Transcript
Page 1: Integration in the complex plane

ntegration in the Complex Plane

Property of Amit Amola. Should be used for reference and with consent.

1

Prepared by:Amit AmolaSBSC(DU)

Page 2: Integration in the complex plane

Defining Line Integrals in the Complex Plane

0a z

Nb z

1z2z

1

3z2

3

N

1Nz

nzn

x

y#. 𝑛 π‘œπ‘› 𝐢 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 π‘§π‘›βˆ’1 π‘Žπ‘›π‘‘ 𝑧𝑛

#. πΆπ‘œπ‘›π‘ π‘–π‘‘π‘’π‘Ÿ π‘‘β„Žπ‘’ π‘ π‘’π‘šπ‘ πΌπ‘› = 𝑛=1

𝑁 𝑓(𝑛)(𝑧𝑛 βˆ’ π‘§π‘›βˆ’1)

#. 𝐿𝑒𝑑 π‘‘β„Žπ‘’ π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘ π‘’π‘π‘‘π‘–π‘£π‘–π‘ π‘–π‘œπ‘›π‘  𝑁 β†’ ∞,π‘ π‘’π‘β„Ž π‘‘β„Žπ‘Žπ‘‘ βˆ†π‘§π‘›= 𝑧𝑛 βˆ’ π‘§π‘›βˆ’1 β†’ 0 π‘Žπ‘›π‘‘ 𝑑𝑒𝑓𝑖𝑛𝑒

𝐼 =

π‘Ž

𝑏

𝑓 𝑧 𝑑𝑧 = limπ‘β†’βˆž

𝐼𝑁

= limπ‘β†’βˆž

𝑛=1

𝑁

𝑓(𝑛)(𝑧𝑛 βˆ’ π‘§π‘›βˆ’1)

(π‘Ÿπ‘’π‘ π‘’π‘™π‘‘ 𝑖𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑑 π‘œπ‘“ π‘‘β„Žπ‘’ π‘‘π‘’π‘‘π‘Žπ‘–π‘™π‘  π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘Žπ‘‘β„Ž π‘ π‘’π‘π‘‘π‘–π‘£π‘–π‘ π‘–π‘œπ‘›)

C

Property of Amit Amola. Should be used for reference and with consent.

2

Page 3: Integration in the complex plane

Equivalence Between Complex and Real Line Integrals

Note that-

So the complex line integral is equivalent to two real line integrals on C.

Property of Amit Amola. Should be used for reference and with consent.

3

Page 4: Integration in the complex plane

Review of Line Integral Evaluation

t

t

-a a t-a a

1t2t

3t

1Nt C

nt

x

y

0t

f Nt t

1t 2t 3t 1Nt nt… …

0t f Nt tt

A line integral written as

is really a shorthand for:

where t is some parameterization of C :

or

Example- Parameterization of the circle x2 + y2 = a2

1) x= a cos(t), y= a sin(t), 0 t(=) 2

2) x= t, y= π‘Ž2 βˆ’ 𝑑2, t0 = π‘Ž, tf = βˆ’a

And x= t, y=βˆ’ π‘Ž2 βˆ’ 𝑑2, t0 = βˆ’π‘Ž, tf =a}

(𝒙 𝒕 , π’š 𝒕 )

Property of Amit Amola. Should be used for reference and with consent.

4

Page 5: Integration in the complex plane

Review of Line Integral Evaluation, cont’d

1t2t

3t

1Nt C

nt

x

y

0t

f Nt t

While it may be possible to parameterize C(piecewise) using x and/or y as the independent parameter, it must be remembered that the other variable is always a function of that parameter i.e.-

(x is the independent parameter)

(y is the independent parameter)

(𝒙 𝒕 , π’š 𝒕 )

Property of Amit Amola. Should be used for reference and with consent.

5

Page 6: Integration in the complex plane

Line Integral ExampleConsider-

x

y

C

rz z

It’s a useful result and a special case of the β€œresidue theorem”

𝑄. πΈπ‘£π‘Žπ‘™π‘’π‘Žπ‘‘π‘’

𝑐

𝑧𝑛𝑑𝑧 , π‘€β„Žπ‘’π‘Ÿπ‘’

𝐢: π‘₯ = π‘Ÿπ‘π‘œπ‘ πœƒ, 𝑦 = π‘Ÿπ‘ π‘–π‘›πœƒ, 0 ≀ πœƒ ≀ 2πœ‹

⟹ 𝑧 = π‘Ÿπ‘π‘œπ‘ πœƒ + π‘–π‘Ÿπ‘ π‘–π‘›πœƒ = π‘Ÿπ‘’π‘–πœƒ ,⟹ 𝑑𝑧 = π‘Ÿπ‘–π‘’π‘–πœƒ π‘‘πœƒ

Property of Amit Amola. Should be used for reference and with consent.

6

Page 7: Integration in the complex plane

Cauchy’s Theorem

x

y

C

#. Cauchyβ€²s Theorem: If 𝑓 z is analytic in R then

𝐢

𝑓 𝑧 𝑑𝑧 = 0

#. First, note that if 𝑓 𝑧 = 𝑀 = 𝑒 + 𝑖𝑣, then

𝐢

𝑓 𝑧 𝑑𝑧 =

𝐢

(𝑒𝑑π‘₯ βˆ’ 𝑣𝑑𝑦) + 𝑖

𝐢

𝑣𝑑π‘₯ + 𝑒𝑑𝑦 ;

…..π‘›π‘œπ‘€ 𝑀𝑒 𝑀𝑖𝑙𝑙 𝑒𝑠𝑒 π‘Ž 𝑀𝑒𝑙𝑙 βˆ’ π‘˜π‘›π‘œπ‘€π‘› π‘£π‘’π‘π‘‘π‘œπ‘Ÿ π‘Žπ‘›π‘Žπ‘™π‘¦π‘ π‘–π‘  π‘Ÿπ‘’π‘ π‘’π‘™π‘‘ π‘‘π‘œ π‘π‘Ÿπ‘œπ‘£π‘’ π‘œπ‘’π‘Ÿ π‘‘β„Žπ‘’π‘œπ‘Ÿπ‘’π‘š:

R- a simply connected region

Construst vectors 𝐀 = 𝑒 𝒙 βˆ’ 𝑣 π’š,…𝑩 = 𝑣 𝒙 + 𝑒 π’š , dr = 𝑑π‘₯ 𝒙 + 𝑑𝑦 π’š ,in the π‘₯𝑦 plane and write the above equation as:

𝐢

𝑓(𝑧) 𝑑𝑧 =

𝐢

𝑨. 𝑑𝒓 + 𝑖

𝐢

𝑩. 𝑑𝒓 =

π‘–π‘›π‘‘π‘’π‘Ÿπ‘–π‘œπ‘Ÿ π‘œπ‘“ 𝐢

𝛻 Γ— 𝑨. 𝒛𝑑𝑆 + 𝑖

π‘–π‘›π‘‘π‘’π‘Ÿπ‘–π‘œπ‘Ÿ π‘œπ‘“ 𝐢

𝛻 Γ— 𝑩. 𝒛𝑑𝑆, 𝑏𝑒𝑑

𝒛. 𝛻 Γ— 𝑨 = 𝒛.

𝒙 π’š π’›πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§π‘’ βˆ’π‘£ 0

= βˆ’πœ•π‘£

πœ•π‘₯βˆ’πœ•π‘’

πœ•π‘¦= 0, 𝒛. 𝛻 Γ— 𝑩 = 𝒛.

𝒙 π’š π’›πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§π‘£ 𝑒 0

=πœ•π‘’

πœ•π‘₯βˆ’πœ•π‘£

πœ•π‘¦= 0

⟹

𝐢

𝑓 𝑧 𝑑𝑧 = 0

Stoke’stheorem

C.R. Condition

C.R. ConditionProperty of Amit Amola. Should be used

for reference and with consent.7

Page 8: Integration in the complex plane

Cauchy’s Theorem(cont’d)

x

y

C

Consider R- a simply connected region

#. Cauchyβ€²s Theorem:

If 𝑓 z is analytic in R then

𝐢

𝑓 𝑧 𝑑𝑧 = 0

#. The proof using Stokeβ€²s theorem requires that u x, y , v x, y havecontinuous first derivatives and that C be smooth…

#. But the Goursat proof removes these restrictions; hence the theoremis often called the Cauchy βˆ’ Goursat theorem

Property of Amit Amola. Should be used for reference and with consent.

8

Page 9: Integration in the complex plane

Extension of Cauchy’s Theorem to Multiply-Connected Regions

x

y

1C2C

1c2c

x

y

1C2C

R- a multiply connected region

R’- a simply connected region

#. If 𝑓 𝑧 is analytic in R then:

𝐢1,2

𝑓 𝑧 𝑑𝑧 =?

#. Introduce an infinitesimal- width β€œbridge” to make R into a simply connected region R’

𝐢1βˆ’πΆ2βˆ’π‘1+𝑐2

𝑓 𝑧 𝑑𝑧 =

𝐢1

𝑓 𝑧 𝑑𝑧 βˆ’

𝐢2

𝑓 𝑧 𝑑𝑧 = 0

#. It shows that integrals are independent of path.

(since integrals along 𝑐1 and 𝑐2 are in opposite directions and thus cancel each other)

Property of Amit Amola. Should be used for reference and with consent.

9

Page 10: Integration in the complex plane

Fundamental Theorem of the Calculus of Complex Variables

az

bz

1z2z 3z

1Nz C

nz

x

y

1z

2z3z

Nz

π‘§π‘Ž

𝑧𝑏

𝑓 𝑧 𝑑𝑧 is a path independent in a simply connected region R

π‘§π‘Ž

𝑧𝑏

𝑓 𝑧 𝑑𝑧 = limπ‘β†’βˆž

𝑛=1

𝑁

𝑓 𝑛 βˆ†π‘§π‘› , βˆ†π‘§π‘› = 𝑧𝑛 βˆ’ π‘§π‘›βˆ’1,

𝑛 on C between znβˆ’1 and zn

Suppose we can find 𝐹 z such that 𝐹′ z =𝑑𝐹

𝑑𝑧= 𝑓 𝑧 ; hence 𝑓 𝑛 β‰ˆ

Δ𝐹𝑛Δ𝑧𝑛

=𝐹 𝑧𝑛 βˆ’ 𝐹(π‘§π‘›βˆ’1)

βˆ†π‘§π‘›

= 𝐹 𝑧𝑏 βˆ’ 𝐹 π‘§π‘Ž (path independent if 𝑓 𝑧 is analytic on the paths from π‘§π‘Ž π‘‘π‘œ 𝑧𝑏)

β‡’

Property of Amit Amola. Should be used for reference and with consent.

10

Page 11: Integration in the complex plane

Fundamental Theorem of the Calculus of Complex Variables (cont’d)

#. Fundamental Theorem of Calculus:

Suppose we can find 𝐹 𝑧 such that 𝐹′ 𝑧 =𝑑𝐹

𝑑𝑧= 𝑓 𝑧 :

⟹

π‘§π‘Ž

𝑧𝑏

𝑓 𝑧 𝑑𝑧 =

π‘§π‘Ž

𝑧𝑏𝑑𝐹

𝑑𝑧𝑑𝑧 = 𝐹 𝑧𝑏 βˆ’ 𝐹 π‘§π‘Ž

#. This permits us to define indefinite integrals:

𝑧𝑛𝑑𝑧 =𝑧𝑛+1

𝑛 + 1, sin 𝑧 𝑑𝑧 = βˆ’cos 𝑧, π‘’π‘Žπ‘§π‘‘π‘§ =

π‘’π‘Žπ‘§

π‘Ž, 𝑒𝑑𝑐

#. In general

F(z)=

𝑧0

𝑧

𝑓 𝑑 for arbitrary 𝑧0

#. All the indefinite integrals differ by only a constant.

Property of Amit Amola. Should be used for reference and with consent.

11

Page 12: Integration in the complex plane

Cauchy Integral Formula

x

y

C

R

0z0C

1c2c

x

y

C

R- a simply connected region

#. 𝑓 𝑧 is assumed analytic in R but we multiply by a factor1

𝑧 βˆ’ 𝑧0that is analytic

except at 𝑧0 and consider the integral around 𝐢

𝐢

𝑓(𝑧)

(𝑧 βˆ’ 𝑧0)𝑑𝑧

#. To evaluate, consider the path 𝐢 + 𝑐1 + 𝑐2 + 𝐢0 shown that encloses a simply βˆ’connected region for which the integrand is analytic on and inside the path:

𝐢+𝑐1+𝑐2+𝐢0

𝑓(𝑧)

(𝑧 βˆ’ 𝑧0)𝑑𝑧 = 0 ⟹

𝐢

𝑓(𝑧)

(𝑧 βˆ’ 𝑧0)𝑑𝑧 = βˆ’

𝐢0

𝑓(𝑧)

(𝑧 βˆ’ 𝑧0)𝑑𝑧

Property of Amit Amola. Should be used for reference and with consent.

12

Page 13: Integration in the complex plane

Cauchy Integral Formula, cont’d

00 0C C

f z f zdz dz

z z z z

0z

0C

C

Evaluate the 𝐢0 integral on a circular path,

for r ⟢ 0

β‡’ β‡’Cauchy Integral Formula

The value of 𝑓 𝑧 at 𝑧0 is completely determined by its values on 𝐢!Property of Amit Amola. Should be used for reference and with consent.

13

Page 14: Integration in the complex plane

Cauchy Integral Formula, cont’d

0z

0C

C

0z

C

Note that if 𝑧0 is outside C, the integrand is analytic inside C, hence by the Cauchy Integral Theorem,

1

2πœ‹π‘–

𝐢

𝑓(𝑧)

𝑧 βˆ’ 𝑧0𝑑𝑧 = 0

In summary,

𝐢

𝑓(𝑧)

𝑧 βˆ’ 𝑧0𝑑𝑧 =

2πœ‹π‘– 𝑓 𝑧0 , 𝑧0 inside 𝐢0, 𝑧0 outside 𝐢

Property of Amit Amola. Should be used for reference and with consent.

14

Page 15: Integration in the complex plane

Derivative Formula0z

C

Since 𝑓(𝑧) is analytic in C , its derivative exists;let’s express it in terms of the Cauchy Formula:

𝑓 𝑧0 =1

2πœ‹π‘–

𝐢

𝑓(𝑧)

𝑧 βˆ’ 𝑧0𝑑𝑧

.So

β‡’

β‡’

β‡’ We’ve also just proved we can differentiate w.r.t. 𝑧0 under the integral sign!Property of Amit Amola. Should be used

for reference and with consent.15

Page 16: Integration in the complex plane

Derivative Formulas, cont’d

0z

C

If 𝑓(𝑧) is analytic in C, then its derivatives of all orders exist, and hence they are analytic as well.

In general,

Similarly

or

β‡’Property of Amit Amola. Should be used for reference and with consent.

16


Top Related