Transcript

EnvasesSustentablesAvances en

CA 381

Cuerpo académico

Nuevas tecnologías para el diseñoDiseño industrial y manufactura asistida por computadoraNuevos materiales y sistemas de manufacturaDiseño para la sustentabilidad Análisis de tendencias en el diseño y desarrollo de productos

Tecnologías tradicionales de manufactura de productosOptimización de procesos tecnológicos tradicionalesSustentabilidad en lo procesos tecnológicos tradicionalesDesarrollo de infraestructura para los procesos tecnológicos tradicionalesDesarrollo de tecnologías alternativasEnvase y embalaje

Innovación tecnológica para el diseño

Equipo

AlbertoRosa

FranciscoGonzález Madariaga

Jaime FGómez

EnriqueHerrera

HéctorFlores Magón

MarioOrozco

EnvaseSustentable

El envase es el medio de diseño que tiene el mayor impacto y crecimiento global, y toca a millones de consumidores cada día en el planeta.

Juega un rol vital en la protección, distribución y comunicación de cada producto y servicio que consumimos.

El envase presenta un enorme impacto ambiental, y el diseño del mismo juega un rol crítico y de responsabilidad de cara a los recursos y sustentabilidad del planeta y su futuro.

Sólo para recordar...

1. ProtecciónLa función primaria y esencial es contener y proteger al producto.Quizá las “carteras” de huevo fabricadas con pulpa de papel moldeada sean el mejor ejemplo de un envase funcional.

2. TransporteAdemás de proteger, el envase debe ayudar al transporte, distribución y almacenaje del producto.

3. ComunicaciónDebe de describir su contenido, propiedades, mercado, beneficios, etc, etc....

Un problema de percepción...

?Cómo es un envase sustentable

1. Es benéfico, seguro y saludable para los individuos y sus comunidades a lo largo de su ciclo de vida2. Cumple con los criterios de mercado, costo y desempeño3. Es fabricado, transportado y debidamente reciclado utilizando energía renovable4. Maximiza el uso de materiales renovables y reciclables5. Es manufacturado usando procesos tecnologías limpias 6. Está fabricado de materiales seguros en todos los posibles escenarios del fin de ciclo de vida7. Está físicamente diseñado para optimizar materiales y energía8. Es efectivamente reciclado y utilizado en ciclos biológicos o industriales de la cuna a la cuna (cradle-to-cradle)

65% Diseño para reciclaje o utilización del material reciclado

57% Reducción del peso del envase

41% Materiales renovables o bio-materiales

25% Materiales compostables

Hacia donde se dirige la investigación en envase sustentable

Análisis del ciclo de vida (LCA)

39

The materials life cycle

CHAPTER 3

Image of casting courtesy of Skillspace; image of car making courtesy of U.S. Department of Energy EERE program; image of cars courtesy of Reuters.com; image of junk car courtesy of Junkyards.com.

CONTENTS

3.1 Introduction and synopsis

3.2 The material life cycle

3.3 Life-cycle assessment: details and diffi culties

3.4 Streamlined LCA

3.5 The strategy for eco-selection of materials

3.6 Summary and conclusion

3.7 Further reading

3.8 Appendix: software for LCA

3.9 Exercises 3.1 Introduction and synopsis

The materials of engineering have a life cycle. They are created from ores and feedstock. These are manufactured into products that are distributed and used. Like us, products have a fi nite life, at the end of which they become scrap. The materials they contain, however, are still there; some (unlike us) can be resurrected and enter a second life as recycled content in a new product.

Life-cycle assessment (LCA) traces this progression, documenting the resources consumed and the emissions excreted during each phase of life. The output is a sort of biography, documenting where the materials have been, what they have done, and the consequences for their surroundings.

Material

Manufacture

Use

Disposal

Resources

Manufactura

UsoMaterial

Disposición

Recursos

sold, and used. Products have a useful life, at the end of which they are dis-carded, a fraction of the materials they contain perhaps entering a recycling loop, the rest committed to incineration or landfi ll.

Energy and materials are consumed at each point in this cycle, deplet-ing natural resources. Consumption brings an associated penalty of car-bon dioxide (CO 2), oxides of sulfur (SO x), and of nitrogen (NO x), and other emissions in the form of low-grade heat and gaseous, liquid, and solid waste. In low concentrations, most of these emissions are harmless, but as their concentrations build, they become damaging. The problem, simply put, is that the sum of these unwanted by-products now often exceeds the capacity of the environment to absorb them. For some the damage is local and the creator of the emissions accepts the responsibility and cost of con-taining and remediating it (the environmental cost is said to be internal-ized). For others the damage is global and the creator of the emissions is not held directly responsible, so the environmental cost becomes a burden on society as a whole (it is externalized). The study of resource consump-tion, emissions, and their impacts is called life-cycle assessment (LCA).

Materialproduction

Productmanufacture

Productuse

Productdisposal

Natural resources

CO2, NOx, SOx

ParticulatesToxic wasteLow grade heat

Emissions

Energy

Feedstocks

Transport

FIGURE 3.1 The material life cycle. Ore and feedstock are mined and processed to yield a mate-rial. This material is manufactured into a product that is used, and at the end of its life, it is discarded, recycled, or, less commonly, refurbished and reused. Energy and materials are consumed in each phase, generating waste heat and solid, liquid, and gaseous emissions.

The material life cycle 41

Recursos

Materia prima

Transporte

Energía

Producción deMateriales

Manufactura deproductos

Uso de losproductos

DisposiciónfinalCO2 NOx SOx

PartículasBasura tóxicaCalor

Emisiones

Recursos naturales

?Vidrio PE PET Aluminio Acero

Cuál de estos envases tendrámenor gasto energético

201

The masses of fi ve competing container types, the material of which they are made, and the embodied energy of each are listed in Table 9.2 . All fi ve materials can be recycled. For all fi ve, cost-effective processes exist for making containers. All but one —steel—resist corrosion in the mildly acidic or alkaline conditions characteristic of bottled drinks. Steel is easily pro-tected with lacquers.

Em

bodi

ed e

nerg

y (M

J/kg

)

100

Ene

rgy/

unit

vol (

MJ/

liter

)

10

0

200

50

150

0

2

4

6

8

PEPET

Stee

l

Gla

ss

Alum

inum

PE

PET

Stee

l

Gla

ss

Alum

inum

Energy per kg

Energy per liter

FIGURE 9.2 Top: the embodied energy of the bottle materials. Bottom: the material energy per liter of fl uid contained.

Table 9.1 Design requirements for drink containers

Function Drink container

Constraints Must be immune to corrosion in the drink Must be easy and fast to shape Must be recyclable

Objective Minimize embodied energy per unit capacity

Free variables Choice of material

Selection per unit of function

201

The masses of fi ve competing container types, the material of which they are made, and the embodied energy of each are listed in Table 9.2 . All fi ve materials can be recycled. For all fi ve, cost-effective processes exist for making containers. All but one —steel—resist corrosion in the mildly acidic or alkaline conditions characteristic of bottled drinks. Steel is easily pro-tected with lacquers.

Em

bodi

ed e

nerg

y (M

J/kg

)

100

Ene

rgy/

unit

vol (

MJ/

liter

)

10

0

200

50

150

0

2

4

6

8

PEPET

Stee

l

Gla

ss

Alum

inum

PE

PET

Stee

l

Gla

ss

Alum

inum

Energy per kg

Energy per liter

FIGURE 9.2 Top: the embodied energy of the bottle materials. Bottom: the material energy per liter of fl uid contained.

Table 9.1 Design requirements for drink containers

Function Drink container

Constraints Must be immune to corrosion in the drink Must be easy and fast to shape Must be recyclable

Objective Minimize embodied energy per unit capacity

Free variables Choice of material

Selection per unit of function

Energía por kg Energía por lt

Alumini

o

Alumini

o

Vidrio

Acero

Vidrio

Acero

Ener

gía/

unid

ad d

e vo

lum

en (M

J/lt)

Gas

to e

nerg

étic

o (M

J/kg

)

Tipo de contenedor

Botella PET 400 ml

Botella PE 1 lt

Botella vidrio 750 ml

Lata Al 440 ml

Lata acero 440 ml

Material

PET

PE HD

Vidrio de soda

Al serie 5000

Acero plano

Masa, gms

25

38

325

20

45

Gasto energético

MJ/kg

84

81

15.5

208

32

Energía/litro

MJ/lt

5.3

3.8

6.7

9.5

3.3

Hipócritas!!

1973

Biopol® PHB (Polihidroxibutirato)

CostosoNo resiste impactosBaja resistencia a ácidos y bases

Mas o menos la cuenta sale así...

Y que se está haciendo...

(de verdad)

Diseño para reciclaje o utilización del material reciclado

Materiales renovables o bio-materiales

Reducción del peso del envase

Materiales compostables

PLA

PLAácido poliláctico

Samsung Reclaim (2010)

pasos para diseñar envases sustentables10

1. Utilizar una herramienta de análisis de ciclo de vida (Life Cycle Assessment)

33

Tools: CompassPackaging Attributes

•Recycled vs. Virgin Content •Percent of Source Certified Material •Solid Waste•Material Health

Life Cycle Phases•Material Manufacture •Conversion •Distribution •End of Life

Life Cycle MetricsCONSUMPTION METRICSFossil Fuel •Water •Mineral •Biotic Resource

Emission Metrics

•Greenhouse Gas •Clean Production: Human ImpactsClean Production: Aquatic Toxicity •Eutrophication

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01 7.00E+01

Bag�x�20.0

Fresh�Step�Pail�x�21.0

GHG�(kg�C02ͲEquiv)�Manufacture GHG�(kg�C02ͲEquiv)�Conversion GHG�(kg�C02ͲEquiv)�Distribution GHG�(kg�C02ͲEquiv)�End�of�life

Fossil Fuel Consumption (MJ-equiv)

0.00E+00 2.00E+02 4.00E+02 6.00E+02 8.00E+02 1.00E+03 1.20E+03 1.40E+03 1.60E+03 1.80E+03 2.00E+03

Bag�x�20.0

Fresh�Step�Pail�x�21.0

FFC�(MJͲequiv)�Manufacture FFC�(MJͲequiv)�Conversion FFC�(MJͲequiv)�Distribution FFC�(MJͲequiv)�End�of�life

GHG Emission (kg C02-Equiv)

0.00E+00 5.00EͲ02 1.00EͲ01 1.50EͲ01 2.00EͲ01 2.50EͲ01 3.00EͲ01 3.50EͲ01 4.00EͲ01

Bag�x�20.0

Fresh�Step�Pail�x�21.0

CP:�AT�(CTUe)�Manufacture CP:�AT�(CTUe)�Conversion CP:�AT�(CTUe)�Distribution CP:�AT�(CTUe)�End�of�life

CP: Aquatic Toxicity (CTUe)

Eutrophication (kg P04-Equiv)

0.00E+00 1.00EͲ02 2.00EͲ02 3.00EͲ02 4.00EͲ02 5.00EͲ02 6.00EͲ02 7.00EͲ02 8.00EͲ02 9.00EͲ02

Bag�x�20.0

Fresh�Step�Pail�x�21.0

Eutr�(kg�P04ͲEquiv)�Manufacture Eutr�(kg�P04ͲEquiv)�Conversion Eutr�(kg�P04ͲEquiv)�Distribution Eutr�(kg�P04ͲEquiv)�End�of�life

2. Evaluar cada componente del envase/embalaje

31% menos resina15% menos de peso

Ahorro 208 Tons.cartón/año = 1,440 árboles = 149,500 kgs/CO2

3. Considerar nuevas alternativas para la distribución

Nested Pack ©

4. Buscar oportunidades para hacer re-usable el envase (donde tenga sentido hacerlo)

Porcentaje de envase recuperado en EEUU por material (2011)

5. Considerar cambios al producto

6. En medida de lo posible, diseñar para el reciclaje

7. Usar estrategias de envasado que mejoren el consumo de los productos

8. Analiza de donde provienen los materiales de envasado

9. Evaluar el sistema de distribución para detectar oportunidades de ahorro de espacio

packnomics

10. Considerar el uso de nuevos materiales para el envasado

HDPE con azúcar,para 2020 el 25% de todossus envases serán reciclables

Conclusión...

Fin


Top Related