i3)
3(1 =→==θ
)6
(EI
LM ij
−=θ)3
(EI
LM ii =θ
-
15
Fixed end moment : Point Load
Real beam
8,0
162
22:0
2 PLMEI
PLEI
MLEI
MLFy ==+−−=Σ↑+
P
M
M EIM
Conjugate beamA
EIM
B
L
P
A B
EIM
EIML2
EIM
EIML2
EIPL
16
2
EIPL4 EI
PL16
2
-
16
L
P
841616PLPLPLPL
=+−
+−
8PL
8PL
2P
2PP/2
P/2
-PL/8 -PL/8
PL/8
-PL/16-PL/8
-
PL/4+
-PL/16-PL/8-
-
17
Uniform load
L
w
A B
w
M
M
Real beam Conjugate beam
A
EIM
EIM
B
12,0
242
22:0
23 wLMEI
wLEI
MLEI
MLFy ==+−−=Σ↑+
EIwL8
2
EIwL
24
3
EIwL
24
3
EIM
EIML2
EIM
EIML2
-
18
Settlements
M
M
L
∆
MjMi = Mj
LMM ji +L
MM ji +
Real beam
2
6LEIM ∆=
Conjugate beam
EIM
A B
EIM
∆
,0)3
2)(2
()3
)(2
(:0 =+−∆−=Σ+ LEI
MLLEI
MLM B
EIM
EIML2
EIMEI
ML2
∆
-
19
wP
A B
A B+θA θB
(FEM)AB (FEM)BA
Pin-Supported End Span: Simple Case
BA LEI
LEI θθ 24 + BA L
EILEI θθ 42 +
)1()()/2()/4(0 −−−++== ABBAAB FEMLEILEIM θθ
)2()()/4()/2(0 −−−++== BABABA FEMLEILEIM θθ
BABABBA FEMFEMLEIM )()(2)/6(2:)1()2(2 −+=− θ
2)()()/3( BABABBA
FEMFEMLEIM −+= θ
wP
AB
L
-
20
AB
wP
A B
A BθA θB
(MF AB)load (MF
BA)load
Pin-Supported End Span: With End Couple and Settlement
BA LEI
LEI θθ 24 + BA L
EILEI θθ 42 +
L
(MF AB)∆ (MF
BA) ∆
)1()()(24 −−−+++== ∆FABload
FABBAAAB MML
EILEIMM θθ
)2()()(42 −−−+++= ∆FBAload
FBABABA MML
EILEIM θθ
2)(
21])(
21)[(3:
2)1()2(2lim AFBAload
FABload
FBABBAA
MMMMLEIMbyinateE ++−+=− ∆θθ
MAwP
AB
∆
-
21
Fixed-End MomentsFixed-End Moments: Loads
P
L/2 L/2
P
L/2 L/2
8PL
8PL
163)]
8()[
21(
8PLPLPL
=−−+
12
2wL12
2wL
8)]
12()[
21(
12
222 wLwLwL=−−+
-
22
Typical Problem
0
0
0
0
A C
B
P1 P2
L1 L2
wCB
P
8PL
8PL w12
2wL
12
2wL
8024 11
11
LPLEI
LEIM BAAB +++= θθ
8042 11
11
LPLEI
LEIM BABA −++= θθ
128024
2222
22
wLLPLEI
LEIM CBBC ++++= θθ
128042
2222
22
wLLPLEI
LEIM CBCB −
−+++= θθ
L L
-
23
MBA MBC
A C
B
P1 P2
L1 L2
wCB
B
CB
8042 11
11
LPLEI
LEIM BABA −++= θθ
128024
2222
22
wLLPLEI
LEIM CBBC ++++= θθ
BBCBABB forSolveMMCM θ→=−−=Σ+ 0:0
-
24
A C
B
P1 P2
L1 L2
wCB
Substitute θB in MAB, MBA, MBC, MCB
MABMBA
MBCMCB
0
0
0
0
8024 11
11
LPLEI
LEIM BAAB +++= θθ
8042 11
11
LPLEI
LEIM BABA −++= θθ
128024
2222
22
wLLPLEI
LEIM CBBC ++++= θθ
128042
2222
22
wLLPLEI
LEIM CBCB −
−+++= θθ
-
25
A BP1
MABMBA
L1
A CB
P1 P2
L1 L2
wCB
ByR CyAy ByL
Ay Cy
MABMBA
MBCMCB
By = ByL + ByR
B CP2
MBCMCB
L2
-
26
Example of Beams
-
27
10 kN 6 kN/m
A C
B 6 m4 m4 m
Example 1
Draw the quantitative shear , bending moment diagrams and qualitativedeflected curve for the beam shown. EI is constant.
-
28
PPL8 wwL
2
30FEM
PL8
wL220
MBA MBC
B
Substitute θB in the moment equations:
MBC = 8.8 kNm
MCB = -10 kNm
MAB = 10.6 kNm,
MBA = - 8.8 kNm,
[M] = [K][Q] + [FEM]
10 kN 6 kN/m
A C
B 6 m4 m4 m
0
0
0
0
8)8)(10(
82
84
++= BAABEIEIM θθ
8)8)(10(
84
82
−+= BABAEIEIM θθ
30)6)(6(
62
64 2
++= CBBCEIEIM θθ
20)6)(6(
64
62 2
−+= CBCBEIEIM θθ
0:0 =−−=Σ+ BCBAB MMM
EI
EIEI
B
B
4.2
030
)6)(6(10)6
48
4(2
=
=+−+
θ
θ
-
29
10 kN 6 kN/m
A C
B 6 m4 m4 m
MBC = 8.8 kNm
MCB= -10 kNm
MAB = 10.6 kNm,
MBA = - 8.8 kNm,
= 5.23 kN = 4.78 kN = 5.8 kN = 12.2 kN
10 kNm8.8 kNm
10.6 kNm8.8 kNm
10 kN
10.6 kNm
8.8 kNm
A B
ByLAy
2 m
6 kN/m8.8 kNm
10 kNmB
CyByR
18 kN
-
30
10 kN 6 kN/m
A C
B 6 m4 m4 m
10 kNm10.6 kNm
5.23 kN 12.2 kN
4.78 + 5.8 = 10.58 kN
V (kN)x (m)
5.23
- 4.78
5.8
-12.2
+-
+
-
M (kNm) x (m)
-10.6
10.3
-8.8 -10- -
+-
EIB4.2
=θ
Deflected shape x (m)
-
31
10 kN 6 kN/m
A C
B 6 m4 m4 m
Example 2
Draw the quantitative shear , bending moment diagrams and qualitativedeflected curve for the beam shown. EI is constant.
-
32
PPL8 wwL
2
30FEM
PL8
wL220
[M] = [K][Q] + [FEM]
10 kN 6 kN/m
A C
B 6 m4 m4 m
)1(8
)8)(10(8
28
4−−−++= BAAB
EIEIM θθ
)2(8
)8)(10(8
48
2−−−−+= BABA
EIEIM θθ
)3(30
)6)(6(6
26
4 2−−−++= CBBC
EIEIM θθ
)4(20
)6)(6(6
46
2 2−−−−+= CBCB
EIEIM θθ
10
10
0
0
0
308
62:)1()2(2 −=− BBAEIM θ
)5(158
3−−−−= BBA
EIM θ
-
33
MBA MBC
B
)5(158
3−−−−= BBA
EIM θ
)3(30
)6)(6(6
4 2−−−+= BBC
EIM θ
0:0 =−−=Σ+ BCBAB MMM
EI
EIEI
B
B
488.7
)6(030
)6)(6(15)6
48
3(2
=
−−−=+−+
θ
θ
EI
EIEIinSubstitute
A
BAB
74.23
108
28
40:)1(
−=
−+=
θ
θθθ
Substitute θA and θB in (5), (3) and (4):
MBC = 12.19 kNm
MCB = - 8.30 kNm
MBA = - 12.19 kNm)4(
20)6)(6(
62 2
−−−−= BCBEIM θ
-
34
10 kN 6 kN/m
A C
B 6 m4 m4 m
MBA = - 12.19 kNm, MBC = 12.19 kNm, MCB = - 8.30 kNm
= 3.48 kN = 6.52 kN = 6.65 kN = 11.35 kN
12.19 kNm
12.19 kNm8.30 kNm
10 kN
12.19 kNm
A B
ByLAy
2 m
6 kN/m12.19 kNm
8.30 kNmC
CyByR
18 kN
B
-
35
Deflected shape x (m)EIB49.7
=θ
10 kN 6 kN/m
A C
B 6 m4 m4 m
V (kN)x (m)
3.48
- 6.52
6.65
-11.35
M (kNm) x (m)
14
-12.2-8.3
11.35 kN3.48 kN
6.52 + 6.65 = 13.17 kN
EIA74.23−
=θ
-
36
10 kN 4 kN/m
A C
B6 m4 m4 m
2EI 3EI
Example 3
Draw the quantitative shear , bending moment diagrams and qualitativedeflected curve for the beam shown. EI is constant.
-
37
10 kN 4 kN/m
A C
B6 m4 m4 m
2EI 3EI(4)(62)/12 (4)(62)/12 (10)(8)/8(10)(8)/8
15
12
)1(8
)8)(10(8
)2(28
)2(4−−−++= BAAB
EIEIM θθ
)2(8
)8)(10(8
)2(48
)2(2−−−−+= BABA
EIEIM θθ
0 10
10
)2(8
)8)(10)(2/3(8
)2(3:2
)1()2(2 aEIM BBA −−−−=− θ
)3(12
)6)(4(6
)3(4 2−−−+= BBC
EIM θ
-
38
10 kN 4 kN/m
A C
B6 m4 m4 m
2EI 3EI(4)(62)/12 (4)(62)/12(3/2)(10)(8)/8
EIEIMM
B
BBCBA
/091.13151275.2:0
==+−==−−
θθ
15
12
)2(8
)8)(10)(2/3(8
)2(3 aEIM BBA −−−−= θ
)3(12
)6)(4(6
)3(4 2−−−+= BBC
EIM θ
mkNEIM
mkNEI
EIM
mkNEI
EIM
BCB
BC
BA
•−=−=
•=−=
•−=−=
91.10126
)3(2
18.1412)091.1(6
)3(4
18.1415)091.1(8
)2(3
θ
-
39
10 kN 4 kN/m
A C
B6 m4 m4 m
2EI 3EI
MBA = - 14.18 kNm, MBC = 14.18 kNm, MCB = -10.91 kNm
14.18
140.18 kNm
10 kN
A B
ByLAy = 6.73 kN= 3.23 kN
14.18 kNm
10.91 kNm
4 kN/m
C
CyByR
24 kN
14.18 10.91
= 11.46 kN= 12.55 kN
-
40
10 kN 4 kN/m
A C
B6 m4 m4 m
2EI 3EI
11.46 kN3.23 kN
10.91 kNm
V (kN)x (m)
3.23
-6.73
12.55
-11.46
+-
+-
2.86
M (kNm) x (m)
12.91
-14.18
5.53
-10.91
+
-+
-
6.77 + 12.55 = 19.32 kN
θB = 1.091/EIDeflected shape x (m)
-
41
10 kN 4 kN/m
A C
B6 m4 m4 m
2EI 3EI
Example 4
Draw the quantitative shear , bending moment diagrams and qualitativedeflected curve for the beam shown. EI is constant.
12 kNm
-
42
10 kN 4 kN/m
A C
B6 m4 m4 m
2EI 3EI
12 kNm
wL2/12 = 12 wL2/12 = 121.5PL/8 = 15
MBA
MBCB
12 kNmMBA
MBC
EIB273.3
−=θ
EIA21.7
−=θ
)1(158
)2(3−−−−= BBA
EIM θ
)2(126
)3(4−−−+= BBC
EIM θ
)3(126
)3(2−−−−= BCB
EIM θ
8)8)(10(
8)3(2
8)2(4
++= BAABEIEIM θθ
0 -3.273/EI
012:int =−−− BCBA MMBJo
012)122()1575.0( =−+−−− BEIEI θ
mkNEI
EIM BA •−=−−= 45.1715)273.3(75.0
mkNEI
EIM BC •=+−= 45.512)273.3(2
mkNEI
EIM CB •−=−−= 27.1512)273.3(
-
43
10 kN
A B
4 kN/m
C
24 kN
17.45 kNm5.45 kNm
15.27 kNm
2.82 kN 13.64 kN10.36 kN7.18 kN
12 kNm10 kN 4 kN/m
A C
B13.64 kN2.82 kN
15.27 kNm
17.54 kN
mkNEI
EIM BA •−=−−= 45.1715)273.3(75.0
mkNEI
EIM BC •=+−= 45.512)273.3(2
mkNEI
EIM CB •−=−−= 27.1512)273.3(
-
44
10 kN 4 kN/m
A C
B6 m4 m4 m
2EI 3EI
12 kNm
13.64 kN2.82 kN
15.27 kNm
17.54 kN
V (kN)x (m)3.41 m+
-+
-
2.82
-7.18
10.36
-13.64
M (kNm) x (m)+
- -+
11.28
-17.45
-5.45-15.27
7.98
Deflected shape x (m)
EIB273.3
=θEIA
21.7−=θ
EIB273.3
−=θ
EIA21.7
−=θ
-
45
Example 5
Draw the quantitative shear, bending moment diagrams, and qualitativedeflected curve for the beam shown. Support B settles 10 mm, and EI isconstant. Take E = 200 GPa, I = 200x106 mm4.
12 kNm 10 kN 6 kN/m
A CB
6 m4 m4 m
2EI 3EI10 mm
-
46
12 kNm 10 kN 6 kN/m
A CB
6 m4 m4 m
2EI 3EI10 mm
[FEM]∆
∆
A
B
2
6LEI∆
2
6LEI∆
∆
BC
2
6LEI∆
2
6LEI∆
P w
[FEM]load
8PL
8PL
30
2wL30
2wL
)1(8
)8)(10(8
)01.0)(2(68
)2(28
)2(42 −−−+++=
EIEIEIM BAAB θθ
)2(8
)8)(10(8
)01.0)(2(68
)2(48
)2(22 −−−−++=
EIEIEIM BABA θθ
)3(30
)6)(6(6
)01.0)(3(66
)3(26
)3(4 22 −−−+−+=
EIEIEIM CBBC θθ
)4(30
)6)(6(6
)01.0)(3(66
)3(46
)3(2 22 −−−−−+=
EIEIEIM CBCB θθ
-12
0
0
-
47
12 kNm 10 kN 6 kN/m
A CB
6 m4 m4 m
2EI 3EI10 mm
Substitute EI = (200x106 kPa)(200x10-6 m4) = 200x200 kN m2 :
)1(8
)8)(10(8
)01.0)(2(68
)2(28
)2(42 −−−+++=
EIEIEIM BAAB θθ
)2(8
)8)(10(8
)01.0)(2(68
)2(48
)2(22 −−−−++=
EIEIEIM BABA θθ
)1(10758
)2(28
)2(4−−−+++= BAAB
EIEIM θθ
)2(10758
)2(48
)2(2−−−−++= BABA
EIEIM θθ
)2(2/12)2/10(10)2/75(758
)2(3:2
)1()2(2 aEIM BBA −−−−−−−+=− θ
16.5
-
48
+ ΣMB = 0: - MBA - MBC = 0 (3/4 + 2)EIθB + 16.5 - 192.8 = 0
θB = 64.109/ EI
Substitute θB in (1): θA = -129.06/EI
Substitute θA and θB in (5), (3), (4):
MBC = -64.58 kNm
MCB = -146.69 kNm
MBA = 64.58 kNm,
MBA MBC
B
12 kNm 10 kN 6 kN/m
A CB
6 m4 m4 m
2EI 3EI10 mm
MBC = (4/6)(3EI)θB - 192.8
MBA = (3/4)(2EI)θB + 16.5
-
49
12 kNm 10 kN 6 kN/m
A CB
6 m4 m4 m
64.58 kNm 64.58 kNm
= -1.57 kN= 11.57 kN
146.69 kNm
= 47.21 kN= -29.21 kN
10 kN
A B
ByLAy
12 kNm64.58 kNm
2 m
6 kN/m
C
CyByR
18 kN
B
64.58 kNm
146.69 kNm
MBC = -64.58 kNm
MCB = -146.69 kNm
MBA = 64.58 kNm,
-
50
12 kNm 10 kN 6 kN/m
A C
B6 m4 m4 m
2EI 3EI
V (kN)x (m)
11.57 1.57
-29.21-47.21
-+
M (kNm) x (m)
1258.29 64.58
-146.69
+
-
47.21 kN
146.69 kNm
11.57 kN
1.57 + 29.21 = 30.78 kN
10 mmθA = -129.06/EI
θB = 64.109/ EIθA = -129.06/EI
Deflected shape x (m)
θB = 64.109/ EI
-
51
Example 6
For the beam shown, support A settles 10 mm downward, use the slope-deflectionmethod to(a)Determine all the slopes at supports(b)Determine all the reactions at supports(c)Draw its quantitative shear, bending moment diagrams, and qualitativedeflected shape. (3 points)Take E= 200 GPa, I = 50(106) mm4.
6 kN/m
B A C
3 m 3 m2EI 1.5EI
12 kNm
10 mm
-
52
6 kN/m
B A C
3 m 3 m2EI 1.5EI
12 kNm
)1(3
)2(4−−−= CCB
EIM θ
)2(1005.43
)5.1(23
)5.1(4−−−+++= ACCA
EIEIM θθ
)2(2
122
1002
)5.4(33
)5.1(3:2
)2()2(2 aEIM CCA −−−+++=− θ
)3(1005.43
)5.1(43
)5.1(2−−−+−+= ACAC
EIEIM θθ12
0.01 m
C
AmkN •=
××
1003
)01.0)(502005.1(62
mkN •100MF∆
10 mm
6 kN/m
A C
5.412
)3(6 2= 4.5
MFw
-
53
6 kN/m
B A C
3 m 3 m2EI 1.5EI
12 kNm
)1(3
)2(4−−−= CCB
EIM θ
)2(2
122
1002
)5.4(33
)5.1(3 aEIM CCA −−−+++= θ
10 mm
MCB MCA
C
0=+ CACB MM
02
122
1002
)5.4(33
)5.48(=+++
+C
EI θ
radEIC
0015.006.15 −=−=θ
)3(1005.43
)5.1(4)06.15(3
)5.1(212 −−−+−+−= AEI
EIEI θSubstitute θC in eq.(3)
radEIA
0034.022.34 −=−=θ
Equilibrium equation:
-
54
6 kN/m
B A C
3 m 3 m2EI 1.5EI
12 kNm
10 mm
radEIC
0015.006.15 −=−=θ radEIA
0034.022.34 −=−=θ
mkNEI
EIEIM CBC •−=−
== 08.20)06.15(3
)2(23
)2(2 θ
mkNEI
EIEIM CCB •−=−
== 16.40)06.15(3
)2(43
)2(4 θ
kN08.203
08.2016.40=
+kN08.20
B C40.16 kNm20.08 kNm
6 kN/m
AC
12 kNm
40.16 kNm
18 kN
8.39 kN26.39 kN
-
55
6 kN/m
B A C
3 m 3 m2EI 1.5EI
12 kNm
10 mm
6 kN/m
AC
12 kNm
40.16 kNm8.39 kN26.39 kN
B C40.16 kNm20.08 kNm
20.08 kN20.08 kN
V (kN)
x (m)
26.398.39
-20.08
+-
M (kNm)
x (m)20.08
-40.16
12
radC 0015.0−=θradA 0034.0−=θ
Deflected shapex (m)
radC 0015.0=θ
radA 0034.0=θ
-
56
Example 7
For the beam shown, support A settles 10 mm downward, use theslope-deflection method to(a)Determine all the slopes at supports(b)Determine all the reactions at supports(c)Draw its quantitative shear, bending moment diagrams, and qualitativedeflected shape.Take E= 200 GPa, I = 50(106) mm4.
6 kN/m
B A C
3 m 3 m2EI 1.5EI
12 kNm
10 mm
-
57
6 kN/m
B A C
3 m 3 m2EI 1.5EI
12 kNm
10 mm
5.412
)3(6 2=
6 kN/m
AC4.5
mkN •=
××
1003
)01.0)(502005.1(620.01 m
C
A
100
34 CEI∆
∆C
CB
34
3)2(6
2CC EIEI ∆=∆
)2(3
43
)2(4−−−∆−= CCCB
EIEIM θ
)3(1005.43
)5.1(23
)5.1(4−−++∆++= CACCA EI
EIEIM θθ
)4(1005.43
)5.1(43
)5.1(2−−+−∆++= CACAC EI
EIEIM θθ12
)1(3
43
)2(2−−−∆−= CCBC
EIEIM θ
)3(2
122
1002
)5.4(323
)5.1(3:2
)4()3(2 aEIEIM CCCA −−−+++∆+=− θ
CC EIEI ∆=∆23
)5.1(6∆C
C
A
CEI∆
-
58
6 kN/m
B A C
3 m 3 m2EI 1.5EI
12 kNm
10 mm
Equilibrium equation:
)3
()( CBBCCByMMC +−=
6 kN/m
AC
12 kNm
MCA
18 kN
AyB C
MCBMBC
By3
393
)5.1(1812)( +=++= CACACAyMMC
C
MCB MCA
(Cy)CA(Cy)CB
*)1(0:0 −−−=+=Σ CACBC MMM
*)2(0)()(:0 −−−=+=Σ CAyCByy CCC
)5(15.628333.0167.4*)1( −−−−=∆− CC EIEIinSubstitute θ
)6(75.101167.35.2*)2( −−−−=∆+− CC EIEIinSubstitute θ
mmEIradEIandFrom CC 227.5/27.5200255.0/51.25)6()5( −=−=∆−=−=θ
-
59
6 kN/m
B A C
3 m 3 m2EI 1.5EI
12 kNm
10 mm
Solve equation
radEIC
00255.051.25 −=−=θ
mmEIC
227.527.52 −=−=∆
Substitute θC and ∆C in (4)
radEIA
000286.086.2 −=−=θ
Substitute θC and ∆C in (1), (2) and (3a)
mkNM BC •= 68.35
mkNMCB •= 67.1
mkNMCA •−= 67.1
6 kN/m
B A C
3 m 3 m2EI 1.5EI
12 kNm
35.68 kNm
kN
Ay
55.56
68.3512)5.4(18
=
−−=
kNBy
45.12
55.518
=
−=
-
60
10 mm
6 kN/m
B A C
3 m 3 m2EI 1.5EI
12 kNm
35.68 kNm
12.45 kN 5.55 kN
Deflected shape
x (m)
radC 00255.0−=θ
mmC 227.5−=∆
radA 000286.0−=θ
radC 00255.0=θ radA 000286.0=θ
mmC 227.5=∆
M (kNm)
x (m)1214.57
1.67
-35.68
-+
V (kN)
x (m)0.925 m12.45
-5.55
+
-
61
Example of Frame: No Sidesway
-
62
Example 6
For the frame shown, use the slope-deflection method to (a) Determine the end moments of each member and reactions at supports(b) Draw the quantitative bending moment diagram, and also draw the qualitative deflected shape of the entire frame.
10 kN
C
12 kN/m
A
B
6 m
40 kN
3 m
3 m
1 m
2EI
3EI
-
63
10 kN
C
12 kN/m
A
B
6 m
40 kN
3 m
3 m
1 m
2EI
3EIPL/8 = 30
PL/8 = 30
Equilibrium equations
10
MBC
MBA
)3(18366
)2(3−−−++= BBC
EIM θ
*)1(010 −−−=−− BCBA MM
05430310 =−+− BEIθ
EIEIB667.4
)3(14 −
=−
=θ)1(30
6)3(2
−−−+= BABEIM θ
mkNMmkNM
mkNM
BC
BA
AB
•=•−=
•=
33.4933.39
33.25
36/2 = 18
(wL2/12 ) =3636
Slope-Deflection Equations
)2(306
)3(4−−−−= BBA
EIM θ
Substitute (2) and (3) in (1*)
)3()1(667.4 toinEI
Substitute B−
=θ
-
64
10 kN
C
12 kN/m
A
B
6 m
40 kN
3 m
3 m
1 m
2EI
3EI39.33
25.33
49.33
A
B
40 kN
39.33
25.33
C
12 kN/m
B49.33
17.67 kN
27.78 kN
Bending moment diagram
-25.33
27.7
-39.3
Deflected curve
-49.33
20.58
10
θB = -4.667/EIθB
θB
MAB = 25.33 kNm
MBA = -39.33 kNm
MBC = 49.33 kNm
-
65
A
B
C
D
E
25 kN
5 m
5 kN/m
60(106) mm4
240(106) mm4 180(106)
120(106) mm4
3 m 4 m3 m
Example 7
Draw the quantitative shear, bending moment diagrams and qualitativedeflected curve for the frame shown. E = 200 GPa.
-
66
A
B
C
D
E
25 kN
5 m
5 kN/m
60(106) mm4
240(106) mm4 180(106)
120(106) mm4
3 m 4 m3 m0
BAABEIEIM θθ
5)2(2
5)2(4
+=0
BABAEIEIM θθ
5)2(4
5)2(2
+=
75.186
)4(26
)4(4++= CBBC
EIEIM θθ
75.186
)4(46
)4(2−+= CBCB
EIEIM θθ
CCDEIM θ5
)(3=
104
)3(3+= CCE
EIM θ
0=+ BCBA MM
)1(75.18)68()
616
58( −−−−=++ CB EIEI θθ
0=++ CECDCB MMM
)2(75.8)49
53
616()
68( −−−=+++ CB EIEI θθ
EIEIandFrom CB
86.229.5:)2()1( =−= θθ
PL/8 = 18.75 18.75
6.667 (wL2/12 ) = 6.667+ 3.333
-
67
MAB = −4.23 kNm
MBA = −8.46 kNm
MBC = 8.46 kNm
MCB = −18.18 kNm
MCD = 1.72 kNm
MCE = 16.44 kNm
Substitute θB = -1.11/EI, θc = -20.59/EI below
0
0BAAB
EIEIM θθ5
)2(25
)2(4+=
BABAEIEIM θθ
5)2(4
5)2(2
+=
75.186
)4(26
)4(4++= CBBC
EIEIM θθ
75.186
)4(46
)4(2−+= CBCB
EIEIM θθ
CCDEIM θ5
)(3=
104
)3(3+= CCE
EIM θ
-
68
MAB = -4.23 kNm, MBA = -8.46 kNm, MBC = 8.46 kNm, MCB = -18.18 kNm,MCD = 1.72 kNm, MCE = 16.44 kNm
A
B
5 m
C E
20 kN
A
B
5 m
4.23 kNm
2.54 kN
(8.46 + 4.23)/5 = 2.54 kN
8.46 kNm
C
25 kN
B 3 m 3 m2.54 kN 2.54 kN
8.46 kNm(25(3)+8.46-18.18)/6 = 10.88 kN
14.12 kN18.18 kNm
16.44 kNm
(20(2)+16.44)/4= 14.11 kN
5.89 kN
0.34 kN
28.23 kN
14.12+14.11=28.23 kN1.72 kNm
(1.72)/5 = 0.34 kN
10.88 kN
10.88 kN
2.54-0.34=2.2 kN
2.2 kN
-
69
Shear diagram
-2.54
-2.54
10.88
-14.12
14.11
-5.89
0.34
+
-
-
+-
+
2.82 m
1.18 m
Deflected curve
1.18 m
0.78 m2.33 m1.29 m
1.67m
1.29 m
0.78 m
Moment diagram
1.18 m
3.46
24.18
1.72
-18.18 -16.44
4.23
-8.46-8.46
2.33 m
+
-
+
- -
+
θB = −5.29/EI
θC = 2.86/EI1.67m
-
70
Example of Frames: Sidesway
-
71
A
B C
D
3m
10 kN
3 m
1 m
Example 8
Determine the moments at each joint of the frame and draw the quantitativebending moment diagrams and qualitative deflected curve . The joints at A andD are fixed and joint C is assumed pin-connected. EI is constant for each member
-
72
A
B C
D
3m
10 kN
3 m
1 m
MABMDC
Ax Dx
Ay Dy
Boundary Conditions
θA = θD = 0
Equilibrium Conditions
Unknowns
θB and ∆
- Entire Frame
*)2(010:0 −−−=−−=Σ→+
xxx DAF
*)1(0:0 −−−=+=Σ BCBAB MMM
Overview
B- Joint B
MBCMBA
-
73
)3(3
)(3−−−= BBC
EIM θ
)4(1875.0375.021375.0 −−−∆=∆−∆= EIEIEIM DC
)1(4
64
)1)(3(104
)(222
2
−−−∆
++=EIEIM BAB θ
5.625 0.375EI∆
A
B C
D3m
10 kN
3 m
1 m
(5.625)load
(1.875)load
(0.375EI∆)∆
(0.375EI∆)∆
(0.375EI∆)∆
(0.375EI∆)∆
:0=Σ+ CM
MDC
D
C
4 m
Dx
MAB
MBA
A
B
4 m
Ax
10 kN
∆ ∆
(1/2)(0.375EI∆)∆
:0=Σ+ BM
)5(563.11875.0375.0 −−−+∆+= EIEIA Bx θ4
)( BAABx
MMA +=
)6(0468.04
−−−∆== EIMD DCx
)2(4
64
)1)(3(104
)(422
2
−−−∆
+−=EIEIM BBA θ
5.625 0.375EI∆
Slope-Deflection Equations
-
74
Solve equation
*)2(010 −−−=−− xx DA*)1(0 −−−=+ BCBA MM
)3(3
)(3−−−= BBC
EIM θ
)4(1875.0 −−−∆= EIM DC
)1(375.0625.54
)(2−−−∆++= EIEIM BAB θ
)5(563.11875.0375.0 −−−+∆+= EIEIA Bx θ
)6(0468.0 −−−∆= EIDx
)2(375.0625.54
)(4−−−∆+−= EIEIM BBA θ
Equilibrium Conditions:
Slope-Deflection Equations:
Horizontal reaction at supports:
Substitute (2) and (3) in (1*)
2EI θB + 0.375EI ∆ = 5.625 ----(7)
Substitute (5) and (6) in (2*)
)8(437.8235.0375.0 −−−−=∆−− EIEI Bθ
From (7) and (8) can solve;
EIEIB8.446.5
=∆−
=θ
)6()1(8.446.5 toinEI
andEI
Substitute B =∆−
=θ
MAB = 15.88 kNmMBA = 5.6 kNmMBC = -5.6 kNmMDC = 8.42 kNmAx = 7.9 kNDx = 2.1 kN
-
75
A
BC
D
Deflected curve
A
BC
D
Bending moment diagram
MAB = 15.88 kNm, MBA = 5.6 kNm, MBC = -5.6 kNm, MDC = 8.42 kNm, Ax = 7.9 kN, Dx = 2.1 kN,
A
B C
D
3m
10 kN
3 m
1 m
15.88
5.6
8.42
7.9 kN 2.1 kN
15.88
5.6
8.42
∆ = 44.8/EI ∆ = 44.8/EI
θB = -5.6/EI5.6
7.8
-
76
B C
DA
3m4 m
10 kN4 m
2 m
pin
2 EI
2.5 EI EI
Example 9
From the frame shown use the slope-deflection method to:(a) Determine the end moments of each member and reactions at supports(b) Draw the quantitative bending moment diagram, and also draw thequalitative deflected shape of the entire frame.
-
77
B
C
DA
3m4 m
10 kN4 m
2 m
2EI
2.5EI EI
Ax DxAy Dy
MDCMAB
B´
∆
∆
∆ CD C´
∆BC
Overview
Boundary Conditions
θA = θD = 0
Equilibrium Conditions
Unknowns
θB and ∆
- Entire Frame
*)2(010:0 −−−=−−=Σ→+
xxx DAF
*)1(0:0 −−−=+=Σ BCBAB MMM
B- Joint B
MBCMBA
-
78
B
C
DA 3m4 m
10 kN4 m
2 m
2EI
2.5EI EI36.87° = ∆ tan 36.87° = 0.75 ∆
= ∆ / cos 36.87° = 1.25 ∆
B´
∆
∆∆BC
∆ CD C´
∆
∆BC∆CD
C
C´
36.87°
)1(5375.04
)(2−−−+∆+= EIEIM BAB θ
)2(5375.04
)(4−−−−∆+= EIEIM BBA θ
)3(2813.04
)2(3−−−∆−= EIEIM BBC θ
)4(375.0 −−−∆= EIM DC
C
C´
BB´
∆BC= 0.75 ∆
0.375EI∆
6EI∆/(4) 2 = 0.375EI∆
B
A
∆´ B´
(6)(2EI)(0.75∆)/(4) 2 = 0.5625EI∆0.5625EI∆
D
C
C´∆CD= 1.25 ∆
(1/2) 0.75EI∆
(1/2) 0.5625EI∆
PL/8 = 5
5
(6)(2.5EI)(1.25∆)/(5)2 = 0.75EI∆
0.75EI∆
Slope-Deflection Equation
-
79
B
C
DA
3m4 m
10 kN4 m
2 m
pin2 EI
2.5 EI EI
Dx= (MDC-(3/4)MBC)/4 ---(6)
MBC4
Ax = (MBA+ MAB-20)/4 -----(5)
B CMBC
C
D
MBC/4MDC
MBC4
A
B
MBA
10 kN
MAB
Horizontal reactions
-
80
Solve equations
*)2(010 −−−=−− xx DA*)1(0 −−−=+ BCBA MM
Equilibrium Conditions:
Slope-Deflection Equation:
Horizontal reactions at supports:
Substitute (2) and (3) in (1*)
Substitute (5) and (6) in (2*)
From (7) and (8) can solve;
EIEIB56.1445.1 −
=∆=θ
)6()1(56.1445.1 toinEI
andEI
Substitute B−
=∆=θ
MAB = 15.88 kNmMBA = 5.6 kNmMBC = -5.6 kNmMDC = 8.42 kNmAx = 7.9 kNDx = 2.1 kN
)1(4
654
)(22 −−−∆
++=EIEIM BAB θ
)2(4
654
)(42 −−−∆
+−=EIEIM BBA θ
)3(4
)75.0)(2(34
)2(32 −−−
∆−=
EIEIM BBC θ
)4(5
)25.1)(5.2(32 −−−
∆=
EIM DC
)5(4
)20(−−−
−+= ABBAx
MMA
)6(443
−−−−
=BCDC
x
MMD
)7(050938.05.2 −−−=−∆+ EIEI Bθ
)8(05334.00938.0 −−−=−∆+ EIEI Bθ
-
81
BC
DA
Deflected shape
θB=1.45/EI
θB=1.45/EI
Bending-moment diagram
BC
DA11.19
1.91
5.35
5.46
1.91
∆ ∆
MAB = 11.19 kNm MBA = 1.91 kNm MBC = -1.91 kNm MDC = 5.46 kNm
Ax = 8.28 kNm Dx = 1.72 kNm
B
C
DA
3m4 m
10 kN4 m
2 m
pin2 EI
2.5 EI EI11.19 kNm
8.27 kN
5.46
1.91
1.91
0.478 kN1.73
0.478 kN
-
82
Example 10
From the frame shown use the moment distribution method to:(a) Determine all the reactions at supports, and also(b) Draw its quantitative shear and bending moment diagrams, and qualitative deflected curve.
A
BC
D
3 m
3m
4m
20 kN/mpin
2EI
3EI
4EI
-
83
A
BC
D
3 m
3m
4m
20 k
N/m
2EI
3EI
4EI
[FEM]load
Overview
∆ ∆
Boundary Conditions
θA = θD = 0
Equilibrium Conditions
Unknowns
θB and ∆
- Entire Frame
*)2(060:0 −−−=−−=Σ→+
xxx DAF
*)1(0:0 −−−=+=Σ BCBAB MMM
B- Joint B
MBCMBA
-
84
A
BC
D
3 m
3m
4m
20 k
N/m
2EI
3EI
4EI
[FEM]load
wL2/12 = 15
wL2/12 = 15
A
B C
D
∆ ∆
[FEM]∆∆∆∆
6(2EI∆)/(3) 2= 1.333EI∆
6(2EI∆)/(3) 2= 1.333EI∆ 6(4EI∆)/(4) 2
= 1.5EI∆
1.5EI∆
BBCEIM θ3
)3(3=
∆++= EIEI B 333.115333.1 θ ----------(1)
∆+−= EIEI B 333.115667.2 θ ----------(2)
BEIθ3= ----------(3)
∆= EI75.0 ----------(4)
∆+++= EIEIEIM BAAB 333.1153)2(2
3)2(4 θθ
0
∆+−+= EIEIEIM BABA 333.1153)2(4
3)2(2 θθ
0
∆+= EIEIM DDC 75.04)4(3 θ
0
(1/2)(1.5EI∆)
Slope-Deflection Equation
-
85
C
DxMDC
4 m
D
MAB
A
B
60 kN
MBA
1.5 m
1.5 m
Ax + ΣMC = 0:
:0=Σ+ BM
)6(188.04
−−−∆== EIMD DCx
)5(30889.0333.13
)5.1(60
−−−+∆+=
++=
EIEIA
MMA
Bx
ABBAx
θ
Horizontal reactions
-
86
Solve equation
*)1(0 −−−=+ BCBA MM
Equilibrium Conditions
Equation of moment
Horizontal reaction at support
Substitute (2) and (3) in (1*)
Substitute (5) and (6) in (2*)
From (7) and (8), solve equations;
EIEIB67.3451.5
=∆−
=θ
)6()1(67.3451.5 toinEI
andEI
Substitute B =∆−
=θ
)7(15333.1667.5 −−−=∆+ EIEI Bθ
)8(30077.1333.1 −−−−=∆−− EIEI Bθ
*)2(060 −−−=−− xx DA
)1(333.115333.1 −−−∆++= EIEIM BAB θ
)2(333.115667.2 −−−∆+−= EIEIM BBA θ
)3(3 −−−= BBC EIM θ
)4(75.0 −−−∆= EIM DC
)6(188.0 −−−∆= EIDx
)5(30889.0333.1 −−−+∆+= EIEIA Bx θ
mkNM AB •= 87.53mkNM BA •= 52.16
mkNM BC •−= 52.16mkNM DC •= 0.26
Ax = 53.48 kNDx = 6.52 kN
-
87
A
C
DMoment diagram
D
A
B C
Deflected shape
∆ ∆
A
BC
D
3 m
3m
4m20
kN/m 16.52 kNm
53.87 kNm
53.48 kN
6.52 kN26 kNm
5.55 kN
5.55 kN
26.
16.52
mkNM AB •= 87.53mkNM BA •= 52.16
mkNM BC •−= 52.16mkNM DC •= 0.26
Ax = 53.48 kNDx = 6.52 kN
53.87
B16.52