Transcript
  • (6.95)N = 2 ´ á á àk

    ®

    £kF

    â k®

    H2 ΠL3 V = 2 V à0kF 4 Π k

    2 â k

    8 Π3=

    V

    Π2à

    0

    kF

    k2

    â k =V

    Π2à

    0

    ΕF

    k2

    â k

    â Εâ Ε

    We know that

    (6.96)

    â Ε

    â k=

    â

    â k

    Ñ2

    k2

    2 m

    2

    m

    k

    So

    (6.97)N =V

    Π2à

    0

    ΕF

    k2

    â k

    â Εâ Ε =

    V

    Π2à

    0

    ΕF k2 â Ε

    Ñ2

    mk

    =m V

    Π3 Ñ2à

    0

    ΕF

    k â Ε

    Because Ε = Ñ2 k2 2 m, k = 2 m Ε Ñ

    (6.98)N =m V

    Π2 Ñ2à

    0

    ΕF

    k â Ε =m V

    Π2 Ñ2à

    0

    ΕF

    2 m Ε Ñ â Ε = à0

    ΕF H2 mL32 V2 Π2 Ñ3

    Ε â Ε = à0

    ΕF V

    2 Π2

    2 m

    Ñ2

    32Ε â Ε = à

    0

    ΕF

    DHΕL â ΕSo

    (6.99)DHΕL = V2 Π2

    2 m

    Ñ2

    32Ε

    Another way to get DHΕL is(6.100)DHΕL = â N

    â Ε

    Because

    (6.101)N =V k

    3

    3 Π2=

    V H2 m ΕL323 Π2 Ñ3

    (6.102)DHΕL = â Nâ Ε

    =3

    2

    V H2 mL 323 Π2 Ñ3

    Ε =V

    2 Π2

    2 m

    Ñ2

    32Ε

    Here, we can also prove that DHΕL = 3 N 2 Ε,(6.103)DHΕL = â N

    â Ε=

    3

    2

    V H2 mL323 Π2 Ñ3

    Ε =3

    2 Ε

    V H2 m ΕL323 Π2 Ñ3

    =3 N

    2 Ε

    Total energy

    (6.104)UHTL = à0

    ¥

    Ε f HΕL DHΕL â ΕHeat capacity

    (6.105)CV =¶U

    ¶TV = à

    0

    ¥

    Εâ f HΕL

    â TDHΕL â Ε

    First we prove that CV = Ù0

    ¥HΕ - ΜL â f HΕLâT

    DHΕL â ΕIt is easy to prove that

    (6.106)à0

    ¥ â f HΕLâ T

    DHΕL â Ε = ââ T

    à0

    ¥

    f HΕL DHΕL â Ε = â Nâ T

    = 0

    (because the number of electrons are fixed, so â N

    âT= 0)

    Therefore,

    44 Phys463.nb

  • (6.107)

    CV =¶U

    ¶Tv = à

    0

    ¥

    Εâ f HΕL

    â TDHΕL â Ε =

    à0

    ¥

    Εâ f HΕL

    â TDHΕL â Ε - Μ ´ H0L = à

    0

    ¥

    Εâ f HΕL

    â TDHΕL â Ε - Μ ´ à

    0

    ¥ â f HΕLâ T

    DHΕL â Ε = à0

    ¥HΕ - ΜL â f HΕLâ T

    DHΕL â ΕWe know that

    (6.108)

    â f HΕLâ T

    â T

    1

    expJ Ε- ΜkB T

    N + 1= B 1

    expJ Ε- ΜkB T

    N + 1F2 exp Ε - Μ

    kB T

    Ε - Μ

    kB T2

    (6.109)

    â f HΕLâ Ε

    â Ε

    1

    expJ Ε- ΜkB T

    N + 1= -B 1

    expJ Ε- ΜkB T

    N + 1F2 exp Ε - Μ

    kB T

    1

    kB T

    So,

    (6.110)

    â f HΕLâ T

    = -â f HΕL

    â Ε

    Ε - Μ

    T

    As a result,

    (6.111)CV = -à0

    ¥HΕ - ΜL â f HΕLâ Ε

    Ε - Μ

    T

    DHΕL â Ε = -à0

    ¥ HΕ - ΜL 2T

    DHΕL â f HΕLâ Ε

    â Ε

    At T

  • PlotB:SechB -1+Ε

    2 tF

    2

    4 t

    . t ® .005,SechB -1+Ε

    2 tF

    2

    4 t

    . t ® .01,

    SechB -1+Ε2 t

    F2

    4 t

    . t ® .1,SechB -1+Ε

    2 tF

    2

    4 t

    . t ® 1>, 8Ε, 0, 2, LabelStyle ® Medium,

    PlotLegends ® :"T=1

    100

    Μ

    kB

    ", "T=1

    10

    Μ

    kB

    ", "T=Μ

    kB

    ">, PlotPoints ® 1000F

    0.0 0.5 1.0 1.5 2.0ΕΜ

    10

    20

    30

    40

    50

    60

    -Μâ f HΕL

    âΕ

    T=1

    100

    Μ

    kB

    T=1

    10

    Μ

    kB

    T=Μ

    kB

    Notice that

    (6.113)kB T lnI f -1 - 1M = Ε - Μ

    (6.114)

    CV =DHΕF L

    0

    1HΕ - ΜL 2 â f =DHΕF L

    0

    1AkB T lnI f -1 - 1ME2 â f = DHΕF L kB2 T à0

    1AlnI f -1 - 1ME2 â f = DHΕF L kB2 T Π2

    3

    =Π2

    3

    DHΕF L kB2 TSo CV is a linear function of T at T > A T3, so the electron

    contribution dominates the heat capacity.

    46 Phys463.nb


Top Related