Transcript
  • 721-283 Transport Phenomena (Part 2 Heat Transfer) Dr.Jutarut Tasara

    1

    1 (Principle of steady state heat )

    1.1. (Introduction)

    (Temperature gradient) (Temperature different) (Driving force) (Temperature gradient)

    (1.1)

    1.1 (Temperature

    Gradient) (Conduction) (Convection) (Radiation)

    1.1

  • 721-283 Transport Phenomena (Part 2 Heat Transfer) Dr.Jutarut Tasara

    2

    (Steady state and Unsteady state) (Steady state)

    T/t = 0

    X X (Control volume) X X (Unsteady state Transient state)

    T/t 0 1.2. (Conduction heat transfer)

    (Temperature gradient ) A

    (1.2)

    (1.3)

    qcond = (Wall or J/s) A = (m2) T = (K) X =

  • 721-283 Transport Phenomena (Part 2 Heat Transfer) Dr.Jutarut Tasara

    3

    (Thermal Conductivity) k W/m K

    (1.4)

    (1.4) (Fouriers law of conduction)

    X (1.4) (k) k k k k k k (conductor) k (insulator) k 1-1 1-1

    (k), W/mK 35-430 20-200 9-90 () 0.2-2.0 () 0.02-20 0.02-0.40 0.002-0.2

  • 721-283 Transport Phenomena (Part 2 Heat Transfer) Dr.Jutarut Tasara

    4

    a) (Conduction in plane walls)

    +

    (1.5)

    1) Steady-state:

    0 2) Transient, no heat generation: 0 3) Steady-state, no heat generation:

    Steady state Fouriers law (1.6)

    1.2 k A (boundary condition) T = T1 X = 0 T = T2 X = L

    (1.7)

    (1.7)

    (1.8)

    R= x/kA K/W h F/btu

    Rate of heat conduction in the wall -

    Rate of heat conduction out the wall

    + Rate of heat

    generation inside the wall =

    Rate of change of the energy content of the

    wall

    (1.6)

  • 721-283 Transport Phenomena (Part 2 Heat Transfer) Dr.Jutarut Tasara

    5

    b) (plane walls in series)

    1.3 (1.9)

    (1.9)

    T2 T3 (1.105)

    (1.10)

    c) (Conduction in hollow cylinder) (r) 1.4

    Rate of heat conduction in the wall -

    Rate of heat conduction out the wall

    + Rate of heat

    generation inside the wall =

    Rate of change of the energy content of the

    wall

    1.3

  • 721-283 Transport Phenomena (Part 2 Heat Transfer) Dr.Jutarut Tasara

    6

    1.4

    Steady state k Ar Fouriers law 1.11

    (1.11)

    Ar = 2rL

    (1.12)

    Boundary condition; Ti T0

    (1.13)

    d) (Multilayer cylinder) 1.5 Resistance 1.14

    (1.14)

  • 721-283 Transport Phenomena (Part 2 Heat Transfer) Dr.Jutarut Tasara

    7

    (1.15)

    (1.16)

    (1.17)

    1.5

    e) (Conduction in hollow spheres) A =4r2

    (1.18)

    Boundary condition;

    (1.19)

    (1.20)

  • 721-283 Transport Phenomena (Part 2 Heat Transfer) Dr.Jutarut Tasara

    8

    f) Combined convection and conduction and overall coefficients

    A Tw Tf 1.9

    (1.21)

    (1.22)

    (1.23)

    (

    ) (1.24)

    (1.25)

    Ai = 2Lri () , AA lm=log mean area of the tube A0 overall heat transfer coefficient (U) Ai Ao

    (1.26)

  • 721-283 Transport Phenomena (Part 2 Heat Transfer) Dr.Jutarut Tasara

    9

    (1.27)

    (1.28)

    1.6 (a) (b)

    g) (Critical Thickness of Insulation)

    () r1 T1 thermal conductivity (k) r2 T2 1.7 (1.29) T0

    (1.29)

    Thermal resistance Thermal resistance

  • 721-283 Transport Phenomena (Part 2 Heat Transfer) Dr.Jutarut Tasara

    10

    Critical radius

    1.7

    1.3. Steady state conduction and shape factor

    1.3.1. Introduction and graphical method for Two-dimensional conduction

    Graphical method ( isotherm) 2 2 (steady-state)

    maintained T1 maintained T2 (isotherm) heat flow line sketches Heat flow curvilinear-square (b) Fourier 1

    (1.31)

    This heat flow heat flow section heat flow lane Total heat flow

    lane x y, heat flow T element T element heat flow lane T element

    (1.33)

    Critical radius

    (1.30)

    Critical radius

    (1.31)

  • 721-283 Transport Phenomena (Part 2 Heat Transfer) Dr.Jutarut Tasara

    11

    N is the number of temperature increments between the inner and outer surfaces Heat flow lane x y lane x y total heat transfer

    (1.34)

    M heat flow lane l

    heat transfer curvilinear-square plots x y temperature increments (N) heat flow lanes (M)

    1.8 Graphical curvilinear square method for two-dimensional heat conduction in a

    rectangular flue

    1.3.2. (shape factor in conduction)

    (1.34) S=M/N

    (1.35)

    S

  • 721-283 Transport Phenomena (Part 2 Heat Transfer) Dr.Jutarut Tasara

    12

    S S 1-2

    1-2 Conduction shape factor for

    Cylinder of length L in a square

    0

    Horizontal buried cylinder of length L

    Two parallel cylinders of length L

    [

    ]

    Sphere buried


Top Related