dr. nirav vyas complexnumbers1.pdf

Upload: ashoka-vanjare

Post on 07-Aug-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    1/126

    Complex Numbers

    N. B. Vyas

    Department of Mathematics,

    Atmiya Institute of Tech. and Science,Rajkot (Guj.)

    N. B. Vyas   Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    2/126

    Definition of Complex Number

    Complex Numbers

    A number of the form  x + iy, where x and y  are

    real numbers and i = √ −1 is called a complexnumber and is denoted by  z . It is also denotedby an ordered pair(x, y).

    N. B. Vyas   Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    3/126

    Definition of Complex Number

    Complex Numbers

    A number of the form  x + iy, where x and y  are

    real numbers and i = √ −1 is called a complexnumber and is denoted by  z . It is also denotedby an ordered pair(x, y).

    Thus  z  = x + iy  or  z  = (x, y)

    N. B. Vyas   Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    4/126

    Definition of Complex Number

    The set of complex numbers is denoted by  .

    N. B. Vyas   Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    5/126

    Definition of Complex Number

    The set of complex numbers is denoted by  .

    If  z  = x + iy  is a complex number, then

    N. B. Vyas   Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    6/126

    Definition of Complex Number

    The set of complex numbers is denoted by  .

    If  z  = x + iy  is a complex number, thenx  is called the  real part  of  z  and denoted byRe(z ).

    N. B. Vyas   Complex Numbers

    C N

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    7/126

    Definition of Complex Number

    The set of complex numbers is denoted by  .

    If  z  = x + iy  is a complex number, thenx  is called the  real part  of  z  and denoted byRe(z ).y   is called the   imaginary part  of  z  and is

    denoted by  Im(z ).

    N. B. Vyas   Complex Numbers

    D C N

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    8/126

    Definition of Complex Number

    The set of complex numbers is denoted by  .

    If  z  = x + iy  is a complex number, thenx  is called the  real part  of  z  and denoted byRe(z ).y   is called the   imaginary part  of  z  and is

    denoted by  Im(z ).

    If  x = 0 and  y = 0 then  z  = 0 + iy  = iyis called a  purely imaginary number.

    N. B. Vyas   Complex Numbers

    D C N

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    9/126

    Definition of Complex Number

    The set of complex numbers is denoted by  .

    If  z  = x + iy  is a complex number, thenx  is called the  real part  of  z  and denoted byRe(z ).y   is called the   imaginary part  of  z  and is

    denoted by  Im(z ).If  x = 0 and  y = 0 then  z  = 0 + iy  = iyis called a  purely imaginary number.

    If  x = 0 and  y = 0 then  z  = x + i0 = xis called a  real number.

    N. B. Vyas   Complex Numbers

    D C N

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    10/126

    Definition of Complex Number

    The set of complex numbers is denoted by  .

    If  z  = x + iy  is a complex number, thenx  is called the  real part  of  z  and denoted byRe(z ).y   is called the   imaginary part  of  z  and is

    denoted by  Im(z ).If  x = 0 and  y = 0 then  z  = 0 + iy  = iyis called a  purely imaginary number.

    If  x = 0 and  y = 0 then  z  = x + i0 = xis called a  real number.

    If  x = 0 and  y = 0 then  z  = 0 + i.0 = 0is the  zero complex number.

    N. B. Vyas   Complex Numbers

    Definition of Conjugate Complex Number

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    11/126

    Definition of Conjugate Complex Number

    Conjugate Complex Numbers

    If two complex numbers differ only in the sign of theimaginary part then they are called  conjugatecomplex numbers.

    N. B. Vyas   Complex Numbers

    Definition of Conjugate Complex Number

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    12/126

    Definition of Conjugate Complex Number

    Conjugate Complex Numbers

    If two complex numbers differ only in the sign of theimaginary part then they are called  conjugatecomplex numbers.

    Thus  x + iy  and  x − iy  are conjugate complexnumbers.

    N. B. Vyas   Complex Numbers

    Definition of Conjugate Complex Number

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    13/126

    Definition of Conjugate Complex Number

    Conjugate Complex Numbers

    If two complex numbers differ only in the sign of theimaginary part then they are called  conjugatecomplex numbers.

    Thus  x + iy  and  x − iy  are conjugate complexnumbers.

    The conjugate of a complex number  z   is denoted

    by z̄ .

    N. B. Vyas   Complex Numbers

    Definition of Conjugate Complex Number

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    14/126

    Definition of Conjugate Complex Number

    Conjugate Complex Numbers

    If two complex numbers differ only in the sign of theimaginary part then they are called  conjugatecomplex numbers.

    Thus  x + iy  and  x − iy  are conjugate complexnumbers.

    The conjugate of a complex number  z   is denoted

    by z̄ .The conjugate of real number is the real numberitself.

    N. B. Vyas   Complex Numbers

    Properties of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    15/126

    Properties of Complex Numbers

    1 If  x + iy  = 0 then  x = 0, y = 0

    N. B. Vyas   Complex Numbers

    Properties of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    16/126

    Properties of Complex Numbers

    1 If  x + iy  = 0 then  x = 0, y = 0

    2 If  x1 + iy1 = x2 + iy2  then  x1 = x2  and  y1 = y2

    N. B. Vyas   Complex Numbers

    Properties of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    17/126

    Properties of Complex Numbers

    1 If  x + iy  = 0 then  x = 0, y = 0

    2 If  x1 + iy1 = x2 + iy2  then  x1 = x2  and  y1 = y23 If  x1 + iy1 = x2 + iy2  then  x1 − iy1 = x2 − iy2

    N. B. Vyas   Complex Numbers

    Properties of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    18/126

    Properties of Complex Numbers

    1 If  x + iy  = 0 then  x = 0, y = 0

    2 If  x1 + iy1 = x2 + iy2  then  x1 = x2  and  y1 = y23 If  x1 + iy1 = x2 + iy2  then  x1 − iy1 = x2 − iy24 Sum, difference and quotient(division) of any two

    complex numbers is a complex number.

    N. B. Vyas   Complex Numbers

    Properties of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    19/126

    Properties of Complex Numbers

    If  z 1

     = x1 + iy

    1 and  z 

    2 = x

    2 + iy

    2 then their

    N. B. Vyas   Complex Numbers

    Properties of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    20/126

    Properties of Complex Numbers

    If  z 1

     = x1 + iy

    1 and  z 

    2 = x

    2 + iy

    2 then their

    Sum:   z 1 + z 2   = (x1 + iy1) + (x2 + iy2)

    N. B. Vyas   Complex Numbers

    Properties of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    21/126

    Properties of Complex Numbers

    If  z 1 = x1 + iy1  and  z 2 = x2 + iy2  then their

    Sum:   z 1 + z 2   = (x1 + iy1) + (x2 + iy2)= (x1 + x2) + i(y1 + y2)

    N. B. Vyas   Complex Numbers

    Properties of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    22/126

    If  z 1 = x1 + iy1  and  z 2 = x2 + iy2  then their

    Sum:   z 1 + z 2   = (x1 + iy1) + (x2 + iy2)= (x1 + x2) + i(y1 + y2)

    Difference:   z 1 − z 2   = (x1 + iy1) − (x2 + iy2)

    N. B. Vyas   Complex Numbers

    Properties of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    23/126

    If  z 1 = x1 + iy1  and  z 2 = x2 + iy2  then their

    Sum:   z 1 + z 2   = (x1 + iy1) + (x2 + iy2)= (x1 + x2) + i(y1 + y2)

    Difference:   z 1 − z 2   = (x1 + iy1) − (x2 + iy2)= (x1 − x2) + i(y1 − y2)

    N. B. Vyas   Complex Numbers

    Properties of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    24/126

    If  z 1 = x1 + iy1  and  z 2 = x2 + iy2  then their

    Sum:   z 1 + z 2   = (x1 + iy1) + (x2 + iy2)= (x1 + x2) + i(y1 + y2)

    Difference:   z 1 − z 2   = (x1 + iy1) − (x2 + iy2)= (x1 − x2) + i(y1 − y2)

    Product:   z 1.z 2   = (x1 + iy1).(x2 + iy2)

    N. B. Vyas   Complex Numbers

    Properties of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    25/126

    If  z 1 = x1 + iy1  and  z 2 = x2 + iy2  then their

    Sum:   z 1 + z 2   = (x1 + iy1) + (x2 + iy2)= (x1 + x2) + i(y1 + y2)

    Difference:   z 1 − z 2   = (x1 + iy1) − (x2 + iy2)= (x1 − x2) + i(y1 − y2)

    Product:   z 1.z 2   = (x1 + iy1).(x2 + iy2)= (x1x2 − y1y2) + i(x1y2 + x2y1)

    N. B. Vyas   Complex Numbers

    Polar form of a Complex Number

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    26/126

    Let  P (x, y) be the point which representsz  = (x, y) = x + iy

    N. B. Vyas   Complex Numbers

    Polar form of a Complex Number

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    27/126

    Let  P (x, y) be the point which representsz  = (x, y) = x + iyLet  OP   = r  and  ∠P OM  = θ.

    N. B. Vyas   Complex Numbers

    Polar form of a Complex Number

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    28/126

    Let  P (x, y) be the point which representsz  = (x, y) = x + iyLet  OP   = r  and  ∠P OM  = θ.Then from ∆OP M .

    N. B. Vyas   Complex Numbers

    Polar form of a Complex Number

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    29/126

    Let  P (x, y) be the point which representsz  = (x, y) = x + iyLet  OP   = r  and  ∠P OM  = θ.Then from ∆OP M .x = OM  = rcosθ.   y = P M  = rsinθ.

    N. B. Vyas   Complex Numbers

    Polar form of a Complex Number

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    30/126

    Let  P (x, y) be the point which representsz  = (x, y) = x + iyLet  OP   = r  and  ∠P OM  = θ.Then from ∆OP M .x = OM  = rcosθ.   y = P M  = rsinθ.∴ z  = x + iy  = r(cosθ + isinθ)

    N. B. Vyas   Complex Numbers

    Polar form of a Complex Number

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    31/126

    r   is called the absolute value  or the  modulus  of z and is denoted by

     |z |.

    N. B. Vyas   Complex Numbers

    Polar form of a Complex Number

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    32/126

    r   is called the absolute value  or the  modulus  of z and is denoted by

     |z |.

    ∴ r = |z | =  x2 + y2 = √ z.z̄ 

    N. B. Vyas   Complex Numbers

    Polar form of a Complex Number

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    33/126

    r   is called the absolute value  or the  modulus  of z and is denoted by

     |z 

    |.

    ∴ r = |z | =  x2 + y2 = √ z.z̄ Geometrically, |z |  is the distance of point  z   fromthe origin.

    θ   is called the argument  of  z  or  amplitude  of z.

    N. B. Vyas   Complex Numbers

    Polar form of a Complex Number

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    34/126

    r   is called the absolute value  or the  modulus  of z and is denoted by

     |z 

    |.

    ∴ r = |z | =  x2 + y2 = √ z.z̄ Geometrically, |z |  is the distance of point  z   fromthe origin.

    θ   is called the argument  of  z  or  amplitude  of z.It is denoted by  argz  or  Ampz 

    N. B. Vyas   Complex Numbers

    Polar form of a Complex Number

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    35/126

    r   is called the absolute value  or the  modulus  of z and is denoted by

     |z 

    |.

    ∴ r = |z | =  x2 + y2 = √ z.z̄ Geometrically, |z |  is the distance of point  z   fromthe origin.

    θ   is called the argument  of  z  or  amplitude  of z.It is denoted by  argz  or  Ampz 

    ∴ θ = argz  = tan−1 y

    x

    N. B. Vyas   Complex Numbers

    Polar form of a Complex Number

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    36/126

    r   is called the absolute value  or the  modulus  of z and is denoted by

     |z 

    |.

    ∴ r = |z | =  x2 + y2 = √ z.z̄ Geometrically, |z |  is the distance of point  z   fromthe origin.

    θ   is called the argument  of  z  or  amplitude  of z.It is denoted by  argz  or  Ampz 

    ∴ θ = argz  = tan−1 y

    xθ  is the directed angle from the positive X-axis toOP.

    N. B. Vyas   Complex Numbers

    Polar form of a Complex Number

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    37/126

    r   is called the absolute value  or the  modulus  of z and is denoted by

     |z 

    |.

    ∴ r = |z | =  x2 + y2 = √ z.z̄ Geometrically, |z |  is the distance of point  z   fromthe origin.

    θ   is called the argument  of  z  or  amplitude  of z.It is denoted by  argz  or  Ampz 

    ∴ θ = argz  = tan−1

    y

    xθ  is the directed angle from the positive X-axis toOP.

    The value of  θ  lies in the interval −π < θ ≤ π   iscalled  principal value.

    N. B. Vyas   Complex Numbers

    Multiplication and Division of Complex

    Numbers in Polar Form

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    38/126

    Numbers in Polar Form

    Let  z 1 = r1(cosθ1 + isinθ1) and  z 2 = r2(cosθ2 + isinθ2)be two complex numbers in polar form. Then

    N. B. Vyas   Complex Numbers

    Multiplication and Division of Complex

    Numbers in Polar Form

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    39/126

    Numbers in Polar Form

    Let  z 1 = r1(cosθ1 + isinθ1) and  z 2 = r2(cosθ2 + isinθ2)be two complex numbers in polar form. Then

    Product:   z 1z 2   = r1(cosθ1 + isinθ1)r2(cosθ2 + isinθ2)

    N. B. Vyas   Complex Numbers

    Multiplication and Division of Complex

    Numbers in Polar Form

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    40/126

    Numbers in Polar Form

    Let  z 1 = r1(cosθ1 + isinθ1) and  z 2 = r2(cosθ2 + isinθ2)be two complex numbers in polar form. Then

    Product:   z 1z 2   = r1(cosθ1 + isinθ1)r2(cosθ2 + isinθ2)= r1r2[(cosθ1cosθ2

    −sinθ1sinθ2) + i(cosθ1sinθ2 +

    sinθ1cosθ2)]

    N. B. Vyas   Complex Numbers

    Multiplication and Division of Complex

    Numbers in Polar Form

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    41/126

    Numbers in Polar Form

    Let  z 1 = r1(cosθ1 + isinθ1) and  z 2 = r2(cosθ2 + isinθ2)be two complex numbers in polar form. Then

    Product:   z 1z 2   = r1(cosθ1 + isinθ1)r2(cosθ2 + isinθ2)= r1r2[(cosθ1cosθ2

    −sinθ1sinθ2) + i(cosθ1sinθ2 +

    sinθ1cosθ2)]= r1r2[cos(θ1 + θ2) + isin(θ1 + θ2)]

    N. B. Vyas   Complex Numbers

    Multiplication and Division of Complex

    Numbers in Polar Form

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    42/126

    Numbers in Polar Form

    Let  z 1 = r1(cosθ1 + isinθ1) and  z 2 = r2(cosθ2 + isinθ2)be two complex numbers in polar form. Then

    Product:   z 1z 2   = r1(cosθ1 + isinθ1)r2(cosθ2 + isinθ2)= r1r2[(cosθ1cosθ2

    −sinθ1sinθ2) + i(cosθ1sinθ2 +

    sinθ1cosθ2)]= r1r2[cos(θ1 + θ2) + isin(θ1 + θ2)]which shows modulus and amplitude of the product of 

    two complex numbers  z 1  and  z 2  is product of theirmoduli ( i.e.   r1r2  ) and sum of their arguments ( i.eθ1 + θ2  ) respectively.

    N. B. Vyas   Complex Numbers

    Multiplication and Division of Complex

    Numbers in Polar Form

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    43/126

    Numbers in Polar Form

    Division:  z 1

    z 2=

     r1(cosθ1 + isinθ1)

    r2(cosθ2 + isinθ2)

    N. B. Vyas   Complex Numbers

    Multiplication and Division of Complex

    Numbers in Polar Form

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    44/126

    Numbers in Polar Form

    Division:  z 1

    z 2=

     r1(cosθ1 + isinθ1)

    r2(cosθ2 + isinθ2)=

     r1(cosθ1 + isinθ1)(cosθ2 − isinθ2)r2(cosθ2 + isinθ2)(cosθ2 − isinθ2)

    N. B. Vyas   Complex Numbers

    Multiplication and Division of Complex

    Numbers in Polar Form

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    45/126

    Numbers in Polar Form

    Division:  z 1

    z 2=

     r1(cosθ1 + isinθ1)

    r2(cosθ2 + isinθ2)=

     r1(cosθ1 + isinθ1)(cosθ2 − isinθ2)r2(cosθ2 + isinθ2)(cosθ2 − isinθ2)

    = r1

    r2[(cosθ1cosθ2 + sinθ1sinθ2) + i(sinθ1cosθ2

    −cosθ1sinθ2)]

    N. B. Vyas   Complex Numbers

    Multiplication and Division of Complex

    Numbers in Polar Form

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    46/126

    Numbers in Polar Form

    Division:  z 1

    z 2=

     r1(cosθ1 + isinθ1)

    r2(cosθ2 + isinθ2)=

     r1(cosθ1 + isinθ1)(cosθ2 − isinθ2)r2(cosθ2 + isinθ2)(cosθ2 − isinθ2)

    = r1

    r2[(cosθ1cosθ2 + sinθ1sinθ2) + i(sinθ1cosθ2

    −cosθ1sinθ2)]

    = r1

    r2[cos(θ1 − θ2) + isin(θ1 − θ2)]

    N. B. Vyas   Complex Numbers

    Multiplication and Division of Complex

    Numbers in Polar Form

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    47/126

    Numbers in Polar Form

    Division:  z 1

    z 2=

     r1(cosθ1 + isinθ1)

    r2(cosθ2 + isinθ2)=

     r1(cosθ1 + isinθ1)(cosθ2 − isinθ2)r2(cosθ2 + isinθ2)(cosθ2 − isinθ2)

    = r1

    r2[(cosθ1cosθ2 + sinθ1sinθ2) + i(sinθ1cosθ2

    −cosθ1sinθ2)]

    = r1

    r2[cos(θ1 − θ2) + isin(θ1 − θ2)]

    which shows that the modulus and amplitude of thequotient of two complex numbers  z 1  and  z 2  is the

    quotient of their moduli ( i.e.  r1

    r2) and difference of 

    their arguments( i.e.   θ1

    −θ2  ) respectively.

    N. B. Vyas   Complex Numbers

    Exponential form of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    48/126

    We know that

    sinθ = θ− θ3

    3!  +

     θ5

    5! − θ7

    7!  . . .

    N. B. Vyas   Complex Numbers

    Exponential form of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    49/126

    We know that

    sinθ = θ− θ3

    3!  +

     θ5

    5! − θ7

    7!  . . .

    cosθ = 1 −  θ2

    2!  +

     θ4

    4! −  θ

    6

    6!  . . .  and

    N. B. Vyas   Complex Numbers

    Exponential form of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    50/126

    We know that

    sinθ = θ− θ3

    3!  +

     θ5

    5! − θ7

    7!  . . .

    cosθ = 1 −  θ2

    2!  +

     θ4

    4! −  θ

    6

    6!  . . .  and

    eθ = 1 + θ + θ2

    2!  +

     θ3

    3!  +

     θ4

    4!  . . .

    N. B. Vyas   Complex Numbers

    Exponential form of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    51/126

    We know that

    sinθ = θ− θ3

    3!  +

     θ5

    5! − θ7

    7!  . . .

    cosθ = 1 −  θ2

    2!  +

     θ4

    4! −  θ

    6

    6!  . . .  and

    eθ = 1 + θ + θ2

    2!  +

     θ3

    3!  +

     θ4

    4!  . . .

    Now θ = iθ

    N. B. Vyas   Complex Numbers

    Exponential form of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    52/126

    We know that

    sinθ = θ− θ3

    3!  +

     θ5

    5! − θ7

    7!  . . .

    cosθ = 1 −  θ2

    2!  +

     θ4

    4! −  θ

    6

    6!  . . .  and

    eθ = 1 + θ + θ2

    2!  +

     θ3

    3!  +

     θ4

    4!  . . .

    Now θ = iθ

    eiθ = 1 + iθ + (iθ)2

    2!  +

     (iθ)3

    3!  +

     (iθ)4

    4!  . . .

    N. B. Vyas   Complex Numbers

    Exponential form of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    53/126

    We know that

    sinθ = θ− θ3

    3!  +

     θ5

    5! − θ7

    7!  . . .

    cosθ = 1 −  θ2

    2!  +

     θ4

    4! −  θ

    6

    6!  . . .  and

    eθ = 1 + θ + θ2

    2!  +

     θ3

    3!  +

     θ4

    4!  . . .

    Now θ = iθ

    eiθ = 1 + iθ + (iθ)2

    2!  +

     (iθ)3

    3!  +

     (iθ)4

    4!  . . .

    eiθ = 1 + iθ

     θ2

    2! −iθ3

    3!

      + θ4

    4!

      . . .

    {∵ i2 =

    −1, i3 =

    −i, i4 = 1

    N. B. Vyas   Complex Numbers

    Exponential form of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    54/126

    We know that

    sinθ = θ− θ3

    3!  +

     θ5

    5! − θ7

    7!  . . .

    cosθ = 1 −  θ2

    2!  +

     θ4

    4! −  θ

    6

    6!  . . .  and

    eθ = 1 + θ + θ2

    2!  +

     θ3

    3!  +

     θ4

    4!  . . .

    Now θ = iθ

    eiθ = 1 + iθ + (iθ)2

    2!  +

     (iθ)3

    3!  +

     (iθ)4

    4!  . . .

    eiθ = 1 + iθ

     θ2

    2! −iθ3

    3!

      + θ4

    4!

      . . .

    {∵ i2 =

    −1, i3 =

    −i, i4 = 1

    eiθ =

    1 −  θ

    2

    2!  +

     θ4

    4! − . . .

     + i

    θ −  θ

    3

    3!  +

     θ5

    5! − . . .

    N. B. Vyas   Complex Numbers

    Exponential form of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    55/126

    We know that

    sinθ = θ− θ3

    3!  +

     θ5

    5! − θ7

    7!  . . .

    cosθ = 1 −  θ2

    2!  +

     θ4

    4! −  θ

    6

    6!  . . .  and

    eθ = 1 + θ + θ2

    2!  +

     θ3

    3!  +

     θ4

    4!  . . .

    Now θ = iθ

    eiθ = 1 + iθ + (iθ)2

    2!  +

     (iθ)3

    3!  +

     (iθ)4

    4!  . . .

    eiθ = 1 + iθ

     θ2

    2! −iθ3

    3!

      + θ4

    4!

      . . .

    {∵ i2 =

    −1, i3 =

    −i, i4 = 1

    eiθ =

    1 −  θ

    2

    2!  +

     θ4

    4! − . . .

     + i

    θ −  θ

    3

    3!  +

     θ5

    5! − . . .

    eiθ = (cosθ + isinθ)

    N. B. Vyas   Complex Numbers

    Laws of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    56/126

    If  z 1  and  z 2  are two complex numbers, then

    N. B. Vyas   Complex Numbers

    Laws of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    57/126

    If  z 1  and  z 2  are two complex numbers, then

    1 Triangle Inequality: |z 1 + z 2| ≤ |z 1| + |z 2|

    N. B. Vyas   Complex Numbers

    Laws of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    58/126

    If  z 1  and  z 2  are two complex numbers, then

    1 Triangle Inequality: |z 1 + z 2| ≤ |z 1| + |z 2|2 |z 1 − z 2| ≥ | |z 1| − |z 2||

    N. B. Vyas   Complex Numbers

    Laws of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    59/126

    If  z 1  and  z 2  are two complex numbers, then

    1 Triangle Inequality: |z 1 + z 2| ≤ |z 1| + |z 2|2 |z 1 − z 2| ≥ | |z 1| − |z 2||3 Parellelogram equality:|z 1 + z 2|2 + |z 1 − z 2|2 = 2(|z 1|2 + |z 2|2)

    N. B. Vyas   Complex Numbers

    Laws of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    60/126

    If  z 1  and  z 2  are two complex numbers, then

    1 Triangle Inequality: |z 1 + z 2| ≤ |z 1| + |z 2|2 |z 1 − z 2| ≥ | |z 1| − |z 2||3 Parellelogram equality:|z 1 + z 2|2 + |z 1 − z 2|2 = 2(|z 1|2 + |z 2|2)

    4 |z 1z 2| = |z 1||z 2|

    N. B. Vyas   Complex Numbers

    Laws of Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    61/126

    If  z 1  and  z 2  are two complex numbers, then

    1 Triangle Inequality: |z 1 + z 2| ≤ |z 1| + |z 2|2 |z 1 − z 2| ≥ | |z 1| − |z 2||3 Parellelogram equality:|z 1 + z 2|2 + |z 1 − z 2|2 = 2(|z 1|2 + |z 2|2)

    4 |z 1z 2| = |z 1||z 2|5 z 1z 2 = |

    z 1

    ||z 2|

    N. B. Vyas   Complex Numbers

    Ex

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    62/126

    1 Find complex conjugate of   3 + 2i

    1 − i

    N. B. Vyas   Complex Numbers

    Theorem

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    63/126

    DeMoivre’s TheoremIf  n  is a rational number than the value or one of thevalues of (cosθ + isinθ)n is  cosnθ + isinnθ

    N. B. Vyas   Complex Numbers

    Theorem

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    64/126

    DeMoivre’s TheoremIf  n  is a rational number than the value or one of thevalues of (cosθ + isinθ)n is  cosnθ + isinnθ

    ∴   z    = x + iy  = r(cosθ + isinθ)

    N. B. Vyas   Complex Numbers

    Theorem

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    65/126

    DeMoivre’s TheoremIf  n  is a rational number than the value or one of thevalues of (cosθ + isinθ)n is  cosnθ + isinnθ

    ∴   z    = x + iy  = r(cosθ + isinθ)z n = rn(cosθ + isinθ)n

    N. B. Vyas   Complex Numbers

    Theorem

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    66/126

    DeMoivre’s TheoremIf  n  is a rational number than the value or one of thevalues of (cosθ + isinθ)n is  cosnθ + isinnθ

    ∴   z    = x + iy  = r(cosθ + isinθ)z n = rn(cosθ + isinθ)n

    = rn(cosnθ + isinnθ)

    N. B. Vyas   Complex Numbers

    Theorem

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    67/126

    DeMoivre’s TheoremIf  n  is a rational number than the value or one of thevalues of (cosθ + isinθ)n is  cosnθ + isinnθ

    ∴   z    = x + iy  = r(cosθ + isinθ)z n = rn(cosθ + isinθ)n

    = rn(cosnθ + isinnθ)E.g.:

    N. B. Vyas   Complex Numbers

    Theorem

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    68/126

    DeMoivre’s TheoremIf  n  is a rational number than the value or one of thevalues of (cosθ + isinθ)n is  cosnθ + isinnθ

    ∴   z    = x + iy  = r(cosθ + isinθ)z n = rn(cosθ + isinθ)n

    = rn(cosnθ + isinnθ)E.g.:

    (cosθ + isinθ)2 = cos2θ + isin2θ

    N. B. Vyas   Complex Numbers

    Theorem

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    69/126

    DeMoivre’s TheoremIf  n  is a rational number than the value or one of thevalues of (cosθ + isinθ)n is  cosnθ + isinnθ

    ∴   z    = x + iy  = r(cosθ + isinθ)z n = rn(cosθ + isinθ)n

    = rn(cosnθ + isinnθ)E.g.:

    (cosθ + isinθ)2 = cos2θ + isin2θ

    (cosθ + isinθ)−1 = cos(−θ) + isin(−θ) = cosθ − isinθ

    N. B. Vyas   Complex Numbers

    Examples

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    70/126

    Ex. Simplify

    (cos2θ + isin2θ)23 (cosθ

    −isinθ)2

    (cos3θ − isin3θ)2(cos5θ − isin5θ)13

    N. B. Vyas   Complex Numbers

    Examples

    Ex. Evaluate (1 + i√ 

    3)90 + (1 − i√ 3)90

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    71/126

    Ex.  Evaluate (1 + i√

    3) + (1 i√

    3)

    N. B. Vyas   Complex Numbers

    Examples

    Ex.  Evaluate (1 + i√ 

    3)90 + (1 − i√ 3)90

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    72/126

    ( +√

    ) + (√

    )

    Sol.   Let  x = 1 and  y =√ 

    3

    N. B. Vyas   Complex Numbers

    Examples

    Ex.  Evaluate (1 + i√ 

    3)90 + (1 − i√ 3)90

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    73/126

    (√

    ) (√

    )

    Sol.   Let  x = 1 and  y =√ 

    3

    r = 

    x2 + y2 = √ 1 + 3 = √ 4 = 2

    N. B. Vyas   Complex Numbers

    Examples

    Ex.  Evaluate (1 + i√ 

    3)90 + (1 − i√ 3)90

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    74/126

    ( ) ( )

    Sol.   Let  x = 1 and  y =√ 

    3

    r = 

    x2 + y2 = √ 1 + 3 = √ 4 = 2θ = tan−1

    yx

     =  tan−1

    √ 3

    1

     =

     π

    3

    N. B. Vyas   Complex Numbers

    Examples

    Ex.  Evaluate (1 + i√ 

    3)90 + (1 − i√ 3)90

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    75/126

    ( ) ( )

    Sol.   Let  x = 1 and  y =√ 

    3

    r = 

    x2 + y2 = √ 1 + 3 = √ 4 = 2θ = tan−1

    yx

     =  tan−1

    √ 3

    1

     =

     π

    3

    ∴   1 + i√ 3 = 2(cosπ

    3  + isinπ

    3 )

    N. B. Vyas   Complex Numbers

    Examples

    Ex.  Evaluate (1 + i√ 

    3)90 + (1 − i√ 3)90

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    76/126

    Sol.   Let  x = 1 and  y =√ 

    3

    r = 

    x2 + y2 = √ 1 + 3 = √ 4 = 2θ = tan−1

    yx

     =  tan−1

    √ 3

    1

     =

     π

    3

    ∴   1 + i√ 3 = 2(cosπ

    3  + isinπ

    3 ) and 1 − i√ 3 = 2(cosπ

    3 − isinπ

    3 )

    N. B. Vyas   Complex Numbers

    Examples

    Ex.  Evaluate (1 + i√ 

    3)90 + (1 − i√ 3)90

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    77/126

    Sol.   Let  x = 1 and  y =√ 

    3

    r = 

    x2 + y2 = √ 1 + 3 = √ 4 = 2θ = tan−1

    yx

     =  tan−1

    √ 3

    1

     =

     π

    3

    ∴   1 + i√ 3 = 2(cosπ

    3  + isinπ

    3 ) and 1 − i√ 3 = 2(cosπ

    3 − isinπ

    3 )∴   (1 + i

    √ 3)90 + (1 − i√ 3)90

    N. B. Vyas   Complex Numbers

    Examples

    Ex.  Evaluate (1 + i√ 

    3)90 + (1 − i√ 3)90

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    78/126

    Sol.   Let  x = 1 and  y =√ 

    3

    r = 

    x2 + y2 = √ 1 + 3 = √ 4 = 2θ = tan−1

    yx

     =  tan−1

    √ 3

    1

     =

     π

    3

    ∴   1 + i√ 3 = 2(cosπ

    3  + isinπ

    3 ) and 1 − i√ 3 = 2(cosπ

    3 − isinπ

    3 )∴   (1 + i

    √ 3)90 + (1 − i√ 3)90

    =

    2(cosπ3  + isinπ

    3 )90

    +

    2(cosπ3 − isinπ3 )90

    N. B. Vyas   Complex Numbers

    Examples

    Ex.  Evaluate (1 + i√ 

    3)90 + (1 − i√ 3)90

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    79/126

    Sol.   Let  x = 1 and  y =√ 

    3

    r = 

    x2 + y2 = √ 1 + 3 = √ 4 = 2θ = tan−1

    yx

     =  tan−1

    √ 3

    1

     =

     π

    3

    ∴   1 + i√ 3 = 2(cosπ

    3  + isinπ

    3 ) and 1 − i√ 3 = 2(cosπ

    3 − isinπ

    3 )∴   (1 + i

    √ 3)90 + (1 − i√ 3)90

    =

    2(cosπ3  + isinπ

    3 )90

    +

    2(cosπ3 − isinπ3 )90

    = 290(cos30π + isin30π) + 290(cos30π

    −isin30π)

    N. B. Vyas   Complex Numbers

    Examples

    Ex.  Evaluate (1 + i√ 

    3)90 + (1 − i√ 3)90

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    80/126

    Sol.   Let  x = 1 and  y =√ 

    3

    r = 

    x2 + y2 = √ 1 + 3 = √ 4 = 2θ = tan−1

    yx

     =  tan−1

    √ 3

    1

     =

     π

    3

    ∴   1 + i√ 3 = 2(cosπ

    3  + isinπ

    3 ) and 1 − i√ 3 = 2(cosπ

    3 − isinπ

    3 )∴   (1 + i

    √ 3)90 + (1 − i√ 3)90

    =

    2(cosπ3  + isinπ

    3 )90

    +

    2(cosπ3 − isinπ3 )90

    = 290(cos30π + isin30π) + 290(cos30π − isin30π)= 290(2cos30π)

    N. B. Vyas   Complex Numbers

    Examples

    Ex.  Evaluate (1 + i√ 

    3)90 + (1 − i√ 3)90

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    81/126

    Sol.   Let  x = 1 and  y =√ 

    3

    r = 

    x2 + y2 = √ 1 + 3 = √ 4 = 2θ = tan−1

    yx

     =  tan−1

    √ 3

    1

     =

     π

    3

    ∴   1 + i√ 3 = 2(cosπ

    3  + isinπ

    3 ) and 1 − i√ 3 = 2(cosπ

    3 − isinπ

    3 )∴   (1 + i

    √ 3)90 + (1 − i√ 3)90

    =

    2(cosπ3  + isinπ

    3 )90

    +

    2(cosπ3 − isinπ3 )90

    = 290(cos30π + isin30π) + 290(cos30π − isin30π)= 290(2cos30π)

    = 291cos30π

    N. B. Vyas   Complex Numbers

    Examples

    Ex.  Evaluate (1 + i√ 

    3)90 + (1 − i√ 3)90√

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    82/126

    Sol.   Let  x = 1 and  y =√ 

    3

    r = 

    x2 + y2 = √ 1 + 3 = √ 4 = 2θ = tan−1

    yx

     =  tan−1

    √ 3

    1

     =

     π

    3

    ∴   1 + i√ 3 = 2(cosπ

    3  + isinπ

    3 ) and 1 − i√ 3 = 2(cosπ

    3 − isinπ

    3 )∴   (1 + i

    √ 3)90 + (1 − i√ 3)90

    =

    2(cosπ3  + isinπ

    3 )90

    +

    2(cosπ3 − isinπ3 )90

    = 290(cos30π + isin30π) + 290(cos30π − isin30π)= 290(2cos30π)

    = 291cos30π

    = 291(1) = 291

    N. B. Vyas Complex Numbers

    Examples

    Ex.  Evaluate (1 + i√ 

    3)90 + (1 − i√ 3)90√ 

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    83/126

    Sol.   Let  x = 1 and  y =√

    3

    r = 

    x2 + y2 = √ 1 + 3 = √ 4 = 2θ = tan−1

    yx

     =  tan−1

    √ 3

    1

     =

     π

    3

    ∴   1 + i√ 3 = 2(cosπ

    3  + isinπ

    3 ) and 1 − i√ 3 = 2(cosπ

    3 − isinπ

    3 )∴   (1 + i

    √ 3)90 + (1 − i√ 3)90

    =

    2(cosπ3  + isinπ

    3 )90

    +

    2(cosπ3 − isinπ3 )90

    = 290(cos30π + isin30π) + 290(cos30π − isin30π)= 290(2cos30π)

    = 291cos30π

    = 291(1) = 291

    N. B. Vyas Complex Numbers

    Example

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    84/126

    Ex. Evaluate 1 + sinθ + icosθ

    1 + sinθ−

    icosθn

    N. B. Vyas Complex Numbers

    Sol.   We have  sin2θ + cos2θ = 1

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    85/126

    N. B. Vyas Complex Numbers

    Sol.   We have  sin2θ + cos2θ = 1∴ 1 = sin2θ + cos2θ   = sin2θ − i2cos2θ

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    86/126

    N. B. Vyas Complex Numbers

    Sol.   We have  sin2θ + cos2θ = 1∴ 1 = sin2θ + cos2θ   = sin2θ − i2cos2θ

    ( i θ i θ)( i θ + i θ)

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    87/126

    = (sinθ − icosθ)(sinθ + icosθ)

    N. B. Vyas Complex Numbers

    Sol.   We have  sin2θ + cos2θ = 1∴ 1 = sin2θ + cos2θ   = sin2θ − i2cos2θ

    (sinθ icosθ)(sinθ + icosθ)

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    88/126

    = (sinθ − icosθ)(sinθ + icosθ)

    Now1 + sinθ + icosθ

    N. B. Vyas Complex Numbers

    Sol.   We have  sin2θ + cos2θ = 1∴ 1 = sin2θ + cos2θ   = sin2θ − i2cos2θ

    = (sinθ icosθ)(sinθ + icosθ)

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    89/126

    = (sinθ − icosθ)(sinθ + icosθ)

    Now1 + sinθ + icosθ= (sinθ − icosθ)(sinθ + icosθ) + (sinθ + icosθ)

    N B Vyas Complex Numbers

    Sol.   We have  sin2θ + cos2θ = 1∴ 1 = sin2θ + cos2θ   = sin2θ − i2cos2θ

    = (sinθ − icosθ)(sinθ + icosθ)

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    90/126

    = (sinθ − icosθ)(sinθ + icosθ)

    Now1 + sinθ + icosθ= (sinθ − icosθ)(sinθ + icosθ) + (sinθ + icosθ)= (sinθ + icosθ)(sinθ − icosθ + 1)

    N B Vyas Complex Numbers

    Sol.   We have  sin2θ + cos2θ = 1∴ 1 = sin2θ + cos2θ   = sin2θ − i2cos2θ

    = (sinθ − icosθ)(sinθ + icosθ)

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    91/126

    = (sinθ icosθ)(sinθ + icosθ)

    Now1 + sinθ + icosθ= (sinθ − icosθ)(sinθ + icosθ) + (sinθ + icosθ)= (sinθ + icosθ)(sinθ − icosθ + 1)∴  1 + sinθ + icosθ1 + sinθ − icosθ   = sinθ + icosθ

    N B Vyas Complex Numbers

    Sol.   We have  sin2θ + cos2θ = 1∴ 1 = sin2θ + cos2θ   = sin2θ − i2cos2θ

    = (sinθ − icosθ)(sinθ + icosθ)

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    92/126

    = (sinθ icosθ)(sinθ + icosθ)

    Now1 + sinθ + icosθ= (sinθ − icosθ)(sinθ + icosθ) + (sinθ + icosθ)= (sinθ + icosθ)(sinθ − icosθ + 1)∴  1 + sinθ + icosθ1 + sinθ − icosθ   = sinθ + icosθ

    = cosπ

    2 − θ

     + isinπ

    2 − θ

    N B Vyas Complex Numbers

    Sol.   We have  sin2θ + cos2θ = 1∴ 1 = sin2θ + cos2θ   = sin2θ − i2cos2θ

    = (sinθ − icosθ)(sinθ + icosθ)

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    93/126

    (sinθ icosθ)(sinθ + icosθ)

    Now1 + sinθ + icosθ= (sinθ − icosθ)(sinθ + icosθ) + (sinθ + icosθ)= (sinθ + icosθ)(sinθ − icosθ + 1)∴  1 + sinθ + icosθ1 + sinθ − icosθ   = sinθ + icosθ

    = cosπ

    2 − θ

     + isinπ

    2 − θ

    ∴ 1 + sinθ + icosθ1 + sinθ − icosθ

    n

    = cos π2 −

    θ + isin π2 −

    θn

    N B Vyas  Complex Numbers

    Sol.   We have  sin2θ + cos2θ = 1∴ 1 = sin2θ + cos2θ   = sin2θ − i2cos2θ

    = (sinθ − icosθ)(sinθ + icosθ)

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    94/126

    (sinθ icosθ)(sinθ + icosθ)

    Now1 + sinθ + icosθ= (sinθ − icosθ)(sinθ + icosθ) + (sinθ + icosθ)= (sinθ + icosθ)(sinθ − icosθ + 1)∴  1 + sinθ + icosθ1 + sinθ − icosθ   = sinθ + icosθ

    = cosπ

    2 − θ

     + isinπ

    2 − θ

    ∴ 1 + sinθ + icosθ1 + sinθ − icosθ

    n

    = cos π2 −

    θ + isin π2 −

    θn= cos

    2 − θ

     + isinnπ

    2 − θ

    N B Vyas  Complex Numbers

    Example

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    95/126

    Ex. If  z 1 = eiθ1 ,  z 2 = e

    iθ2 and  z 1 − z 2 = 0 prove that1

    z 1 −  1

    z 2= 0

    N B Vyas  Complex Numbers

    Example

    Sol. Hereθ

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    96/126

    z1   = eiθ1 = cosθ1 +  isinθ1

    N B Vyas  Complex Numbers

    Example

    Sol. Hereiθ

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    97/126

    z1   = eiθ1 = cosθ1 +  isinθ1

    z2   = eiθ2 = cosθ2 +  isinθ2

    N B Vyas  Complex Numbers

    Example

    Sol. Hereiθ

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    98/126

    z1   = eiθ1 = cosθ1 +  isinθ1

    z2   = eiθ2 = cosθ2 +  isinθ2Given that  z1 − z2 = 0

    N B Vyas  Complex Numbers

    Example

    Sol. Hereiθ θ i i θ

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    99/126

    z1   = eiθ1 = cosθ1 +  isinθ1

    z2   = eiθ2 = cosθ2 +  isinθ2Given that  z1 − z2 = 0 (cosθ1 +  isinθ1) − (cosθ2 +  isinθ2) = 0

    N. B. Vyas   Complex Numbers

    Example

    Sol. Hereiθ1 θ i i θ

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    100/126

    z1   = eiθ1 = cosθ1 +  isinθ1

    z2   = eiθ2 = cosθ2 +  isinθ2Given that  z1 − z2 = 0 (cosθ1 +  isinθ1) − (cosθ2 +  isinθ2) = 0(cosθ1 − cosθ2) + i(sinθ1 − sinθ2) = 0

    N. B. Vyas   Complex Numbers

    Example

    Sol. Hereiθ1 θ + i i θ

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    101/126

    z1   = eiθ1 = cosθ1 +  isinθ1

    z2   = eiθ2 = cosθ2 +  isinθ2Given that  z1 − z2 = 0 (cosθ1 +  isinθ1) − (cosθ2 +  isinθ2) = 0(cosθ1 − cosθ2) + i(sinθ1 − sinθ2) = 0Comparing real and imaginary parts on both the sides, we get

    N. B. Vyas   Complex Numbers

    Example

    Sol. Hereiθ1 θ + i i θ

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    102/126

    z1   = eiθ1 = cosθ1 +  isinθ1

    z2   = eiθ2 = cosθ2 +  isinθ2Given that  z1 − z2 = 0 (cosθ1 +  isinθ1) − (cosθ2 +  isinθ2) = 0(cosθ1 − cosθ2) + i(sinθ1 − sinθ2) = 0Comparing real and imaginary parts on both the sides, we get

    cosθ1 − cosθ2 = 0 and  sinθ1 − sinθ2 = 0

    N. B. Vyas   Complex Numbers

    Example

    Sol. Herez eiθ1 cosθ + isinθ

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    103/126

    z1   = eiθ1 = cosθ1 +  isinθ1

    z2   = eiθ2 = cosθ2 +  isinθ2Given that  z1 − z2 = 0 (cosθ1 +  isinθ1) − (cosθ2 +  isinθ2) = 0(cosθ1 − cosθ2) + i(sinθ1 − sinθ2) = 0Comparing real and imaginary parts on both the sides, we getcosθ

    1 −cosθ

    2 = 0 and sinθ

    1 −sinθ

    2 = 0Now

     1

    z1−   1

    z2=

      1

    cosθ1 +  isinθ1−   1

    cosθ2 +  isinθ2

    N. B. Vyas   Complex Numbers

    Example

    Sol. Herez1 = e

    iθ1 = cosθ1 + isinθ1

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    104/126

    z1   = e 1 = cosθ1 +  isinθ1z2   = eiθ2 = cosθ2 +  isinθ2

    Given that  z1 − z2 = 0 (cosθ1 +  isinθ1) − (cosθ2 +  isinθ2) = 0(cosθ1 − cosθ2) + i(sinθ1 − sinθ2) = 0Comparing real and imaginary parts on both the sides, we getcosθ

    1 −cosθ

    2 = 0 and sinθ

    1 −sinθ

    2 = 0Now

     1

    z1−   1

    z2=

      1

    cosθ1 +  isinθ1−   1

    cosθ2 +  isinθ2

    =  cosθ1 − isinθ1cos2θ1 +  sin2θ1

    −   cosθ2 − isinθ2cos2θ2 +  sin2θ2

    N. B. Vyas   Complex Numbers

    Example

    Sol. Herez1 = e

    iθ1 = cosθ1 + isinθ1

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    105/126

    z1   = e 1 = cosθ1 +  isinθ1z2   = eiθ2 = cosθ2 +  isinθ2

    Given that  z1 − z2 = 0 (cosθ1 +  isinθ1) − (cosθ2 +  isinθ2) = 0(cosθ1 − cosθ2) + i(sinθ1 − sinθ2) = 0Comparing real and imaginary parts on both the sides, we getcosθ

    1 −cosθ

    2 = 0 and sinθ

    1 −sinθ

    2 = 0Now

     1

    z1−   1

    z2=

      1

    cosθ1 +  isinθ1−   1

    cosθ2 +  isinθ2

    =  cosθ1 − isinθ1cos2θ1 +  sin2θ1

    −   cosθ2 − isinθ2cos2θ2 +  sin2θ2

    N. B. Vyas   Complex Numbers

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    106/126

    Ex. (1 + i)n + (1 − i)n = 2n2 +1cosnπ4

    N. B. Vyas   Complex Numbers

    Root of a Complex Number

    De Moivre’s theorem is useful for finding the roots of a complexnumber.

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    107/126

    N. B. Vyas   Complex Numbers

    Root of a Complex Number

    De Moivre’s theorem is useful for finding the roots of a complexnumber.

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    108/126

    If  n   is any positive integer, then by De Moivre’s theorem

    N. B. Vyas   Complex Numbers

    Root of a Complex Number

    De Moivre’s theorem is useful for finding the roots of a complexnumber.

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    109/126

    If  n   is any positive integer, then by De Moivre’s theoremcos

    θ

    n + isin

    θ

    n

    n= cos

    θ

    nn

     + isin

    θ

    nn

     = cosθ + isinθ

    N. B. Vyas   Complex Numbers

    Root of a Complex Number

    De Moivre’s theorem is useful for finding the roots of a complexnumber.

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    110/126

    If  n   is any positive integer, then by De Moivre’s theoremcos

    θ

    n + isin

    θ

    n

    n= cos

    θ

    nn

     + isin

    θ

    nn

     = cosθ + isinθ

    Thus  cosθ

    n + isin

    θ

    n  is one of the  nth root of  cosθ + isinθ, i.e.,

    N. B. Vyas   Complex Numbers

    Root of a Complex Number

    De Moivre’s theorem is useful for finding the roots of a complexnumber.

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    111/126

    If  n   is any positive integer, then by De Moivre’s theoremcos

    θ

    n + isin

    θ

    n

    n= cos

    θ

    nn

     + isin

    θ

    nn

     = cosθ + isinθ

    Thus  cosθ

    n + isin

    θ

    n  is one of the  nth root of  cosθ + isinθ, i.e.,

    (cosθ + isinθ)1

    n = cosθ

    n + isin

    θ

    n

    N. B. Vyas   Complex Numbers

    Root of a Complex Number

    De Moivre’s theorem is useful for finding the roots of a complexnumber.

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    112/126

    If  n   is any positive integer, then by De Moivre’s theoremcos

    θ

    n + isin

    θ

    n

    n= cos

    θ

    nn

     + isin

    θ

    nn

     = cosθ + isinθ

    Thus  cosθ

    n + isin

    θ

    n  is one of the  nth root of  cosθ + isinθ, i.e.,

    (cosθ + isinθ)1

    n = cosθ

    n + isin

    θ

    nThe remaining roots may be obtained by periodic nature of thetrigonometric functions, i.e.,

    N. B. Vyas   Complex Numbers

    Root of a Complex Number

    De Moivre’s theorem is useful for finding the roots of a complexnumber.

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    113/126

    If  n   is any positive integer, then by De Moivre’s theoremcos

    θ

    n + isin

    θ

    n

    n= cos

    θ

    nn

     + isin

    θ

    nn

     = cosθ + isinθ

    Thus  cosθ

    n + isin

    θ

    n  is one of the  nth root of  cosθ + isinθ, i.e.,

    (cosθ + isinθ)1

    n = cosθ

    n + isin

    θ

    nThe remaining roots may be obtained by periodic nature of thetrigonometric functions, i.e.,

    cos(2kπ +  θ) = cosθ  and  sin(2kπ + θ) = sinθ

    N. B. Vyas   Complex Numbers

    Root of a Complex Number

    De Moivre’s theorem is useful for finding the roots of a complexnumber.

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    114/126

    If  n   is any positive integer, then by De Moivre’s theoremcos

    θ

    n + isin

    θ

    n

    n= cos

    θ

    nn

     + isin

    θ

    nn

     = cosθ + isinθ

    Thus  cosθ

    n + isin

    θ

    n  is one of the  nth root of  cosθ + isinθ, i.e.,

    (cosθ + isinθ)1

    n = cosθ

    n + isin

    θ

    nThe remaining roots may be obtained by periodic nature of thetrigonometric functions, i.e.,

    cos(2kπ +  θ) = cosθ  and  sin(2kπ + θ) = sinθHence the general form of complex number  cosθ + isinθ  form restof all the roots.

    N. B. Vyas   Complex Numbers

    Root of a Complex Number

    De Moivre’s theorem is useful for finding the roots of a complexnumber.

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    115/126

    If  n   is any positive integer, then by De Moivre’s theoremcos

    θ

    n + isin

    θ

    n

    n= cos

    θ

    nn

     + isin

    θ

    nn

     = cosθ + isinθ

    Thus  cosθ

    n + isin

    θ

    n  is one of the  nth root of  cosθ + isinθ, i.e.,

    (cosθ + isinθ)1

    n = cosθ

    n + isin

    θ

    nThe remaining roots may be obtained by periodic nature of thetrigonometric functions, i.e.,

    cos(2kπ +  θ) = cosθ  and  sin(2kπ + θ) = sinθHence the general form of complex number  cosθ + isinθ  form restof all the roots.

    N. B. Vyas   Complex Numbers

    Root of a Complex Number

    (cosθ + isinθ)1

    n = [cos(2kπ +  θ) + isin(2kπ + θ)]1

    n

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    116/126

    N. B. Vyas   Complex Numbers

    Root of a Complex Number

    (cosθ + isinθ)1

    n = [cos(2kπ +  θ) + isin(2kπ + θ)]1

    n

    = cos

    2kπ + θ

    n

     + isin

    2kπ + θ

    n

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    117/126

    N. B. Vyas   Complex Numbers

    Root of a Complex Number

    (cosθ + isinθ)1

    n = [cos(2kπ +  θ) + isin(2kπ + θ)]1

    n

    = cos

    2kπ + θ

    n

     + isin

    2kπ + θ

    n

    1

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    118/126

    which gives all the roots of (cosθ + isinθ)n

    fork = 0, 1, 2, . . . (n− 1).

    N. B. Vyas   Complex Numbers

    Root of a Complex Number

    (cosθ + isinθ)1

    n = [cos(2kπ +  θ) + isin(2kπ + θ)]1

    n

    = cos

    2kπ + θ

    n

     + isin

    2kπ + θ

    n

    1

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    119/126

    which gives all the roots of (cosθ + isinθ)n

    fork = 0, 1, 2, . . . (n− 1).This roots are as follows:

    N. B. Vyas   Complex Numbers

    Root of a Complex Number

    (cosθ + isinθ)1

    n = [cos(2kπ +  θ) + isin(2kπ + θ)]1

    n

    = cos

    2kπ + θ

    n

     + isin

    2kπ + θ

    n

    1

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    120/126

    which gives all the roots of (cosθ + isinθ)n

    fork = 0, 1, 2, . . . (n− 1).This roots are as follows:

    For  k = 0,cosθ

    n + isin

    θ

    n

    N. B. Vyas   Complex Numbers

    Root of a Complex Number

    (cosθ + isinθ)1

    n = [cos(2kπ +  θ) + isin(2kπ + θ)]1

    n

    = cos

    2kπ + θ

    n

     + isin

    2kπ + θ

    n

    1

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    121/126

    which gives all the roots of (cosθ + isinθ)n

    fork = 0, 1, 2, . . . (n− 1).This roots are as follows:

    For  k = 0,cosθ

    n + isin

    θ

    n

    k = 1,  cos

    2π +  θn

     + isin

    2π + θ

    n

    N. B. Vyas   Complex Numbers

    Root of a Complex Number

    (cosθ + isinθ)1

    n = [cos(2kπ +  θ) + isin(2kπ + θ)]1

    n

    = cos

    2kπ + θ

    n

     + isin

    2kπ + θ

    n

    1

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    122/126

    which gives all the roots of (cosθ + isinθ)n

    fork = 0, 1, 2, . . . (n− 1).This roots are as follows:

    For  k = 0,cosθ

    n + isin

    θ

    n

    k = 1,  cos

    2π +  θn

     + isin

    2π + θ

    n

    k = 2,  cos

    4π +  θ

    n

     + isin

    4π + θ

    n

    N. B. Vyas   Complex Numbers

    Root of a Complex Number

    (cosθ + isinθ)1

    n = [cos(2kπ +  θ) + isin(2kπ + θ)]1

    n

    = cos

    2kπ + θ

    n

     + isin

    2kπ + θ

    n

    ( θ θ)

    1

    n

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    123/126

    which gives all the roots of (cosθ + isinθ)n

    fork = 0, 1, 2, . . . (n− 1).This roots are as follows:

    For  k = 0,cosθ

    n + isin

    θ

    n

    k = 1,  cos

    2π +  θn

     + isin

    2π + θ

    n

    k = 2,  cos

    4π +  θ

    n

     + isin

    4π + θ

    n

    . . . . . .

    N. B. Vyas   Complex Numbers

    Root of a Complex Number

    (cosθ + isinθ)1

    n = [cos(2kπ +  θ) + isin(2kπ + θ)]1

    n

    = cos

    2kπ + θ

    n

     + isin

    2kπ + θ

    n

    h h ll h f ( θ i i θ)

    1

    n

    f

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    124/126

    which gives all the roots of (cosθ + isinθ)n

    fork = 0, 1, 2, . . . (n− 1).This roots are as follows:

    For  k = 0,cosθ

    n + isin

    θ

    n

    k = 1,  cos

    2π +  θn

     + isin

    2π + θ

    n

    k = 2,  cos

    4π +  θ

    n

     + isin

    4π + θ

    n

    . . . . . .

    . . . . . .

    N. B. Vyas   Complex Numbers

    Root of a Complex Number

    (cosθ + isinθ)1

    n = [cos(2kπ +  θ) + isin(2kπ + θ)]1

    n

    = cos

    2kπ + θ

    n

     + isin

    2kπ + θ

    n

    hi h i ll h f ( θ i i θ)

    1

    n

    f

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    125/126

    which gives all the roots of (cosθ + isinθ)n

    fork = 0, 1, 2, . . . (n− 1).This roots are as follows:

    For  k = 0,cosθ

    n + isin

    θ

    n

    k = 1,  cos

    2π +  θn

     + isin

    2π + θ

    n

    k = 2,  cos

    4π +  θ

    n

     + isin

    4π + θ

    n

    . . . . . .

    . . . . . .

    k = n− 1, cos

    2(n− 1)π + θn

     + isin

    2(n− 1)π + θ

    n

    N. B. Vyas   Complex Numbers

    Root of a Complex Number

    (cosθ + isinθ)1

    n = [cos(2kπ +  θ) + isin(2kπ + θ)]1

    n

    = cos

    2kπ + θ

    n

     + isin

    2kπ + θ

    n

    hi h i ll th t f ( θ i i θ)

    1

    n

    f

  • 8/20/2019 Dr. Nirav Vyas complexnumbers1.pdf

    126/126

    which gives all the roots of (cosθ + isinθ) fork = 0, 1, 2, . . . (n− 1).This roots are as follows:

    For  k = 0,cosθ

    n + isin

    θ

    n

    k = 1,  cos

    2π +  θn

     + isin

    2π + θ

    n

    k = 2,  cos

    4π +  θ

    n

     + isin

    4π + θ

    n

    . . . . . .

    . . . . . .

    k = n− 1, cos

    2(n− 1)π + θn

     + isin

    2(n− 1)π + θ

    n

    The further values of  k  will give the same roots as above in order.

    N. B. Vyas   Complex Numbers