Transcript
Page 1: Conferencia envase sustentable

EnvaseSustentableAlberto Rossa, Dr. Ing.Laboratorio de Innovación Tecnológica para el DiseñoDepartamento de Producción y Desarrollo / Universidad de Guadalajara

Page 2: Conferencia envase sustentable

El envase es el medio de diseño que tiene el mayor impacto y crecimiento global, y toca a millones de consumidores cada día en el planeta.

Juega un rol vital en la protección, distribución y comunicación de cada producto y servicio que consumimos.

El envase presenta un enorme impacto ambiental, y el diseño del mismo juega un rol crítico y de responsabilidad de cara a los recursos y sustentabilidad del planeta y su futuro.

Page 3: Conferencia envase sustentable

Sólo para recordar...

Page 4: Conferencia envase sustentable

1. ProtecciónLa función primaria y esencial es contener y proteger al producto.Quizá las “carteras” de huevo fabricadas con pulpa de papel moldeada sean el mejor ejemplo de un envase funcional.

Page 5: Conferencia envase sustentable

2. TransporteAdemás de proteger, el envase debe ayudar al transporte, distribución y almacenaje del producto.

Page 6: Conferencia envase sustentable

3. ComunicaciónDebe de describir su contenido, propiedades, mercado, beneficios, etc, etc....

Page 7: Conferencia envase sustentable
Page 8: Conferencia envase sustentable

Un problema de percepción...

Page 9: Conferencia envase sustentable
Page 10: Conferencia envase sustentable
Page 11: Conferencia envase sustentable
Page 12: Conferencia envase sustentable
Page 13: Conferencia envase sustentable
Page 14: Conferencia envase sustentable

?Cómo es un envase sustentable

Page 15: Conferencia envase sustentable

65% Diseño para reciclaje o utilización del material reciclado

57% Reducción del peso del envase

41% Materiales renovables o bio-materiales

25% Materiales compostables

Hacia donde se dirige la investigación en envase sustentable

Page 16: Conferencia envase sustentable

Análisis del ciclo de vida (LCA)

39

The materials life cycle

CHAPTER 3

Image of casting courtesy of Skillspace; image of car making courtesy of U.S. Department of Energy EERE program; image of cars courtesy of Reuters.com; image of junk car courtesy of Junkyards.com.

CONTENTS

3.1 Introduction and synopsis

3.2 The material life cycle

3.3 Life-cycle assessment: details and diffi culties

3.4 Streamlined LCA

3.5 The strategy for eco-selection of materials

3.6 Summary and conclusion

3.7 Further reading

3.8 Appendix: software for LCA

3.9 Exercises 3.1 Introduction and synopsis

The materials of engineering have a life cycle. They are created from ores and feedstock. These are manufactured into products that are distributed and used. Like us, products have a fi nite life, at the end of which they become scrap. The materials they contain, however, are still there; some (unlike us) can be resurrected and enter a second life as recycled content in a new product.

Life-cycle assessment (LCA) traces this progression, documenting the resources consumed and the emissions excreted during each phase of life. The output is a sort of biography, documenting where the materials have been, what they have done, and the consequences for their surroundings.

Material

Manufacture

Use

Disposal

Resources

Manufactura

UsoMaterial

Disposición

Recursos

Page 17: Conferencia envase sustentable

sold, and used. Products have a useful life, at the end of which they are dis-carded, a fraction of the materials they contain perhaps entering a recycling loop, the rest committed to incineration or landfi ll.

Energy and materials are consumed at each point in this cycle, deplet-ing natural resources. Consumption brings an associated penalty of car-bon dioxide (CO 2), oxides of sulfur (SO x), and of nitrogen (NO x), and other emissions in the form of low-grade heat and gaseous, liquid, and solid waste. In low concentrations, most of these emissions are harmless, but as their concentrations build, they become damaging. The problem, simply put, is that the sum of these unwanted by-products now often exceeds the capacity of the environment to absorb them. For some the damage is local and the creator of the emissions accepts the responsibility and cost of con-taining and remediating it (the environmental cost is said to be internal-ized). For others the damage is global and the creator of the emissions is not held directly responsible, so the environmental cost becomes a burden on society as a whole (it is externalized). The study of resource consump-tion, emissions, and their impacts is called life-cycle assessment (LCA).

Materialproduction

Productmanufacture

Productuse

Productdisposal

Natural resources

CO2, NOx, SOx

ParticulatesToxic wasteLow grade heat

Emissions

Energy

Feedstocks

Transport

FIGURE 3.1 The material life cycle. Ore and feedstock are mined and processed to yield a mate-rial. This material is manufactured into a product that is used, and at the end of its life, it is discarded, recycled, or, less commonly, refurbished and reused. Energy and materials are consumed in each phase, generating waste heat and solid, liquid, and gaseous emissions.

The material life cycle 41

Recursos

Materia prima

Transporte

Energía

Producción deMateriales

Manufactura deproductos

Uso de losproductos

DisposiciónfinalCO2 NOx SOx

PartículasBasura tóxicaCalor

Emisiones

Recursos naturales

Page 18: Conferencia envase sustentable

?CHAPTER 9: Eco-informed materials selection200

Before starting, there’s something to bear in mind. There are no simple, single-answer solutions to environmental questions. Material substitution guided by eco-objectives is one way forward, but it is not the only one. It might sometimes be better to abandon one way of doing things (the IC engine vehicle, for example) and replacing it with another (fuel cell or electric power, perhaps). So, though change of material is one option, another is change of concept. And of course there is a third: change of lifestyle (no vehicle at all).

This book is about materials so, in Chapters 1 through 8, we stuck with them as the central theme. In this and the next two chapters we venture a little outside this envelope.

9.2 Which bottle is best? selection per unit of function

Drink containers coexist that are made from many different materials: glass, polyethylene, PET, aluminum, steel —Figure 9.1 shows them. Surely one must be a better environmental choice than the others? The audit of a PET bottle in Chapter 7 delivered a clear message: the phase of life that dominates energy consumption and CO 2 emission is that embodied in the material of which a product is made. Embodied energies for the fi ve mater-ials are plotted in the upper part of Figure 9.2 (a plot of CO 2 shows the same distribution). Glass has values of both that are by far the lowest. It would seem that glass is the best choice.

But hold on. These are energies per kg of material. The containers differ greatly in weight and volume. What we need are values per unit of function . So let’s start again and do the job properly, listing the design requirements. The material must not corrode in mildly acidic (fruit juice) or alkali (milk) fl uids. It must be easy to shape, and —given the short life of a container —itmust be recyclable. Table 9.1 lists the requirements, including the objective of minimizing embodied energy per unit volume of fl uid contained .

Glass PE PET Aluminum Steel

FIGURE 9.1 Containers for liquids: glass, polyethylene, PET, aluminum, and steel; all can be recycled. Which carries the low penalty of embodied energy?

Vidrio PE PET Aluminio Acero

Cuál de estos envases tendrámenor gasto energético

Page 19: Conferencia envase sustentable

201

The masses of fi ve competing container types, the material of which they are made, and the embodied energy of each are listed in Table 9.2 . All fi ve materials can be recycled. For all fi ve, cost-effective processes exist for making containers. All but one —steel—resist corrosion in the mildly acidic or alkaline conditions characteristic of bottled drinks. Steel is easily pro-tected with lacquers.

Em

bodi

ed e

nerg

y (M

J/kg

)

100

Ene

rgy/

unit

vol (

MJ/

liter

)

10

0

200

50

150

0

2

4

6

8

PEPET

Stee

l

Gla

ss

Alum

inum

PE

PET

Stee

l

Gla

ss

Alum

inum

Energy per kg

Energy per liter

FIGURE 9.2 Top: the embodied energy of the bottle materials. Bottom: the material energy per liter of fl uid contained.

Table 9.1 Design requirements for drink containers

Function Drink container

Constraints Must be immune to corrosion in the drink Must be easy and fast to shape Must be recyclable

Objective Minimize embodied energy per unit capacity

Free variables Choice of material

Selection per unit of function

201

The masses of fi ve competing container types, the material of which they are made, and the embodied energy of each are listed in Table 9.2 . All fi ve materials can be recycled. For all fi ve, cost-effective processes exist for making containers. All but one —steel—resist corrosion in the mildly acidic or alkaline conditions characteristic of bottled drinks. Steel is easily pro-tected with lacquers.

Em

bodi

ed e

nerg

y (M

J/kg

)

100

Ene

rgy/

unit

vol (

MJ/

liter

)

10

0

200

50

150

0

2

4

6

8

PEPET

Stee

l

Gla

ss

Alum

inum

PE

PET

Stee

l

Gla

ss

Alum

inum

Energy per kg

Energy per liter

FIGURE 9.2 Top: the embodied energy of the bottle materials. Bottom: the material energy per liter of fl uid contained.

Table 9.1 Design requirements for drink containers

Function Drink container

Constraints Must be immune to corrosion in the drink Must be easy and fast to shape Must be recyclable

Objective Minimize embodied energy per unit capacity

Free variables Choice of material

Selection per unit of function

Energía por kg Energía por lt

Alumini

o

Alumini

o

Vidrio

Acero

Vidrio

Acero

Ener

gía/

unid

ad d

e vo

lum

en (M

J/lt)

Gas

to e

nerg

étic

o (M

J/kg

)

Tipo de contenedor

Botella PET 400 ml

Botella PE 1 lt

Botella vidrio 750 ml

Lata Al 440 ml

Lata acero 440 ml

Material

PET

PE HD

Vidrio de soda

Al serie 5000

Acero plano

Masa, gms

25

38

325

20

45

Gasto energético

MJ/kg

84

81

15.5

208

32

Energía/litro

MJ/lt

5.3

3.8

6.7

9.5

3.3

Page 20: Conferencia envase sustentable

Hipócritas!!

Page 21: Conferencia envase sustentable
Page 22: Conferencia envase sustentable
Page 23: Conferencia envase sustentable

Y que se está haciendo...

(de verdad)

Page 24: Conferencia envase sustentable

Diseño para reciclaje o utilización del material reciclado

Materiales renovables o bio-materiales

Reducción del peso del envase

Materiales compostables

Page 25: Conferencia envase sustentable
Page 26: Conferencia envase sustentable
Page 27: Conferencia envase sustentable
Page 28: Conferencia envase sustentable
Page 29: Conferencia envase sustentable
Page 30: Conferencia envase sustentable
Page 31: Conferencia envase sustentable
Page 32: Conferencia envase sustentable
Page 33: Conferencia envase sustentable
Page 34: Conferencia envase sustentable
Page 35: Conferencia envase sustentable
Page 36: Conferencia envase sustentable
Page 37: Conferencia envase sustentable

PLA

Page 38: Conferencia envase sustentable
Page 39: Conferencia envase sustentable

PLAácido poliláctico

Page 40: Conferencia envase sustentable
Page 41: Conferencia envase sustentable
Page 42: Conferencia envase sustentable
Page 43: Conferencia envase sustentable
Page 44: Conferencia envase sustentable
Page 45: Conferencia envase sustentable
Page 46: Conferencia envase sustentable
Page 47: Conferencia envase sustentable
Page 48: Conferencia envase sustentable
Page 49: Conferencia envase sustentable
Page 50: Conferencia envase sustentable
Page 51: Conferencia envase sustentable

pasos para diseñar envases sustentables10

Page 52: Conferencia envase sustentable

1. Utilizar una herramienta de análisis de ciclo de vida (Life Cycle Assessment)

Page 53: Conferencia envase sustentable

2. Evaluar cada componente del envase/embalaje

31% menos resina15% menos de peso

Page 54: Conferencia envase sustentable

Ahorro 208 Tons.cartón/año = 1,440 árboles = 149,500 kgs/CO2

Page 55: Conferencia envase sustentable

3. Considerar nuevas alternativas para la distribución

Page 56: Conferencia envase sustentable

Nested Pack ©

Page 57: Conferencia envase sustentable

4. Buscar oportunidades para hacer re-usable el envase (donde tenga sentido hacerlo)

Page 58: Conferencia envase sustentable
Page 59: Conferencia envase sustentable

5. Considerar cambios al producto

Page 60: Conferencia envase sustentable

6. En medida de lo posible, diseñar para el reciclaje

Page 61: Conferencia envase sustentable

7. Usar estrategias de envasado que mejoren el consumo de los productos

Page 62: Conferencia envase sustentable
Page 63: Conferencia envase sustentable
Page 64: Conferencia envase sustentable

8. Analiza de donde provienen los materiales de envasado

Page 65: Conferencia envase sustentable

9. Evaluar el sistema de distribución para detectar oportunidades de ahorro de espacio

packnomics

Page 66: Conferencia envase sustentable

10. Considerar el uso de nuevos materiales para el envasado

HDPE con azúcar,para 2020 el 25% de todossus envases serán reciclables

Page 67: Conferencia envase sustentable

Conclusión...

Page 68: Conferencia envase sustentable
Page 69: Conferencia envase sustentable
Page 70: Conferencia envase sustentable

Centro Universitario de Arte, Arquitectura y DiseñoUniversidad deGuadalajara

Page 71: Conferencia envase sustentable

Graciaspor su atención

www.slideshare/betorossa

Page 72: Conferencia envase sustentable

Top Related