dispositivos de guias de ondas

45
CAPITULO 6 COMPONENTES DE MICROONDAS Existen diversos tipos de elementos o componentes para transmitir, guiar o monitorear las señales de microondas. Estos componentes se pueden clasificar en componentes lineales y no lineales. Entre los componentes lineales se encuentran: los elementos reactivos; ventanas, postes, cortocircuitos y tornillos de sintonía, elementos atenuadores, filtros, elementos de monitoreo; acopladores direccionales, “T” plano E, H ó híbrida, codos, torceduras, sintonizadores E-H, etc. Entre los elementos no lineales se encuentran; los dispositivos de ferrita; aisladores y giradores de ferrita, dispositivos con termistores, cristales etc. En este capítulo se realizará una descripción desde el punto de vista operativo y de aplicación de algunos de los componentes mencionados anteriormente, basando el análisis, principalmente, en los componentes lineales. 6.1. Coeficientes de Dispersión. Una forma de estudiar el comportamiento eléctrico de los dispositivos de microondas es mediante coeficientes de dispersión, donde se relacionan las magnitudes y fase de los voltajes de entrada y salida de los puertos. El voltaje en la guía conectada a cualquier puerto o región de discontinuidad requiere el empleo de ondas incidentes y reflejadas. (6.1) z b z a e V e V z V γ γ + - + = ) (

Upload: alexis-tocuyo

Post on 05-Dec-2015

10 views

Category:

Documents


2 download

DESCRIPTION

Dispositivos de guias de ondas

TRANSCRIPT

CAPITULO 6

COMPONENTES DE MICROONDAS

Existen diversos tipos de elementos o componentes para transmitir, guiar o

monitorear las señales de microondas. Estos componentes se pueden clasificar en

componentes lineales y no lineales. Entre los componentes lineales se encuentran:

los elementos reactivos; ventanas, postes, cortocircuitos y tornillos de sintonía,

elementos atenuadores, filtros, elementos de monitoreo; acopladores direccionales,

“T” plano E, H ó híbrida, codos, torceduras, sintonizadores E-H, etc.

Entre los elementos no lineales se encuentran; los dispositivos de ferrita;

aisladores y giradores de ferrita, dispositivos con termistores, cristales etc.

En este capítulo se realizará una descripción desde el punto de vista operativo y

de aplicación de algunos de los componentes mencionados anteriormente, basando

el análisis, principalmente, en los componentes lineales.

6.1. Coeficientes de Dispersión.

Una forma de estudiar el comportamiento eléctrico de los dispositivos de

microondas es mediante coeficientes de dispersión, donde se relacionan las

magnitudes y fase de los voltajes de entrada y salida de los puertos. El voltaje en la

guía conectada a cualquier puerto o región de discontinuidad requiere el empleo de

ondas incidentes y reflejadas.

(6.1) z

bz

a eVeVzV γγ +− +=)(

169

Para establecer el coeficiente de dispersión de un dispositivo de microondas se

puede trabajar con la onda de voltaje entrante y la saliente de los puertos de la guía,

como se muestra en la figura 6.1.

Figura 6.1. Unión de n puertos.

Si se denomina a y b los voltajes complejos entrante y saliente de la guía, y

omitiendo el argumento z, la ecuación 6.1, se podría escribir como:

Donde k es el k-ésimo par de terminales.

Estos coeficientes de dispersión se definen de forma tal que cuando la onda de

voltaje bi saliente del i-ésimo puerto sea producida por una onda de voltaje ai

incidente del j-ésimo punto y no entren otras señales en los puertos restantes,

obteniéndose

En general para n puertos

(6.2) kkk baV +=

jiji aSb =

niniii aSaSaSb +++= ...........2211

(6.3)

(6.4)

Vn+

V1+

V2+

V1-

V2-

Vn-

V3+

V3-

170

Simultáneamente se puede plantear el juego de ecuaciones que involucra a

todos los puertos

Donde la matriz de dispersión es

El elemento diagonal Sij es el coeficiente de reflexión en el puerto j-ésimo, y

representa la onda reflejada que puede ser observada en este puerto, con una onda

incidente de magnitud unitaria y fase cero, cuando todos los otros puertos están

terminados en la misma impedancia característica. Por esta razón no hay reflexión

de ondas hacia los otros puertos.

La representación de la matriz de dispersión de una componente de microondas

dada, no es independiente de la representación de la matriz de impedancia de esa

componente, ya que ambas representaciones describen el comportamiento eléctrico

del mismo objeto. Sin embargo, para altas frecuencias los parámetros de

impedancia, admitancia e incluso los híbridos, no son fácilmente medibles, pues no

se dispone de los equipos de medición en los puertos de los circuitos, y además las

terminaciones de cortocircuito y circuito abierto son difíciles de realizar, pues

algunos elementos se hacen inestables con estas terminaciones. Por esta razón es

importante hacer el planteamiento de las ecuaciones de la red a través de los

parámetros S.

nnaSaSaSb 12121111 ...........+++=

nnaSaSaSb 22221212 ...........+++=

nnnnnn aSaSaSb +++= ...........2211

=

nnnn

n

n

ij

SSS

SSS

SSS

S

...........

.

...........

...........

21

22221

11211

(6.5)

(6.8)

(6.6)

(6.7)

171

6.2. Componentes Lineales.

- Cavidades Resonantes.

La energía de radiofrecuencia puede ser almacenada en circuitos resonantes

que consisten de inductancias y capacitancias. La energía comienza a hacerse

máxima cuando la radiofrecuencia corresponde a la frecuencia de resonancia del

circuito. La energía eléctrica es almacenada en la capacitancia y la energía

magnética es almacenada en la inductancia. Una configuración similar puede ser

construida en un circuito de microondas; a los cuales se les llama resonadores de

microondas.

Un resonador de microondas es usualmente una cavidad cuya geometría

generalmente puede ser rectangular, cilíndrica ó esférica, en la cual las ondas

electromagnéticas son encerradas, ofreciendo diversas aplicaciones a los sistemas

de transmisión, entre ellas; filtros y medidores de longitud de onda (ver figura 6.2).

En este capítulo se describirán los rectangulares y cilíndricos.

Figura 6.2. Cavidades resonantes empleadas como filtros a) rect angulares y b)

cilíndricas.

a) b)

172

- Cavidades Resonantes Rectangulares.

Para el análisis se asume el sistema de coordenadas mostrado en la figura 6.3.

Figura 6.3. Cavidad Resonante rectangular.

Modo TEmnp : Para este modo, la componente de campo Eléctrico en la dirección de

propagación es nula, por tanto, la ecuación de onda puede ser escrita como

Como se planteó en el capítulo 5, las condiciones de frontera para una guía de

onda rectangular con material conductor perfecto, corresponden a;

Êx=0 en y=0,b (placa superior e inferior de la guía)

Êy=0 en x=0,a (placas laterales de la guía)

Ahora se plantea una condición de contorno adicional, debido a las nuevas

placas conductoras; frontal y posterior, por lo tanto, se tendrá;

=0 en z=0,c (placa frontal y posterior de la guía)

Una solución para la ecuación 6.9, se obtiene por el método de separación de

variables, como se realizó en el capítulo 5. En este capítulo también se

desarrollaron expresiones para cada componente de campo en este modo, dadas

0ˆˆˆˆ

22

2

2

2

2

2

=+∂

∂+∂

∂+∂

∂z

zzz Hhz

H

y

H

x

H(6.9)

y

z

x

a

b c

zH

173

por las ecuaciones 5.43 a 5.47, y también se planteó la solución completa, en

función del tiempo y la distancia, específicamente para la componente del campo

magnético en la dirección de propagación z.

Una forma de encontrar los campos en las diferentes direcciones dentro de la

cavidad, para este modo, es partiendo de la expresión del campo dado en 5.54,

en la dirección +z;

De la expresión anterior, se puede ver que la variación longitudinal de una onda

que se propaga en la dirección +z, está descrita por el factor ejωt-γz. Para las

cavidades resonantes, esta onda se reflejará en la pared z=c, generándose una

onda reflejada que viajará en el sentido de –z, la cual estará descrita por el factor

ejωt+γz. De esta manera;

Aplicando la nueva condición de contorno,

se tiene

Con lo cual;

( ) tjzjO

zjOz eeEeEy

b

nxCos

a

mCosH ωββππ −−+ +

= ˆˆˆ

0.,0ˆ == z en H z

( ) 0ˆˆˆ =+

= −+OOz EEy

b

nxCos

a

mCosH

ππ

−+ −=⇒ OO EE ˆˆ

( )zjO

zjOz eEeEy

b

nxCos

a

mCosH ββππ +−− +−

= ˆˆˆ (6.11)

)(ˆˆ ztjOz ey

b

nxCos

a

mCosEH βωππ −

=

zH

174

Aplicando propiedades de funciones exponenciales, la ecuación 6.11 también

puede ser escrita como

Para la condición en z=c, se tiene

Por lo que el factor que debe anular la expresión anterior debe ser

De esta manera se obtiene una expresión general para el campo H en la

dirección de propagación, para las cavidades resonantes rectangulares, en el modo

TEmnp, donde los subíndices m, n y p designan una distribución de onda estacionaria

en las tres dimensiones, la cual corresponde a

Conociendo las relaciones entre las componentes de campo dadas en el capítulo

5, de 5.22 a 5.25, y tomando en cuenta que la multiplicación por el factor -γ = −jβ

será interpretada como la variación del campo con respecto a z, se desarrollan las

componentes restantes

tjOx ez

c

pySen

b

nxSen

a

mCosE

b

n

hE ωππππωµ

−= ˆ2ˆ2

tjezc

pySen

b

nxCos

a

mCosEjzH o

ωπππ

= ˆ2ˆ

tjOy ez

c

pyCos

b

nxSen

a

mCos

c

p

b

n

h

EjH ωπππππ

−=

2

ˆ2ˆ

tjOy ez

c

pySen

b

nxCos

a

mSenE

a

m

hE ωππππωµ

= ˆ2ˆ2

tjOx ez

c

pyCos

b

nxCos

a

mSen

c

p

a

m

h

EjH ωπππππ

−=

2

ˆ2ˆ

0ˆ =zE

= zySenb

nxSen

a

mCosEjH Oz βππˆ2ˆ

0ˆ2ˆ =

= cySenb

nxCos

a

mCosEjH Oz βππ

1,2,3,...p con pc == πβ

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

175

Debido a que en las cavidades resonantes, las ondas no se propagan libremente

a lo largo de z, sino que se crean estacionarias, no se establece una frecuencia de

corte, sino una frecuencia de resonancia. Para el modo TEmnp , se tiene una

expresión para la frecuencia de resonancia igual a

La ecuación 6.18, enuncia el hecho de que la frecuencia resonante aumenta al

elevarse el orden del modo, encontrándose la menor frecuencia de resonancia para

la combinación mnp=101, es decir, para el modo TE101, reduciéndose las

componentes para este modo en

Modo TMmnp : Para este modo, la componente de campo Magnético en la dirección

de propagación es nula, por tanto, la ecuación de onda puede ser escrita

222

,2

1

+

+

=c

p

b

n

a

mf

mnpres

πππµεπ

0ˆ =xE

tjezc

pxSen

aCosEjzH o

ωππ

= ˆ2ˆ

0ˆ =yH

tjOy ez

cxSen

aSenE

aE ωππ

πωµ

= ˆ2ˆ

tjOx ez

cxCos

aSen

c

aEjH ωππ

−= ˆ2ˆ

0ˆ =zE

0ˆˆˆˆ

22

2

2

2

2

2

=+∂

∂+

∂∂

+∂

∂z

zzz Ehz

E

y

E

x

E(6.22)

(6.18)

(6.19)

(6.20)

(6.21)

176

La nueva condición de contorno para este modo, establece que

para z=0,c y y= 0,b

Haciendo el mismo análisis realizado para el modo TE, las componentes de

campo quedan de la forma

Las cavidades son usualmente diseñadas para el modo dominante, sin embargo

para aplicaciones de altas frecuencias u ondas milimétricas, se emplean modos de

operación de más alto orden.

En la figura 6.4 y 6.5, se muestran las configuraciones de los campos para

algunos órdenes del modo TEmnp y TMmnp

tjOx ez

c

pySen

b

nxSen

a

mCos

c

p

a

m

h

HE ωπππππ

−=2

ˆ2ˆ

tjOy ez

c

pyCos

b

nxSen

a

mCos

a

m

h

HjH ωππππωε

−=

2

ˆ2ˆ

tjOy ez

c

pySen

b

nxCos

a

mSen

c

p

b

n

h

HjE ωπππππ

−=2

ˆ2ˆ

tjOx ez

c

pyCos

b

nxCos

a

mSen

b

n

h

HjH ωππππωε

=

2

ˆ2ˆ

0ˆ =zH

tjOz ez

c

pyCos

b

nxSen

a

mSenHjE ωπππ

= ˆ2ˆ

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

0ˆ =zE

177

Figura 6.4. Configuraciones de los campos E y H para diferentes órdenes del modo TE

en cavidades rectangulares.

Figura 6.5. Configuraciones de los campos E y H para diferentes órdenes del modo TM

en cavidades rectangulares.

------------ Campo H ________ Campo E

TE101 TE111

------------ Campo H ________ Campo E TM111 TM112

178

Otro parámetro importante en las cavidades resonantes, es el factor de calidad

Q. Este factor, como en cualquier circuito resonante, es una medida de su ancho de

banda, y está definido como;

donde

También puede decirse que, este factor de calidad es directamente proporcional

al volumen e inversamente proporcional a la superficie de la cavidad.

Para obtener una expresión del factor de calidad para cualquier modo es

necesario calcular las energías asociadas para el modo dominante. Para el modo

TEmnp la combinación dominante corresponde a TE101. Luego la energía eléctrica de

la cavidad queda expresada a través de todas sus componentes de campo eléctrico,

con lo cual;

La energía total disipada, se encuentra en todas las paredes de la cavidad, de

esta manera:

disipada Potenciaalmacenada Energía=Q

Pd

Wm WeQ

+= ω

== ∫∫∫V dvEWeW2

422

ε

∫ ∫ ∫

=c b a

O dxdydz zc

Sen xa

SenEa

W0 0 0

222

ˆ22

πππ

ωµε

222 abc

Ea

W O

µεω

++

=+===

∫ ∫∫ ∫

∫ ∫∫ ∫∫ c a

x

c a

x

c b

x

b a

x

avd

dxdzHdxdzH

dydzxHdxdyzHRsdsPP

0 0

2

0 0

2

0 0

2

0 0

2

ˆˆ

)0(ˆ)0(ˆ

(6.28)

2WeW WeWm =⇒= (6.29)

(6.30)

(6.31)

(6.32)

(6.33)

ω: es la frecuencia angular de operación We y Wm: son la energía eléctrica y magnética respectivamente

además,

179

Resolviendo la integral, se obtiene

Usando las ecuaciones 6.32 y 6.34 y sustituyendo en 6.28, se obtiene;

- Cavidades Resonantes Cilíndricas.

Para el análisis se plantea el sistema de coordenadas de la figura 6.6.

Figura 6.6. Cavidad Resonante cilíndrica.

Para el modo TE, y el sistema de coordenadas planteado, se tiene la ecuación de onda

++

+=2

1

2

1

2 a

bd

d

b

d

aRP s

d

++

+

=

2

1

2

1

2

222

a

bd

d

b

d

aR

abcE

a

Qs

Oπµεω

ω

0ˆˆˆ1ˆ1ˆ 22

2

2

2

22

2

=−∂

∂+∂

∂+∂

∂+∂

∂z

zzzz Hhz

HH

rr

H

rr

H

θ

z

a

θ

a

L

x y

(6.34)

(6.35)

(6.36)

180

Las paredes de la cavidad se asumen como conductores perfectos,

cumpliéndose las condiciones de frontera

en r=a o

en z=0,L (placa superior e inferior de la guía)

Luego, de la ecuación general de , obtenida en 5.137, tomando un solo

término de la suma como solución, pues si la suma de dos términos es solución de

una ecuación diferencial, uno de los términos también lo es. Así, tomando en

cuenta las nuevas condiciones de contorno, se puede escribir

Las componentes restantes quedan de la forma

Para determinar la frecuencia de resonancia de las cavidades cilíndricas, se desarrolla la ecuación de onda 6.36, sustituyendo en esta la expresión general del campo H en la dirección de propagación dada en la ecuación 6.37. Luego desarrollando cada término, se tiene Pero, de acuerdo a las propiedades de las funciones Bessel, se tiene que

( ) tjmz erhzCJ

L

pSenmACosH ωπθ )(ˆ =

0ˆ =θE

0ˆ =zH

ar en r

H z ==∂

∂0

ˆ

zH

(6.37)

( ) tjm ze

L

pSenmACosrhCJ

h

jE ω

θπθωµ

)('ˆ =

( ) tjmr ze

L

pSenmASenrhCJ

r

m

h

jE ωπθωµ

)(ˆ2=

( ) tjmz emACosrhCJH ωθ)(ˆ =

( ) tjmr ze

L

pCosmACosrhJ

L

pC

hH ωπθπγ

)('ˆ −=

( ) tjm ze

L

pCosmASenrhCJ

L

p

r

m

hH ω

θπθπγ

)(ˆ2

=

( ) tjm

z erhJzChL

pSenmACos

r

H ωπθ )(''ˆ 22

2

=∂

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

181

Así, para los demás términos, se tiene;

Sumando todos los términos anteriores, agrupando componentes y tomando en cuenta que en r=a J’m(ra)=0 (condición de contorno), la ecuación 6.36 se reduce a

La expresión anterior indica una relación entre la frecuencia y los parámetros de las dimensiones de la cavidad, de esta manera

Donde: Z’mn corresponde a los ceros de la primera derivada de la función Bessel,

cuyos valores se pueden ver en la tabla 5.1 del capítulo 5.

−+

−−=

+

−−= +

)(')()(

1)(1

)(

)1(

)()(

1)(1

)(

)1()(''

2

12

rhJrhJrh

m

rhrhJ

rh

mm

rhJrh

rhJrh

mmrhJ

mmm

mmm

)(')(

1)(1

)()(''

2

2

rhJrh

rhJrh

mrhJ mmm −

−=

( ) tjm

z erhzChJL

pSenmACos

rr

H

rωπθ )('

1ˆ1 =∂

( ) tjm

z erhzCJL

pSenmCos

r

AH

rωπθ

θ)(

ˆ122

2

2−=

∂∂

( ) tjm

z erhzCJL

pSenmCos

L

pA

z

H ωπθπ)(

ˆ 2

2

2

−=∂

( ) tjmz erhzCJ

L

pSenmACoshHh ωπθ )(ˆ 22 =

02

2 =+

−− ωεµπL

ph

22,'

2

1

+

=

L

p

a

Zf nm

TEres

πµεπ

(6.44)

(6.45)

(6.46)

(6.47) [Hz]

182

Así el modo dominante se establece para TE111, pues ofrece la menor frecuencia

de resonancia

En la figura 6.7, se ilustran los modos TE011 y TE111.

Figura 6.7. Configuraciones de Campo para los modos TE011 y TE111.

Para el modo TM, y el sistema de coordenadas planteado en la figura 6.6, se

tiene la ecuación de onda;

Manipulando las expresiones de campo obtenidas en el capítulo 5 para el modo

TM, ecuaciones 5.151 a 5.157, se obtienen las componentes de campo E y H,

dentro de cavidad resonante cilíndrica y su frecuencia de resonancia TMmnp

(6.49) 0ˆˆˆ1ˆ1ˆ 22

2

2

2

22

2

=−∂

∂+∂∂+

∂∂+

∂∂

zzzzz Eh

z

EE

rr

E

rr

E

θ

228412.1

2

1

+

=La

f TEres

πµεπ

(6.48) [Hz]

TE011 TE111

E

H

183

donde: Zmn corresponde a los ceros de la función Bessel, cuyos valores se pueden

ver en la tabla 5.2 del capítulo 5, siendo para este modo la menor frecuencia de

resonancia la obtenida con las combinaciones mnp= 010, con lo cual

Las componentes de campo para los modos TM011 y TM111, se muestran en la

figura 6.8.

Figura 6.8. Configuraciones de Campo para los modos TM011 y TM111.

TM011 TM111

E

H

22,

+

=

L

p

a

Zf nm

TMres

π[Hz] (6.55)

2404.2

2

1

=a

f TMres µεπ (6.56)

[Hz]

(6.50)

(5.52) ( ) tjmr ze

L

pSenmASenrhCJ

L

p

hE ωπθπ

)('1ˆ −=

tjm ze

L

pSenmASenrhCJ

L

p

r

m

hE ω

θπθπ

)()(1ˆ

2=

tjmz ze

L

pCosmACosrhCJE ωπθ )()(ˆ =

( ) tjmr ze

L

pCosmASenrhCJ

r

m

h

jH ωπθωε

)(ˆ2

−=

( ) tjm ze

L

pCosmACosrhCJ

h

jH ω

θπθωε

)('ˆ −=

(6.54)

(6.51)

(6.53)

184

Las ecuaciones 6.48 y 6.55, son iguales cuando

En este caso los modos TE111 y TM010 son iguales y se denominan modos

degenerados. Cuando L/a<2.03, domina el modo TM010, y cuando L/a>2.03, domina

el modo TE111.

El factor de calidad Q, para las cavidades resonantes silíndricas, se obtiene

también a través de la expresión 6.28. Si se resuelven las integrales asociadas a

las energías almacenadas y disipadas en la cavidad y se asume que el modo

dominante es el TM010, se obtiene una expresión del factor Q dada por:

Una de la aplicaiones más usadas de este tipo de componente es el medidor de

longitud de onda o el ondámetro, la caul varía su volúmen mediante un ámbolo,

produciendo un circuito equivalene por cada volúmen adoptado y por lo tanto una

frecuencia de resonancia específica. En la figura 6.9 se muestra este dispositivo de

medicón.

Figura 6.9. ondámetro.

203.2 ≈=a

L (6.57)

εµω

+=

L

aRs

Q

1

2025.1(6.58)

185

- Componentes reactivos.

Si en el espacio interior de la guía de ondas se colocan obstáculos en forma de

diafragmas, estos variarán la distribución de los campos. Estos componentes son

llamados reacitvos y afectan las líneas de campo E y H en el punto donde se

coloquen, y según sea la posición generan un efecto inductivo, capacitivo o

resonante.

Dentro de los componentes reactivos se encuentran las ventanas y postes, los

cuales pueden ser inductivos o capacitvos.

Las ventanas inductivas, son elementos conductores (placas) que se colocan

donde H es máximo y E es mínimo, generando un efecto inductivo. Una ilustración

de estas ventanas con su circuito equivalente se puede ver en la figura 6.10.

Figura 6.10. Ventanas inductivas a) Asimétrica y b) Simétrica, c on su c) circuito

equivalente.

La corriente de conducción causada por un campo magnético entrante tiende a

debilitar el campo primario. Para obtener una suceptancia inductiva la ecuación de

onda debe resolverse con condiciones de contorno complicadas. Si se conoce E y

H, estas se integran y se obtienen relaciones de impedancia o admitancia. Estas

relaciones están expresadas por

a

d

a)

a

d

b) c)

186

Las ventanas capacitivas son elementos conductores (placas) que se colocan

donde E es máximo y H es mínimo, generando un efecto capacitivo. Una ilustración

de estas ventanas con su circuito equivalente se puede ver en la figura 6.11.

Figura 6.11. Ventanas Capacitivas a) Asimétrica y b) Simétrica , con su c) circuito

equivalente .

Las suceptancias correspondientes son:

Las ventanas resonantes también se emplean para obtener circuitos resonadores

a lo largo de la línea de transmisión, en la figura 6.12 se puede observar una

ventana resonante con su circuito equivalente.

c) a)

a

b/2

b)

a

d

Suceptancia para la ventana inductiva simétrica

Suceptancia para la ventana inductiva asimétrica

a

d

aYo

B g

2cot2

πλ=

a

d

a

d

aYo

B g

2cot

2csc1 22 ππλ

+=

(6.59)

(6.60)

Suceptancia para la ventana capacitiva simétrica b

dLnCsc

b

Yo

B

g 28

πλ

=

Suceptancia para la ventana capacitiva asimétrica b

dLnCsc

b

Yo

B

g 24

πλ

=

(6.61)

(6.62)

187

Figura 6.12. a) Ventana Resonante y b) Circuito equivalente.

Otro de los elementos empleado para obtener impedancias equivalentes

corresponde a los postes, los cuales son inductivos o capacitivos según sea su

disposición. En la figura 6.13 se muestra la configuración de los postes tanto

inductivo como capacitivo.

Figura 6.13. a) Poste Inductivo y b) Poste Capacitivo.

La impedancia de un poste en guías de ondas rectangulares se puede calcular

por el modo dominante, correspondiente a una corriente senoidal distribuida en el

poste. El poste tiene dimensiones h (longitud) y r (radio) a una distancia d (d<a/2)

medida desde el extremo de la guía, y la rectancia se puede calcular por medio de

la siguiente expresión

a)

a

d c b

b)

a) b)

r

h

188

donde:

λg: es la longitud de onda de la guía.

λ: es la longitud de onda del espacio libre.

Cortocircuito móvil.

Consta de una sección de guía de ondas, rectangular o cilíndrica, en la cual uno

de sus extremos tiene colocado un émbolo para variar el volumen interno de la

misma. Las figuras 6.14 y 6.15, muestran este elemento.

Figura 6.14. Cortocircuito Móvil.

22

2

))(1(2

))2(2)(2()/2()2(

khCosba

d

khCosrdKrdLnkhSenjX

g +

+−−=λλπ

λπ2=K

r

dLn

rd

h2

24

−≈ λ

(6.63)

(6.64) (6.65)

189

Figura 6.15. Vista interna del Cortocircuito Móvil.

Este elemento se comporta como una línea terminada en cortocircuito,

presentando una distribución de impedancia similar. Se emplea para realizar

ajustes de impedancias, filtros, adaptadores, etc. En la figura 6.16 se observa una

ilustración de la vista lateral del elemento y su circuito equivalente.

Figura 6.16. Cortocircuito Móvil y su circuito equivalente.

La distribución de voltaje y corriente a lo largo de la línea, se puede expresar de

la siguiente manera:

g

VoSenzVλ

π x)L(2)(

−= (6.66) g

jIoCoszIλ

π x)L(2)(

−−= (6.67)

L

X=0

Zcc(z)

z 4

λ4

C

L L

C

L

2

λL C

190

donde:

λg: es la longitud de onda de la guía.

Vo, Io son las magnitudes de voltaje y corriente respectivamente.

Luego, la distribución de impedancias se expresa de la forma:

La distribución de impedancias es análoga a una línea terminada en circuito

abierto (ver figura 3.11 en el capítulo 3).

Tornillo de Sintonía.

Un tornillo insertado en una sección de guía de onda rectangular, opera como

una capacitancia variable al incidir una onda electromagnética. En la figura 6.17 se

puede ver la ilustración de este componente.

Figura 6.17. Tornillo de sintonía.

g

jZoTanzZλ

π x)-L(2)( = (6.68)

191

El tornillo idealmente corresponde a una línea de transmisión terminada en

circuito abierto, sin embargo la dimensión b es usualmente <�g/4, entonces la

impedancia del tornillo corresponde a una capacitancia variable, como se muestra

en la figura 6.18.

Figura 6.18. Operación del tornillo de sintonía y su circuito equivalente.

La distribución de voltaje y corriente del tornillo, está descrita por;

donde:

λg: es la longitud de onda de la guía.

Vo, Io son las magnitudes de voltaje y corriente respectivamente.

Luego, la distribución de impedancias se expresa de la forma;

La distribución de impedancias es análoga a una línea terminada en circuito

abierto (ver figura 3.14 en el capítulo 3).

x x=0 L

b

g

VoCoszVλ

π x)L(2)(

−= (6.69) g

jIoSenzIλ

π x)L(2)(

−= (6.70)

g

jZoCotzZλ

π x)-L(2)( −= (6.71)

192

Terminación.

Es un componente de microondas empleado para terminar una línea de

transmisión con la mínima reflexión posible. Está formada por una sección de guía

de ondas, dentro de la cual hay un elemento formado por un material resistivo

(carbón o polvo de oxiferroso), generalmente en forma de lanza para una

disminución gradual del campo, capaz de absorber la potencia de las microondas.

En la figura 6.19 se muestra este elemento y su vista interna.

Figura 6.19. Terminación.

La longitud desde el extremo de la sección de la guía de onda, hasta el extremo

puntiagudo de la sección absorbente, debe ser un número impar de λ/4, para que la

onda reflejada llegue al extremo del elemento absorbente, en oposición de fase con

la onda incidente y de esta manera se anulen.

MATERIAL RESISTIVO

193

- Componentes de varios puertos.

Entre los componentes de varios puertos se encuentran las uniones T; entre

ellas: “T” plano E, “T” plano H y “T” híbrida.

“T” Plano E o serie:

Está formada por la unión de dos guías de ondas rectangulares llamadas brazos, uno principal y otro auxiliar, formando una “T”. En la figura 6.20, se muestra la “T” plano E o Serie, indicando sus brazos principal y auxiliar.

Figura 6.20. “T” Plano E o serie y su matriz de dispersión.

Se llama “T” plano E, pues el campo eléctrico de la guía de onda principal es

paralelo al eje del brazo auxiliar. Si se tiene una adaptación perfecta, la diagonal de

su matriz de dispersión es cero. Un diagrama de la dirección de las señales para

diferentes combinaciones de entrada en los puertos se puede ver en la figura 6.21.

=

333231

232221

131211

SSS

SSS

SSS

S ij

BRAZO PRINCIPAL

BRAZO AUXILIAR

2

3

1

194

Figura 6.21. Diferentes combinaciones de entrada para la T” Plan o E o Serie.

1

2

3

2gλ

2gλ

2gλ

2gλ

2

1 3

2gλ

2gλ

2gλ

2gλ

1

2

3

2gλ

2gλ

2gλ

2gλ

195

“T” Plano H o paralela.

Está formada por la unión de dos guías de ondas rectangulares llamadas brazos,

uno principal y uno auxiliar, formando una “T”. En la figura 6.22 se muestra la “T”

plano H o paralelo indicando sus brazos principal y auxiliar.

Figura 6.22. “T” Plano H o paralela y su matriz de dispersión.

Se llama “T” plano H pues el campo magnético de la guía de onda principal es

paralelo al eje del brazo auxiliar. Al introducir señal por cualquiera de sus puertos,

la señal no se desfasa sino que se bifurca, además dicha señal sufre un adelanto de

fase al pasar por la unión.

Un diagrama de la dirección de los flujos de campo H, se presenta en la figura

6.23, suponiendo que la señal entra por el puerto 3, se observa la dirección de los

campos en el puerto a y 2.

BRAZO PRINCIPAL

BRAZO AUXILIAR

=

333231

232221

131211

SSS

SSS

SSS

S ij

1

3

2

196

Figura 6.23. Flujo de campo H para la T” Plano H o paralela.

Entre las aplicaciones de la “T” plano E y plano H, se encuentran:

- Divisores de Potencia.

- Desfasadores.

- Monitores de potencia.

“T” Híbrida.

La “T” híbrida o mágica está formada por la combinación de una “T” plano E con

un “T” plano H, compartiendo las propiedades que estas ofrecen. Posee dos pares

de brazos colineales, dos de los cuales corresponden al tipo E y H. En la figura 6.24

aparece una ilustración de este tipo de componente y un diagrama que muestra sus

propiedades.

1

2

3

2gλ

2gλ

2gλ

2gλ

2gλ

197

Figura 6.24. “T” híbrida o mágica con su diagrama de propiedades .

Entre las aplicaciones de la “T” mágica, se encuentran;

- Monitoreo de potencia.

- Conmutador duplexor.

- Medidor de impedancia.

- Separador de señales.

- Puente de impedancia.

- Sintonizador E–H.

BRAZO E

BRAZO H

1

2

3

4

1

2

3

4 2

1

21−

1

2

3

4 2

1

1

2

3

4 2

1

21−

198

Sintonizadores E-H.

Corresponde a una “T” híbrida, a la cual se le coloca en sus brazos auxiliares E y

H émbolos de cortocircuitos móviles, para lograr un efecto de circuitos equivalentes

inductivos y capacitivos variables. Este elemento se observa en la figura 6.25a y

6.25b.

Figura 6.25a. Sintonizador E-H con sus diferentes circuitos equivalentes.

Figura 6.25b. Diferentes circuitos equivalentes del sintonizado r E-H.

199

Acoplador direccional sencillo.

Este componente consta de dos guías de ondas rectangulares o cilíndricas

unidas entre sí, las cuales intercambian la energía a través de unas ranuras.

Consta de 4 puertos, donde el 1 y 2 forman el brazo principal y el 3 y 4 el brazo

auxiliar. En la figura 6.26 se ilustra este dispositivo.

Las ranuras están separadas nλ/4, con el fin de eliminar la señal que se acopla al

puerto 4, quien está adaptado con una terminación.

Figura 6.26. Acoplador Direccional Sencillo

La señal viaja del puerto 1 al puerto 2 y un porcentaje es acoplado por el puerto

3, la cual es proporcional a un coeficiente llamado coeficiente de acoplamiento (CA),

quien es función de la frecuencia de la señal y es característico de cada acoplador.

Este coeficiente se expresa de la siguiente manera

1

2

3

Brazo Auxiliar

Brazo Principal

200

Acoplador direccional doble.

El acoplador direccional doble está formado por la combinación de dos acopladores

sencillos y puede ser de tipo guía de onda o coaxial. En al figura 6.27, se muestra

un acoplador de tipo coaxial.

Figura 6.27. Acoplador direccional doble tipo coaxial.

La señal entra por el puerto 1, acoplándose un porcentaje por el puerto 4, para ser monitoreada, y saliendo hacia la línea de transmisión por el puerto 2. La porción de señal que se refleja, debido a la desadaptación, es acoplada por el puerto 4.

El principio de operación de este elemento aparece ilustrado en la figura 6.28.

En la figura 6.28, se muestra el diagrama de vías que sigue la señal de entrada,

salida y reflejada. Además se observan algunos coeficientes correspondientes a los

coeficientes de directividad (D) y acoplamiento (K).

3

11010

P

PLogCA = [dB]

(6.72)

201

Figura 6.28. Operación del acoplador direccional doble tipo coax ial.

El coeficiente de acoplamiento (K), mide el porcentaje de señal que se acopla de

un puerto de entrada a otro de salida. Si la señal va a través del puerto 1 al 2, el

coeficiente de acoplamiento se define como

El coeficiente de directividad (D), mide el poder separador de la señal de

acoplador y la exactitud en las medidas del componente está definida por

Dentro de las aplicaciones del acoplador direccional doble, se encuentran:

- Reflectómetros.

- Control y monitoreo de señales (potencia).

- Ajuste de antenas.

PUERTO 1 PUERTO 2

PUERTO 3 PUERTO 4

ONDA INCIDENTE

ONDA REFLEJADA

D1 D2

K1 K1

3

11010

P

PLogK = [dB]

32

311010

P

PLogD = [dB] (6.74)

(6.73)

202

- Atenuadores.

En microondas los elementos atenuadores son empleados para ajustar el nivel

de potencia de operación o para propósitos de aislamiento entre la fuente de

potencia y la carga. Hay dos tipos de atenuadores: el atenuador coaxial y el

atenuador de guía de ondas.

Los atenuadores coaxiales pueden dividirse en dos: atenuador de película

resistiva y atenuador variable por frecuencia de corte. En la figura 6.28, se muestra

el atenuador coaxial de película resistiva.

Figura 6.28. Atenuador coaxial de película resistiva

Una representación de la estructura interna de este tipo de atenuador, se puede

apreciar en la figura 6.29.

203

Figura 6.29. Estructura interna del atenuador coaxial de película resistiva.

La resistencia en serie del conductor central R = rL, es variada por ajuste de la

longitud L. Si I es la corriente del conductor central, el voltaje debido a la película

resistiva será IR = IrL. Si el voltaje de entrada es Vi, entonces la salida del voltaje

atenuado será:

Y la magnitud del atenuador se obtiene por:

El atenuador coaxial variable por frecuencia de corte se muestra en la figura

6.30, donde la región indicada por L es una guía de ondas cilíndrica operando en el

rango de la frecuencia de corte. En este rango de frecuencias, las ondas son

atenuadas con una magnitud expresada por la ecuación 6.77.

Figura 6.30. Atenuador coaxial variable por frecuencia de corte

Conductor Central Tubo de Película resistiva

L

rLIViVo −= (6.75)

rLIV

VLogA

i

i

−= 1020 [dB] (6.76)

L

204

Donde:

Eo: es la intensidad de campo entrante.

Eoe-αL : es la intensidad de campo saliente.

Los atenuadores de guías de ondas se dividen en dos tipos: los atenuadores de

desplazamiento lateral y los atenuadores de aleta. En la figura 6.28 se muestran

estos dos tipos de atenuadores.

Figura 6.28. Atenuadores de guías de ondas. a) De desplazamiento lateral , b) y c) de

aleta.

LeE

ELnA

Lo

o αα +== −[neper] (6.77)

Película resistiva

Guía de onda

Barra de soporte

Película resistiva

L

Guía

a) b)

205

Para el primero, la potencia absorbida por el material resistivo por unidad de área

es:

Donde:

E: es la intensidad de campo eléctrico en la superficie del material.

R: es la resitencia de superficie del material resistivo por unidad de área,

En los atenuadores de aleta la potencia absorbida es proporcional al área de la

aleta resistiva insertada en la guía;

R

EPabs 2

2

=

dSR

EdSPPa

SS

abs ∫∫ ==2

2

(6.78)

(6.79)

[Watts]

206

Línea ranurada.

La línea ranurada es un elemento de guías de ondas, formado por una sección

de línea de transmisión coaxial o de guía de onda rectangular uniforme y de muy

bajas pérdidas, con una abertura longitudinal de forma que no interrumpa las líneas

de campo magnético y no produzca radiación y que permita el acceso de una sonda

deslizante a lo largo de la ranura y así detectar el voltaje del patrón de onda

estacionaria dentro de la línea. La figura 6.35 aparece una línea ranurada montada

sobre un carro.

Figura 6.35. Línea ranurada.

La línea ranurada se utiliza para medir ROE, longitudes de onda y frecuencia,

pues se conocen los puntos donde ocurren los máximos y mínimos; los cuales, en la

onda estacionaria están separados por λ/2.

207

Torcedura. Una torcedura es un componente de guía de onda, formado por una sección de guía de onda a la cual se le ha producido un giro en la mitad de la guía, que hace girar el puerto de entrada con respecto al de salida en un ángulo α, cuyo valor generalmente se encuentra entre 0° y 90°. Este com ponente se ilustra en la figura 6.36

Figura 6.36. Torcedura.

Codos.

Los codos son tramos de guías de ondas, que guían el campo hacia una dirección específica. Generalmente se usa en conexiones de antenas (ver figura 6.37).

Figura 6.37. Codo.

208

Elementos no lineales.

- Aisladores de Ferrita.

Un aislador es un dispositivo de transmisión no recíproca, que permite transmitir

con bajas pérdidas en una dirección y absorber la potencia en la otra dirección.

Existen dos tipos de aisladores de ferrita; el de rotación de Faraday y de

desplazamiento de campo.

La Ferrita es el nombre de la familia de materiales magnéticos cuya fórmula

molecular es MeOFe2O3, donde Me es un ion metálico divalente. Esta ferrita es un

material no isotrópico.

a) Aislador de rotación de Faraday.

Consta de una guía de ondas cilíndrica, en cuyo interior se encuentra una

película resistiva seguida de un cilindro girador de ferrita, el cual rota el campo

en 90° en una dirección y 45° en la otra. La figur a 6.38.

Figura 6.38. Aislador de Ferrita con el principio de rotación de Faraday.

209

Si la señal en el modo TE11 (modo dominante en guías de ondas cilíndricas)

entra por el puerto 1, esta puede ser considerada como la resultante de dos

ondas polarizadas circularmente, una en sentido horario y la otra antihorario.

Cuando se observa en la dirección del campo magnético aplicado, el campo r-f

en el sentido antihorario interactúa con µ− y en el sentido horario con µ+ de la

permeabilidad relativa de la ferrita.

Si las ondas son alimentadas por el puerto 2, el campo resultante rota 45° en

sentido horario y sale por el puerto 1. La función de la película resistiva será

absorber las señales no deseadas (las que entran por el puerto 1) cuando la

transmisión es del 2 al 1.

- Circuladores.

El circulador es una unión de una guía de ondas de n puertos , en la cual una

alimentación en el n-ésimo puerto produce una salida en el (n+1)-ésimo puerto.

Existen dos tipos de circuladores de ferrita; uno es de Faraday o circulador tipo

rotación y el otro es el circulador por desplazamiento de campo.

a) Circulador tipo girador de Faraday: Este circulador de ferrita se muestra en la

figura 6.39.

Figura 6.39. Circulador de Ferrita de Rotación de Faraday.

210

Cuando la señal es introducida por el puerto 1, el campo es girado 45° por el girador

de ferrita y la señal sale por el puerto 2. La señal no puede salir por el puerto 3,

porque las ondas tienden a excitar el modo TM en esta orientación del campo.

Cuando la señal entra por el puerto 2, no puede salir por el puerto 1, pues esta

guía de ondas está hecha para operar en el modo TE01, en esta frecuencia de

operación. La señal sale por el puerto 3, cuya guía está cortada para el modo TE10;

el mismo que las ondas tienden a excitar.

Cuando las ondas son alimentadas por el puerto 3, la señal no puede salir

directamente por el puerto 1. Primero la señal pasa a través del girador de 45° y

reflejado desde el puerto 2, debido a la fuerte orientación del campo, devolviéndose

hacia el girador, donde se vuelve girar 45°, salien do entonces el campo eléctrico con

una rotación de 90° por el puerto 1.

b) Circulador de desplazamiento de Campo: Este circulador se muestra en la figura

6.40.

Figura 6.40. Circulador de Desplazamiento de Campo.

2

1 3

Ferrita

a

a

211

Si las señales TE10 son alimentadas por le puerto 1, estas a lo largo de las

paredes laterales izquierdas interactuarán con µr+ y a lo largo de las paredes

laterales derechas con µr- . Si µr

+ > µr- , las señales se acoplarán en la guía 2 en

lugar de la guía 3. En forma similar, si se alimenta por el puerto 2, la señal sale por

el 3, y si se alimenta por el 3, sale por el puerto 1.

212

BIBLIOGRAFIA

BALANIS, Constantine. ADVANCED ENGINEERING ELECTROMAGNETICS.

Nueva York: Willey, 1989.

JOHN, Carl. TEORIA ELECTROMAGNETICA CAMPOS Y ONDAS. Mexico;

Limusa, 1996.

WALDRON, R. A. THEORY OF GUIDED ELECTROMAGNETIC WAVES. London:

VNR, 1969.

SOSA, Jorge y ORTEGA, Lizbeth. LINEAS DE TRANSMISION Y GUIAS DE

ONDAS. 2da edición. Mexico: Limusa, 1994.

CHENG, David. FUNDAMENTOS DE ELECTROMAGNETISMO PARA

INGENIERIA. Mexico: Addison Wesley Longman de Mexico, S.A de C.V., 1998.

LIAO, Samuel. MICROWAVE DEVICES AND CIRCUITS. Prentice Hall, 1990.

ISCHILL, Koryu. MICROWAVE ENGINEERING.