drag prediction using automatic hexahedra grid generation ... · grid convergence study of ih=0...

31
1 Drag Prediction Using Automatic Hexahedra Grid Generation Method Atsushi Hashimoto, Keiichi Murakami, Takashi Aoyama, Mitsuhiro Murayama, Kazuomi Yamamoto Japan Aerospace Exploration Agency (JAXA) 4th AIAA CFD Drag Prediction Workshop June 20-21, 2009. San Antonio, TX.

Upload: others

Post on 05-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

1

Drag Prediction Using Automatic Hexahedra Grid Generation Method

Atsushi Hashimoto, Keiichi Murakami, Takashi Aoyama,Mitsuhiro Murayama, Kazuomi Yamamoto

Japan Aerospace Exploration Agency (JAXA)

4th AIAA CFD Drag Prediction WorkshopJune 20-21, 2009. San Antonio, TX.

Page 2: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

2

Objective

The objective of this study is evaluation of an automatic hexahedra grid generator, HexaGrid.

Contents

Features of HexaGrid-Grid generated by HexaGrid

Flow solver (TAS)

Results- Comparison with JAXA’s other results.(MEGG3D+TAS, Gridgen+UPACS)

Page 3: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

3

Features of HexaGrid

• Unstructured mesh based on Cartesian mesh• Handles complex geometry• Automatic operation (very few control parameters)• Predominantly hexahedral element

• Input multi-component geometry in STL format

• Run on ordinary PC and JSS (JAXA Supercomputer System).

HexaGrid : Automatic grid generator based on hexahedral grid

Page 4: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

4

Input parameters

Domain (max and min of x, y, z)Max and min cell size on the surfaceLayer parameter (thickness of first layer, expansion factor)

Automatic operation using very few control parameters

Page 5: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

5

Mesh Refinement Control

• Start with one big element (= computational domain)• Cartesian grid is generated by means of successive local refinement• Each refinement divides a cell isotropically into eight child cells• Refine the element using 3 criteria• Each criterion has a target element size (user-defined)

(1) Region refined by solid surface(user defines max cell size)

(2) Region refined by solid surface with large curvature(user defines min cell size)

(3) Refinement box(user defines box position and cell size)

We do not use the refinement box for simplicity in this study .

Page 6: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

6

Prismatic grid generation

Grid surface snapped to solid surface

Prismatic grid generation

Grid smoothing

Thickness of first layer and expansion factor are given by the input parameters

Page 7: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

7

Feature capturing Feature capturing

STL data

Grid surface

Without feature capturing

With feature capturing

Page 8: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

8

Setting of gridding parameters

Upper surface of main wing

Setting parameter Coarse Medium FineMax cell size on solid surface 5 in 5 in 5 inMin cell size on solid surface 5 in 1.25 in (=5/22) 0.625 in (=5/23)

Expansion ratio of prism layers 1.25 1.25 1.25Thickness of first prism layer 9.85E-4 in 9.85E-4 in 9.85E-4 in

Cubic domain size 100 Cref 100 Cref 100 Cref

Reference Chord length = 275.80 inGridding Guidelines

Page 9: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

9

Setting of gridding parameters

Upper surface of main wing

Setting parameter Coarse Medium FineMax cell size on solid surface 5 in 5 in 5 inMin cell size on solid surface 5 in 1.25 in (=5/22) 0.625 in (=5/23)

Expansion ratio of prism layers 1.25 1.25 1.25Thickness of first prism layer 9.85E-4 in 9.85E-4 in 9.85E-4 in

Cubic domain size 100 Cref 100 Cref 100 Cref

Reference Chord length = 275.80 inGridding Guidelines

0.1% of local chord at LE, TE 0.11-0.47in for the main wing (Gridding Guidelines)

10-50 times larger grid size (Coarse grid)3-10 times larger grid size (Medium grid)1.5-6 times larger grid size (Fine grid)

Page 10: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

10

Grids generated with HexaGrid

Coarse Medium Fine

Coarse Medium Fine

Number of refinement process 13 15 16

Number of prism layers 35 29 26

Node count 3,213,783 11,055,602 36,601,899

Cell count 3,644,942 12,654,764 41,630,191

Boundary node count 105,686 295,394 757,593

Boundary face count 106,272 297,697 762,131

Prismatic cell count 1,932,525 7,145,542 17,752,826

3.5M (Coarse), 10M (medium), 35M (fine) are required by the guideline.

+2+3

Body/main wing juncture

Feature line is clearly captured

Page 11: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

11

Grids generated with HexaGrid

Coarse Medium Fine

Coarse Medium Fine

Number of refinement process 13 15 16

Number of prism layers 35 29 26

Node count 3,213,783 11,055,602 36,601,899

Cell count 3,644,942 12,654,764 41,630,191

Boundary node count 105,686 295,394 757,593

Boundary face count 106,272 297,697 762,131

Prismatic cell count 1,932,525 7,145,542 17,752,826

3.5M (Coarse), 10M (medium), 35M (fine) are required by the guideline.

+2+3

Wing tip of main wing

Page 12: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

12

Grids generated with HexaGrid

Coarse Medium Fine

Coarse Medium Fine

Number of refinement process 13 15 16

Number of prism layers 35 29 26

Node count 3,213,783 11,055,602 36,601,899

Cell count 3,644,942 12,654,764 41,630,191

Boundary node count 105,686 295,394 757,593

Boundary face count 106,272 297,697 762,131

Prismatic cell count 1,932,525 7,145,542 17,752,826

3.5M (Coarse), 10M (medium), 35M (fine) are required by the guideline.

+2+3

Tail wing

Page 13: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

13

Grids generated with HexaGrid

Coarse Medium Fine

Coarse Medium Fine

Number of refinement process 13 15 16

Number of prism layers 35 29 26

Node count 3,213,783 11,055,602 36,601,899

Cell count 3,644,942 12,654,764 41,630,191

Boundary node count 105,686 295,394 757,593

Boundary face count 106,272 297,697 762,131

Prismatic cell count 1,932,525 7,145,542 17,752,826

3.5M (Coarse), 10M (medium), 35M (fine) are required by the guideline.

+2+3

Cross-section of main wing at eta=0.50

Page 14: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

14

Grids generated with HexaGrid

Coarse Medium Fine

Coarse Medium Fine

Number of refinement process 13 15 16

Number of prism layers 35 29 26

Node count 3,213,783 11,055,602 36,601,899

Cell count 3,644,942 12,654,764 41,630,191

Boundary node count 105,686 295,394 757,593

Boundary face count 106,272 297,697 762,131

Prismatic cell count 1,932,525 7,145,542 17,752,826

3.5M (Coarse), 10M (medium), 35M (fine) are required by the guideline.

+2+3

Trailing edge of main wing at eta=0.50

5-6 nodes are located across the TE base.

The total thickness of prism layer is decreasing.

Page 15: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

15

Flow Solver Configuration

TAS-code(Tohoku University Aerodynamic Simulation code)

Mesh: Unstructured gridDiscretization: Cell vertex, finite volume methodFlux: HLLEW (Harten-Lax-van Leer-Einfeldt-Wada)Accuracy: Second order by a linear reconstruction with

Venkatakrishnan’s limiter and U-MUSCLTime integration: LU-SGSTurbulence model: Spalart-Allmaras (SA)

As for the SA model, the trip term and the ft2 function are not included. A modified production term is used.

Page 16: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

16

Results

Cp contours(M=0.85, CL=0.50, Medium Grid)

Page 17: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

17

1.1 Grid convergence study

0.420.430.440.450.46

0.470.480.490.500.510.52

0.53

0.022 0.024 0.026 0.028 0.03 0.032CD

CL Coarse

MediumFine

0.0270

0.0275

0.0280

0.0285

0.0290

0.0295

0.E+00 1.E-05 2.E-05 3.E-05 4.E-05 5.E-05

1/(Gridsize)^(2/3)C

D

HexaGrid+TAS

M=0.85, CL=0.50Coarse, medium, fine grids

Page 18: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

18

1.2 Downwash study

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.015 0.025 0.035 0.045 0.055

CD

CL

iH=-2iH=0iH=2No tail

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5

AoA

CL

iH=-2iH=0iH=2No tail

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

CM

CL

iH=0iH=-2iH=2No tail

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.015 0.02 0.025 0.03 0.035

Idealized CD

CL

iH=-2iH=0iH=2No tail

=CD-CL2/πAR

Page 19: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

19

Trim Drag

TRIMMED DRAG POLAR => Interpolate iH at fixed CL to calculate CM_TOT = 0.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.015 0.025 0.035 0.045 0.055

CD

CL

iH=-2iH=0iH=2No tailTrimed

Page 20: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

20

2 Mach sweep study

CD at CL=0.4, 0.45, and 0.5 for M=0.7-0.87

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

0.7 0.75 0.8 0.85 0.9

Mach number

CD

CL=0.4CL=0.45CL=0.5

Page 21: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

21

Comparison with other results

MEGG3D + TAS

Gridgen + UPACS

Multi-block structured grid

Tetra unstructured grid

HexaGrid + TAS

Hexa unstructured grid

Page 22: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

22

Grid convergence study

0.0265

0.0270

0.0275

0.0280

0.0285

0.0290

0.0295

0.E+00 1.E-05 2.E-05 3.E-05 4.E-05 5.E-05

1/(Gridsize)^(2/3)

CD

HexaGrid+TASMEGG3D+TASUPACS

0.0140

0.0145

0.0150

0.0155

0.0160

0.0165

0.0170

0.0175

0.E+00 1.E-05 2.E-05 3.E-05 4.E-05 5.E-05

1/(Gridsize)^(2/3)

CD

_pre

ssure

HexaGrid+TASMEGG3D+TASUPACS

0.012

0.0121

0.0122

0.0123

0.0124

0.0125

0.0126

0.0127

0.E+00 1.E-05 2.E-05 3.E-05 4.E-05 5.E-05

1/(Gridsize)^(2/3)

CD

_friction

HexaGrid+TASMEGG3D+TASUPACS

CD_total

CD_pressure CD_skin-friction

Grid convergence study of iH=0 modelat CL=0.500, M=0.85

Large sensitivity of grid sizeHexaGrid+TAS results are between

MEGG3D+TAS and UPACS.(The results of HexaGrid are comparable to the manual methods.)

Page 23: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

23

Cp distribution (Medium, iH=0, CL=0.5)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

x/c

Cp

HexaGrid+TASMEGG3D+TASUPACS

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

x/c

Cp

HexaGrid+TASMEGG3D+TASUPACS

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

x/c

Cp

HexaGrid+TASMEGG3D+TASUPACS

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

HexaGrid+TASMEGG3D+TASUPACS

η=0.95

η=0.50

η=0.20η=0.30

Eta=0.2

Eta=0.5

Eta=0.95

Eta=0.30

Eta=0.2 Eta=0.5

Eta=0.95Eta=0.3 (tail)

HexaGrid results agree well with the other results.

The shock wave in the middle of wing is well captured with HexaGrid.

The suction peak is smaller than the others at the wing tip due to the coarse LE grid.

Page 24: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

24

Cp distribution (Medium, iH=0, CL=0.5)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

x/c

Cp

HexaGrid+TASMEGG3D+TASUPACS

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

x/c

Cp

HexaGrid+TASMEGG3D+TASUPACS

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

x/c

Cp

HexaGrid+TASMEGG3D+TASUPACS

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

HexaGrid+TASMEGG3D+TASUPACS

η=0.95

η=0.50

η=0.20η=0.30

Eta=0.2

Eta=0.5

Eta=0.95

Eta=0.30

Eta=0.2 Eta=0.5

Eta=0.95Eta=0.3 (tail)

HexaGrid results agree well with the other results.

The shock wave in the middle of wing is well captured with HexaGrid.

The suction peak is smaller than the others at the wing tip due to the coarse LE grid.

Eta=0.5

Page 25: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

25

Cp distribution (Medium, iH=0, CL=0.5)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

x/c

Cp

HexaGrid+TASMEGG3D+TASUPACS

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

x/c

Cp

HexaGrid+TASMEGG3D+TASUPACS

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

x/c

Cp

HexaGrid+TASMEGG3D+TASUPACS

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

HexaGrid+TASMEGG3D+TASUPACS

η=0.95

η=0.50

η=0.20η=0.30

Eta=0.2

Eta=0.5

Eta=0.95

Eta=0.30

Eta=0.2 Eta=0.5

Eta=0.95Eta=0.3 (tail)

HexaGrid results agree well with the other results.

The shock wave in the middle of wing is well captured with HexaGrid.

The suction peak is smaller than the others at the wing tip due to the coarse LE grid.

Page 26: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

26

Cp distribution (Medium, iH=0, CL=0.5)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

x/c

Cp

HexaGrid+TASMEGG3D+TASUPACS

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

x/c

Cp

HexaGrid+TASMEGG3D+TASUPACS

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

x/c

Cp

HexaGrid+TASMEGG3D+TASUPACS

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

HexaGrid+TASMEGG3D+TASUPACS

η=0.95

η=0.50

η=0.20η=0.30

Eta=0.2

Eta=0.5

Eta=0.95

Eta=0.30

Eta=0.2 Eta=0.5

Eta=0.95Eta=0.3 (tail)

HexaGrid results agree well with the other results.

The shock wave in the middle of wing is well captured with HexaGrid.

The suction peak is smaller than the others at the wing tip due to the coarse LE grid.

Eta=0.95

Page 27: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

27

Cp distribution (Medium, iH=0, CL=0.5)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

x/c

Cp

HexaGrid+TASMEGG3D+TASUPACS

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

x/c

Cp

HexaGrid+TASMEGG3D+TASUPACS

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

x/c

Cp

HexaGrid+TASMEGG3D+TASUPACS

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

HexaGrid+TASMEGG3D+TASUPACS

η=0.95

η=0.50

η=0.20η=0.30

Eta=0.2

Eta=0.5

Eta=0.95

Eta=0.30

Eta=0.2 Eta=0.5

Eta=0.95Eta=0.3 (tail)

HexaGrid results agree well with the other results.

The shock wave in the middle of wing is well captured with HexaGrid.

The suction peak is smaller than the others at the wing tip due to the coarse LE grid.

Page 28: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

28

Wing tip Cp contours (CL=0.5, medium grid)

HexaGrid MEGG3D UPACS

Smeared in the spanwisedirection

Smeared due to the coarse grid

Clearly captured(LE resolution is not sufficient)

Page 29: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

29

Angle sweep (iH=0, medium grid)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.015 0.025 0.035 0.045 0.055

CD

CL HexaGrid+TAS

MEGG3D+TASUPACS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5

AoA

CL

HexaGrid+TASMEGG3D+TASUPACS

HexaGrid results agree well with the other results.

Page 30: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

30

Stalled flow at AoA of 4deg

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5

AoA

CL

HexaGrid+TASMEGG3D+TASUPACS

HexaGrid

MEGG3D

UPACS

The separation line and pattern are largely affected by the grid topologies.

Page 31: Drag Prediction Using Automatic Hexahedra Grid Generation ... · Grid convergence study of iH=0 model at CL=0.500, M=0.85 9Large sensitivity of grid size 9HexaGrid+TAS results are

31

Conclusion

Capability and limitation of HexaGridAutomatic method, prism layer, feature capturing, mainly hexahedral element GoodCoarse LE and TE grids Not good

HexaGrid results agree well with the other grids (tetra unstructured grid, multi-block structured grid).

HexaGrid can automatically generate grids comparable to manual methods.

The shock wave in the middle of wing is well captured with HexaGrid.

Larger separation is observed in the case of HexaGrid.