Transcript
Page 1: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

Xuan ‘Silvia’ Zhang Washington University in St. Louis

http://classes.engineering.wustl.edu/ese566/

Lecture 2 CMOS Circuits

Page 2: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

Quantitative CMOS Model

•  Threshold Voltage

•  I-V Curve –  linear/triode

–  saturation

•  Parasitic Capacitance –  gate cap –  junction cap

2

( )|2||2|0 FSBFTT VVV φφγ −−+−+=

20 lni

DA

nNN

qkT

( )22

2ds

dsthgsoxn

DVVVV

LWCI −−=

µ

( ) ( )dsthgsoxn

D VVVLWCI λ

µ+−= 1

22

00

12 φε

⎟⎟⎠

⎞⎜⎜⎝

+=

DA

DAsij NN

NNqC

Page 3: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

CMOS Capacitance

•  Overlap (gate) Cap –  Cgso

•  Junction Cap –  Cdiff

3

Page 4: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

Outline

CMOS Inverter Combinational Logic Sequential Circuits Memory

4

Page 5: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

Inverter: Simple RC Model

5

Page 6: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

Inverter Layout

6

Assumptions: 1.  All transistors are minimum length 2.  All gate have equal rise/fall time

(PMOS twice as wide) 3.  Normalize transistor width to

minimum NMOS

Page 7: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

Inverter Voltage Transfer Characteristics (VTC)

7

Page 8: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

Inverter Noise Margin

•  VIH, VIL, VOH, VOL Definition –  where the dVout/dVin slope is -1

•  Noise Margin –  if range of output VOL to VOH is wider than the range of

input values VIL to VIH, then the inverter exhibits noise immunity. (|Voltage Gain|>1)

8

Page 9: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

Inverter Noise Margin

•  NMH, NML Definition

9

Page 10: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

Inverter Dynamic Power

•  Capacitive Power

•  Short-circuit Power

10

Page 11: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

Inverter Static Power

•  Sub-threshold Leakage

11

Page 12: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

Outline

12

Page 13: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

CMOS Duality

13

Page 14: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

CMOS Static Logic Style

•  For every set of input logic values, either pull-up or pull-down network connects to VDD or GND –  power rails would be shorted if both connected –  output would float (tri-state logic), if neither connected

14

Page 15: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

NAND/NOR Static Logic Gates

15

Page 16: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

Design More Complex Gates

•  Goal is to create a logic function f(x1, x2, …) –  can only implement inverting logic with one stage

•  Implement pull-down network –  write PD = /f(x1, x2, …) –  use parallel NMOS for OR of inputs –  use series NMOS for AND of inputs

•  Implement pull-up network –  write PU = f(x1, x2, …) = g(/x1, /x2, …) –  use parallel PMOS for OR of inverted inputs –  use series PMOS for AND of inverted inputs

16

Page 17: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

Complex Logic Gate Example

17

Page 18: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

Multi-Stage Static Logic

18

Page 19: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

CMOS Pass-Gate Logic Style

19

Page 20: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

CMOS Transmission Gate Multiplexer

20

Page 21: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

CMOS Tri-State Buffers

21

Page 22: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

Various Multiplexer Implementations

•  Delay, Area, Energy Trade-offs –  simple first-order analysis

22

Page 23: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

Larger Tri-State Multiplexers

23

Page 24: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

Homework #2

•  Posted on class website •  Due on 1/30 at 2:30pm •  Provide extension to the lecture

24

Page 25: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

RC Delay

•  Lumped Model –  C only –  RC model

25

Page 26: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

Elmore Delay Formula

•  Assumptions regarding the RC network –  the network has a single input node –  all the capacitors are between a node and the ground –  the network does not contain any resistive loops (tree)

•  Unique resistive path –  path resistance –  shared path resistance

26

Page 27: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

Questions?

Comments?

Discussion?

27

Page 28: Lecture 2 CMOS Circuits - Washington University in St. Louis · Quantitative CMOS Model • Threshold Voltage • I-V Curve – linear/triode – saturation • Parasitic Capacitance

Acknowledgement

N. Weste and D. Harris, “CMOS VLSI Design”, 2011 Jan Rabaey, “Digital Integrated Circuits”, 2006

Cornell University, ECE 5745 UC Berkeley, CS 230

MIT, 6.371

28


Top Related