edinburgh research explorer · c, d, f, and g) with a weak phylogeographic structure have been...

12
Edinburgh Research Explorer Mitochondrial DNA variation reveals maternal origins and demographic dynamics of Ethiopian indigenous goats Citation for published version: Tarekegn, G, Tesfaye, K, Mwai, O, Djikeng, A, Dessie, T, Birungi, J, Osama, S, Zergaw, N, Alemu, A, Achieng, G, Tutah, J, Mutai, C, Njuguna, J & Mwacharo, J 2018, 'Mitochondrial DNA variation reveals maternal origins and demographic dynamics of Ethiopian indigenous goats', Ecology and Evolution, vol. 8, no. 3, pp. 1543-1553. https://doi.org/10.1002/ece3.3710 Digital Object Identifier (DOI): 10.1002/ece3.3710 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Ecology and Evolution General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 21. May. 2020

Upload: others

Post on 21-May-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Edinburgh Research Explorer · C, D, F, and G) with a weak phylogeographic structure have been re-ported in domestic goats (Luikart et al., 2001; Naderi et al., 2007). This was initially

Edinburgh Research Explorer

Mitochondrial DNA variation reveals maternal origins anddemographic dynamics of Ethiopian indigenous goats

Citation for published version:Tarekegn, G, Tesfaye, K, Mwai, O, Djikeng, A, Dessie, T, Birungi, J, Osama, S, Zergaw, N, Alemu, A,Achieng, G, Tutah, J, Mutai, C, Njuguna, J & Mwacharo, J 2018, 'Mitochondrial DNA variation revealsmaternal origins and demographic dynamics of Ethiopian indigenous goats', Ecology and Evolution, vol. 8,no. 3, pp. 1543-1553. https://doi.org/10.1002/ece3.3710

Digital Object Identifier (DOI):10.1002/ece3.3710

Link:Link to publication record in Edinburgh Research Explorer

Document Version:Publisher's PDF, also known as Version of record

Published In:Ecology and Evolution

General rightsCopyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)and / or other copyright owners and it is a condition of accessing these publications that users recognise andabide by the legal requirements associated with these rights.

Take down policyThe University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorercontent complies with UK legislation. If you believe that the public display of this file breaches copyright pleasecontact [email protected] providing details, and we will remove access to the work immediately andinvestigate your claim.

Download date: 21. May. 2020

Page 2: Edinburgh Research Explorer · C, D, F, and G) with a weak phylogeographic structure have been re-ported in domestic goats (Luikart et al., 2001; Naderi et al., 2007). This was initially

Ecology and Evolution. 2018;1–11.  | 1www.ecolevol.org

Received:14January2017  |  Revised:30October2017  |  Accepted:10November2017DOI:10.1002/ece3.3710

O R I G I N A L R E S E A R C H

Mitochondrial DNA variation reveals maternal origins and demographic dynamics of Ethiopian indigenous goats

Getinet Mekuriaw Tarekegn1,2,3,4,5  | Kassahun Tesfaye1 |  Okeyo Ally Mwai6 | Appolinaire Djikeng7 | Tadelle Dessie2 | Josephine Birungi4 |  Sarah Osama4 | Netsanet Zergaw2 | Alubel Alemu2 | Gloria Achieng4 | Jack Tutah4 |  Collins Mutai4  | Joyce Njuguna4 | Joram M. Mwacharo8

1DepartmentofMicrobial,CellularandMolecularBiology,AddisAbabaUniversity,AddisAbaba,Ethiopia2InternationalLivestockResearchInstitute(ILRI),AddisAbaba,Ethiopia3DepartmentofAnimalProductionandTechnology,BiotechnologyResearchInstitute,BahirDarUniversity,BahirDar,Ethiopia4BiosciencesEasternandCentralAfrica-InternationalLivestockResearchInstitute(BecA-ILRI)Hub,Nairobi,Kenya5SwedishUniversityofAgriculturalSciences,Uppsala,Sweden6InternationalLivestockResearchInstitute(ILRI),Nairobi,Kenya7CentreforTropicalLivestockGeneticsandHealth,TheUniversityofEdinburgh,Edinburgh,UK8SmallRuminantGeneticsandGenomicsGroup,InternationalCentreforAgriculturalResearchintheDryAreas(ICARDA),AddisAbaba,Ethiopia

ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,providedtheoriginalworkisproperlycited.©2018TheAuthors.Ecology and EvolutionpublishedbyJohnWiley&SonsLtd.

CorrespondenceGetinetMekuriawTarekegn,DepartmentofMicrobial,CellularandMolecularBiology,AddisAbabaUniversity,AddisAbaba,Ethiopia.Email:[email protected],SmallRuminantGeneticsandGenomicsGroup,InternationalCentreforAgriculturalResearchintheDryAreas(ICARDA),AddisAbaba,Ethiopia.Email:[email protected]

Funding informationBecA-ILRIHubthroughtheAfricaBiosciencesChallengeFund(ABCF)program;AustralianDepartmentforForeignAffairsandTrade(DFAT)throughtheBecA-CSIRO;SyngentaFoundationforSustainableAgriculture(SFSA);Bill&MelindaGatesFoundation(BMGF);theUKDepartmentforInternationalDevelopment(DFID);SwedishInternationalDevelopmentCooperationAgency(Sida)

AbstractTheHornofAfricaformsoneofthetwomainhistoricalentrypointsofdomesticsintothecontinentandEthiopiaisparticularlyimportantinthisregard.Throughtheanalysis ofmitochondrialDNA (mtDNA)d-loop region in 309 individuals from13populations,werevealthematernalgeneticvariationanddemographicdynamicsofEthiopianindigenousgoats.Atotalof174variablesitesthatgenerated231haplo-typeswereobserved.Theydefinedtwohaplogroupsthatwerepresentinallthe13studypopulations.ReferencehaplotypesfromthesixgloballydefinedgoatmtDNAhaplogroupsshowthetwohaplogroupspresentinEthiopiatobeAandG,theformerbeingthemostpredominant.Althoughbothhaplogroupsarecharacterizedbyanin-creaseineffectivepopulationsizes(Ne)predatingdomestication,theyalsohaveex-periencedadeclineinNeatdifferenttimeperiods,suggestingdifferentdemographichistories.Weobservedsevenhaplotypes,sixweredirectlylinkedtothecentralhap-lotypes of the twohaplogroups andonewas central to haplogroupG. The sevenhaplotypeswerecommonbetweenEthiopia,Kenya,Egypt,andSaudiArabiapopula-tions,suggestingcommonmaternalhistoryandthe introductionofgoats intoEastAfricaviaEgyptandtheArabianPeninsula,respectively.WhileprovidingnewmtDNAdatafromahistoricallyimportantregion,ourresultssuggestextensiveintermixingofgoatsmediatedbyhumansocio-culturalandeconomicinteractions.ThesehaveledtothecoexistenceofthetwohaplogroupsindifferentgeographicregionsinEthiopia

Page 3: Edinburgh Research Explorer · C, D, F, and G) with a weak phylogeographic structure have been re-ported in domestic goats (Luikart et al., 2001; Naderi et al., 2007). This was initially

2  |     TAREKEGN ET Al.

1  | INTRODUCTION

Ethiopia ishometomorethan29milliongoats (FAOSTAT,2014;ac-cessedFebruary25,2016),alargenumberofwhichareofindigenoustypeskeptmainlyforsubsistence.Theyinhabitawiderangeofhabitatsandproductionsystemsrangingfromthecoolhighlandstohotaridlow-landenvironments(Abegaz,2014).Basedontheirgeographiclocationandassociatedethniccommunity,Ethiopianindigenousgoatsareclas-sifiedinto13populations(seeDAGRISdatabaseathttp://www.dagris.info/countries/192/breeds?page=2).Thesehavebeenfurthercatego-rized into four family groups based on geographic location, and twoproductionsystemsacross threeagro-ecologicalzones (FARM-Africa,1996).Fromtheanalysisofmicrosatellitemarkers,Tesfaye(2004)re-grouped the13populations into eight types butwith lowbootstrapsupport (<50%). In linewiththe lowbootstrapsupport,STRUCTUREanalysis failed to resolve the eight groups adequately and showed ahighlevelofadmixture.DespitethelackofclarityontheclassificationofEthiopianindigenousgoats,alargegenepoolofautosomalgeneticdiversityoccursinthecountrywhichcanprovidetherawmaterialtosupportbreedingprogramsfortheindigenousstocks.

Globally, at least sixmtDNAd-loop haplogroups (A, B (B1, B2),C,D,F,andG)withaweakphylogeographicstructurehavebeenre-ported in domestic goats (Luikart etal., 2001; Naderi etal., 2007).This was initially interpreted to indicate multiple independent do-mestications(Chen,Su,Wu,Sha,&Zhang,2005;Luikartetal.,2001).However,Naderietal.(2007,2008)suggestedittobetheresultofasingledomesticationcoupledwiththemanagementofwildandsemi-domesticated individuals carrying diversemtDNA lineages followedbygeographicdispersionandsubsequentextinctionofsomelineages.Globally,haplogroupAhasthelargestgeographicdistribution(Pereira,Pereira,Van-Asch,Bradley,&Amorim,2005).HaplogroupBoccursineasternandsouthernAsia,includingMongolia,andatlowfrequenciesinSouthAfricaandNamibia.HaplogroupCoccursatlowfrequenciesin Mongolia, Switzerland, Slovenia, Pakistan, and India, while hap-logroupDoccursonlyinPakistanandIndianlocalgoats.HaplogroupFisexclusivetoSicilywhilehaplogroupGhasbeenobservedinTurkey,Iran,Iraq,SaudiArabia,KenyaandEgypt.

All the six haplogroups occur in thewild ancestor,Capra aega-grus,suggestingthatdomesticationhappenedacrosssouthwestAsia(Naderietal.,2007,2008).Archeologicalfindingsshowthatgoatdo-mestication occurred around 10,500years ago between the ZagrosMountains and the Fertile Crescent (Zeder, 2008; Zeder & Hesse,2000).TheanalysisofmtDNAgenomes (Doroetal.,2014;Nomuraetal.,2013)sidebysidetothatofthed-loopregionshowcongruentclusteringpatternssuggestingacomplexdomesticationprocess.

ArcheologicalevidencehasshownthattheHornofAfrica,andinparticularEthiopia,playedacriticalrole inthehistoryofdispersalofvarious domestic plant and animal species into and out of the con-tinent (Gifford-Gonzalez&Hanotte, 2011;Oliver, 1983). In spite ofthis,majorityofthestudiesperformedsofaronindigenousgoats,havelacked samples from the region.On theother hand,various studieshave shown that socio-anthropological (humanmovements, culturalexchanges,war,etc.)andnatural (droughts, floods,etc.)eventshavecontributed to the geographic dispersion and intermixing of differ-entlivestockspecies(Girma,1988;Yilma,1967)andtheymighthaveshaped the genetic landscape of indigenous domestic stocks in theregion.Inthisstudy,weanalyzedmtDNAd-loopsequencestoinvesti-gatethewithinandbetweenpopulationmaternalgeneticvariationanddiversity,anddemographicdynamicsofindigenousgoatsinEthiopia.

2  | MATERIALS AND METHODS

2.1 | Sampling and DNA extraction

Atotalof309bloodsamples representing13Ethiopian indigenousgoatpopulationsweresampledfromfarmer’sflocksandusedforthestudy.Duringsampling,alleffortsweremadetoavoidcloselyrelatedindividuals.GenomicDNAwasextractedfromthebloodsamplesfol-lowingShinde,Gujar,Patil,Satpute,andKashid(2008).

2.2 | PCR amplification and sequencing

The entire mtDNA d-loop region (1,061bp) was amplified usingnestedPCR(TableS1).ThePCRreactionswerecarriedout in20-μl reactionvolumesmadeupoftheAccuPower®PCRPremix(Bioneer-Daejeon, Korea), 0.2μM of each primer, 1.5% Hi-Di™ formamide(Applied Biosystems, USA), 0.005mg of Bovine Serum Albumin(ThermoScientific),and50ngoftemplateDNA.Atwo-stagetouch-downPCRinvolvinganinitialdenaturationat95°Cfor3minfollowedbythefirststageofamplificationoffivecycles(denaturationat90°Cfor10s,annealingat58°Cfor40s,andextensionat72°Cfor30s),anda secondstage that involved thesameprofilebut30cyclesofamplificationandanannealingtemperatureof53°C,wasperformed.Afinalextensionstepat72°Cfor7mincompletedthePCR.ThePCRproducts were purified using the QIAquick® PCR Purification Kit(Qiagen,HildenGermany)followingthemanufacturer’s instructions.ThepurifiedproductsweresequencedusingtheBigDyeTerminatorv3.1CycleSequencingChemistry (AppliedBiosystems)andtheABIPrism 3130XL automatic capillary sequencer (Applied Biosystems,USA)followingthemanufacturersprotocols.

resulting in a large caprine genetic diversity that can be exploited for geneticimprovement.

K E Y W O R D S

Bayesianskylineplot,geneticdiversity,haplogroups,haplotypes,populationexpansion

Page 4: Edinburgh Research Explorer · C, D, F, and G) with a weak phylogeographic structure have been re-ported in domestic goats (Luikart et al., 2001; Naderi et al., 2007). This was initially

     |  3TAREKEGN ET Al.

2.3 | Data analysis

Forall theanalysesundertakenhere,thedefaultvaluesandparam-eters inherent in thealgorithmsandsoftware’swereusedandonlydeviations from thedefault arementioned.Prior toanalysis, all thechromatogramswerevisualizedwiththeCLCWorkbench7.0.4(CLCBio-Qiagen). The sequence fragments were edited manually usingMEGA6(Tamura,Stecher,Peterson,Filipski,&Kumar,2013)tocor-rectpossiblebasecallingerrors.MultiplesequencealignmentswereperformedusingClustalOmega(Sieversetal.,2011),andvariablesiteswere scored against theC. hircus reference sequence (Genbank ac-cessionnumberGU223571).Wegenerated309sequencesandde-terminedthehaplotypeswithDnaSPv5(Librado&Rozas,2009).Thelevelof geneticdiversity, determinedas thenumberofhaplotypes,haplotypediversity,nucleotidediversity,andmeannumberofnucleo-tide differences between haplotypes and their standard deviations,werecomputedforeachpopulationandacrossallpopulationsusingArlequin3.5(Excoffier&Lischer,2010).

Tovisualizethegeneticrelationshipbetweenindividualsandpop-ulations,aphylogenetictreewasconstructedusingallthehaplotypesgeneratedinEthiopiangoatswiththeneighbor-joining(NJ)algorithmimplementedinMEGA6.Thelevelofconfidenceassociatedwitheachbifurcationwasevaluatedwith1,000bootstrapreplications.ToobtainfurtherinsightsintothegeneticrelationshipsbetweenthehaplotypesanddeterminethenumberofdistinctmtDNAd-loophaplogroupspres-entinthedataset,themedian-joining(MJ)network(Bandelt,Forster,&Röhl,1999)wasconstructedusingNetworkv4.6(www.fluxus-en-gineering.com).Allthemutationsandcharacterstateswereweightedequally.TovisualizethevariationinEthiopiangoatsinthecontextofthe global caprinediversity, 229 sequencesof domestic goats from20countriesandrepresentingthesixgloballydefinedmtDNAd-loophaplogroups(Naderietal.,2007,2008)andfourhaplotypesofC. ae-gagrus (Genbank accession numberAJ317864–AJ317867)were re-trievedfromtheGenbank(TableS2)andincludedintheNJtreeandMJnetworkanalysis.Asthereferencehaplotypesrepresentingthesixhaplogroupsaredefinedbasedonthevariationinthefirsthypervari-ableregion (481bp)ofthed-loop (Luikartetal.,2001;Naderietal.,2007,2008),thehaplotypesgenerated inEthiopiangoatswerefirsttruncatedto481bpandthenusedintheconstructionoftheNJtreeandMJnetwork.TheHVI regioncorresponds topositions15,709–16,190bpoftheC. hircusmtDNAreferencesequence(Genbankac-cessionnumberGU295658).

To partition genetic variation among populations and groups ofpopulations, analysis ofmolecularvariance (AMOVA)was performedfollowing1,000permutationsinArlequinv3.5.TheanalysiswaslimitedtoEthiopiangoatsandvarioushierarchicalclustersweretestedviz(i)as-sumingnoclustersinthedataset,(ii)betweenthethreegroupsofpop-ulationsasdefinedbyFARM-Africa(1996),and(iii)betweenpopulationgroupings revealedby theNJ treeandMJnetwork.Phi (ϕ) statisticsrepresentinghaplotypecorrelationsatvarioushierarchical levels (ϕCT,ϕSC,ϕST)were calculated. Levels of significanceof thevariance com-ponentsassociatedwiththehierarchicalclusterswereevaluatedwith1,000nonparametricbootstrapcoalescentsimulationsinArlequinv3.5.

Thehistoricaldynamicsanddemographicprofilesofeachpopu-lationandhaplogroupwereinferredfrommismatchdistributionpat-terns(Rogers&Harpending,1992).Thechi-squaretestofgoodnessoffitandHarpending’sraggednessindex“r”(Harpending,1994)sta-tisticswereusedtoevaluatethesignificanceofthedeviationsoftheobservedsumofsquaresdifferences(SSD)fromthesimulatedmodelofexpansion(demographicorspatial)following1,000coalescentsim-ulations.Tocomplementthemismatchdistributions,Fu’sFS(Fu,1997)andTajima’sD(Tajima,1989)statisticswerealsocalculatedusingtheinfinitesitesmodelinArlequinv3.5.

The demographic dynamics and history of Ethiopian goat pop-ulations were further investigated by generating Bayesian SkylinePlots(BSPs;Drummond,Rambaut,Shapiro,&Pybus,2005)usingthepiecewiseconstantfunctionimplementedinBEAST2.0(Drummond,Suchard,Xie,&Rambaut,2012) followingSalim,Taha,Hanotte,andMwacharo(2014).Inbrief,theHKY+GnucleotidesubstitutionmodelwasusedfortheanalysisandeachMarkovChainMonteCarlosimula-tion(MCMC)runswereperformedfor20milliongenerationsthatweresampledevery1,000generations.Theinitialtwomilliongenerationsservedasburn-in.ConvergenceoftheposteriorestimatesoftheNetothelikelihoodstationarydistributionwasevaluatedwithTRACERv1.6(http://tree.bio.ed.ac.uk/software/treestat/).ThisanalysiswaslimitedtoEthiopiangoatsandthe481bpHVIofthemtDNAd-loopregion.WecalibratedtheBSPsusingthemolecularrateofevolution(μ)oftheHV-IregioningoatmtDNAd-loopof2.73×10−7substitutions/site/year(s/s/yr)followingNomuraetal.(2013).

3  | RESULTS

3.1 | mtDNA sequence variation and genetic diversity

Threehundredandninesequencesspanningtheentire1,061bpofthecaprinemtDNAd-loopweregenerated.ThesequenceshavebeendepositedwiththeGeneBankunderaccessionnumbersKY747687–KY747993. Following their alignment against the caprine referencesequence(AccessionNo:GU223571),174variablesites(165transi-tions,sixtransversions,andthreeInDels)wereobserved.Thesede-fined231haplotypes (Table1)ofwhich22weresharedbyat leasttwopopulations(TableS3).Allthe13populationsshowedhighlev-elsofmaternalgeneticdiversity(Table1).Thenumberofhaplotypesrangedbetween12 (inAgew) and30 (inAfar). The lowest level ofhaplotypediversity(0.9500±0.037)wasobservedinKeffawhilethehighest (1.0000±0.020) was observed in the Short-eared Somali,HarargheHighland,andWoyto-Guji.Thenucleotidediversityrangedfrom0.0143±0.0019inAfarto0.0180±0.001inAbergelle.

3.2 | Population phylogenetic analysis

Weused theHV-I (481bp) sequences of Ethiopian goats and 229HV-IhaplotypesretrievedfromtheGeneBankandrepresentingthesixmainhaplogroupsobservedingoatstoconstructaNJtreetoas-sessgenetic relationships.TheNJtreerevealedthreewell-resolved

Page 5: Edinburgh Research Explorer · C, D, F, and G) with a weak phylogeographic structure have been re-ported in domestic goats (Luikart et al., 2001; Naderi et al., 2007). This was initially

4  |     TAREKEGN ET Al.

clusters;twowerespecifictoEthiopianindigenousgoatsandthethirdone clustered together the haplotypes representing haplogroupsB,C,D,F,andwildcapras(Figure1).ToobtainfurtherinsightsintothephylogeneticrelationshipsandputtheEthiopiangoatsinthecontextof caprine global diversity,we included in the dataset used forNJanalysis,sequencesfromEgyptian,SaudiArabia, Iran,Iraq,Pakistan,andNigeriagoatsandgeneratedtheMJnetwork.Asexpected, theanalysis also revealed two clusters in Ethiopian goats which wereseparatedby10mutations (Figure2).Both theNJ treeand theMJnetworkrevealedthetwoclustersinEthiopiangoatswerepartoftheglobally observedhaplogroupsA andG (Figure2).HaplogroupA isthemostcommonand included185haplotypes (80.1%of thetotalnumberofhaplotypes)whilehaplogroupGcomprised46haplotypes(19.9%).Noneofthetwohaplogroupswasexclusivetoasinglepopu-lation,geographicregion,orproductionsystem(FigureS1).Wealsoobserved137medianvectorsontheMJnetwork.

3.3 | Population genetic structure

AMOVA analysis incorporating the 13 populations assuming no hi-erarchicalclusters,aswellas,thethreegroupsproposedbyFARM-Africa(1996)showedthat97%ofthetotalgeneticvariationpresentin Ethiopian indigenous goats occurredwithin individuals, less than2%of the variationwasdue to genetic differencesbetweenpopu-lations and less than1% could be explained by genetic differencesbetweengroupsofpopulations(Table2).PerformingAMOVAtakingintoaccounttheresultsoftheNJtreeandMJnetworkrevealedthat

59.11%ofthegeneticvariationoccurredwithinthetwohaplogroups,while40.89%wasexplainedbygeneticdifferencesbetweenhaplo-groupsAandG(Table2).

3.4 | Population and historical demographic dynamics

Weassessedmismatchdistributionpatterns,foreachpopulationandfor the two haplogroups revealed by theNJ tree andMJ network(Figure3),toelucidatethedemographicdynamicsofEthiopianindig-enousgoats.ThemismatchdistributionpatternsforeachpopulationwerebimodalandtheobservedpatterndidnotdeviatesignificantlyfromthatexpectedunderanullhypothesismodelofeitherspatialordemographicexpansionexceptforAbergelle(Table3).ThevariationsaroundthecurveswerealsonotsignificantexceptforAgew(Table3).Abimodalpatternofmismatchdistributions,withtheobservedpat-ternnotdeviatingsignificantlyfromtheexpected,wasalsoobservedfortheglobaldatasetincorporatingthe13Ethiopianpopulationsandthe twohaplogroups, respectively (Figure3 andTable3). These re-sultsweresupportedbyTajima’sDandFu’sFSstatistics;bothwerenegative and significant for each population,with the exception ofAbergelleandGondarwhoseTajima’sDwasnegativebutnotsignifi-cant,fortheglobaldatasetof13populations,andforthetwohap-logroups.Thebimodalpeaksobservedinthetwohaplogroupsweresurprisingandunexpected.Wethereforecountercheckedallthese-quencesagainsttheir respectivechromatogramsforbasecallinger-rors.Thesequencesturnedouttobecorrectandtherewasnomix-up

TABLE  1 Maternalgeneticdiversityof13EthiopiangoatpopulationsfromtheanalysisoftheHV-IregionofthemtDNAd-loop

Population N S H Hd ± SD π ± SD K

No. of haplotypes (%)

Haplogroup A Haplogroup G

Short-earedSomali 17 66 17 1.0000±0.020 0.0158±0.002 16.692 14(82.35) 3(17.65)

Long-earedSomali 19 65 17 0.9883±0.021 0.0159±0.002 16.866 14(82.35) 3(17.65)

Nubian 37 88 25 0.9728±0.013 0.0155±0.001 16.378 21(84.00) 4(16.00)

HarargheHighland 22 65 22 1.0000±0.014 0.0165±0.002 17.446 21(71.43) 6(28.57)

Abergelle 35 78 29 0.9882±0.010 0.0180±0.001 19.005 21(72.41) 8(27.59)

Arsi-Bale 20 69 18 0.9895±0.019 0.0131±0.002 13.848 16(88.89) 2(11.11)

Ambo 16 68 13 0.9667±0.036 0.0170±0.003 17.992 13(84.62) 2(15.28)

Afar 33 80 30 0.9943±0.009 0.0143±0.002 15.125 24(80.00) 6(20.00)

Agew 15 56 12 0.9714±0.033 0.0144±0.002 15.181 11(91.67) 1(8.33)

Gumez 25 66 19 0.9667±0.024 0.0163±0.002 17.220 14(77.78) 4(22.22)

Gondar 27 70 24 0.9886±0.015 0.0176±0.001 18.621 15(65.22) 8(34.78)

Keffa 25 62 20 0.9500±0.037 0.0093±0.002 9.853 19(90.48) 2(9.52)

Woyto-Guji 18 63 18 1.0000±0.019 0.0164±0.002 17.353 14(77.78) 4(22.22)

Overall 309 174 231 0.9967±0.001 0.0158±0.001 17.427 – –

HaplogroupA 248 154 185 0.9957±0.025 0.0098±0.001 10.344 – –

HaplogroupG 61 69 46 0.9831±0.018 0.0057±0.002 6.006 – –

N,samplesize;S,numberofpolymorphicsites;H,numberofhaplotypes;Hd,haplotypediversity;π,nucleotidediversity;K,averagenumberofnucleotidedifferences;SD,standarddeviation.

Page 6: Edinburgh Research Explorer · C, D, F, and G) with a weak phylogeographic structure have been re-ported in domestic goats (Luikart et al., 2001; Naderi et al., 2007). This was initially

     |  5TAREKEGN ET Al.

between the sequencesused to generate thedatasets for themis-matchdistributionanalysis.ThebimodalpeaksalsoappearnottobeauniquefeatureofhaplogroupsAandGinEthiopiangoats.Wealso

observedtwopeaks inhaplogroupA inSudanesegoats.Chenetal.(2005)observedabimodalpeakforHaplogroupB inChinesegoatsand the dataset of Kibegwa,Githui, Jung’a, Badamana, andNyamu

F IGURE  1 Neighbor-joiningtreeconstructedusingtheHV-IregionofthemtDNAd-loopof13Ethiopiangoatpopulationsincludingreferencehaplotypesrepresentingsixhaplogroupsobservedingoatsandtwowildancestorsanalyzedinthisstudy

F IGURE  2 Median-joiningnetworkbasedontheanalysisof481bpoftheHV-Iinvolvingthe231haplotypesobservedin13EthiopiangoatpopulationsandreferencehaplotypesrepresentingsixmtDNAhaplogroupsanalyzedinthisstudy.Countryoforiginofthereferencehaplotypesandtheirorigin.HaplogroupA(India,Italy,France,Jordan,Iran(N=2);Naderietal.,2007);HaplogroupB(Laos(Mannen,Nagata,&Tsuji,2001),Azerbaijan(Naderietal.,2007),Mongolia(Luikartetal.,2001)andChina(Liuetal.,2006));HaplogroupC(India(Joshietal.,2004),Swizerland(Luikartetal.,2001),Spain(Naderietal.,2007),China(Liuetal.,2006));HaplogroupD(India(Joshietal.,2004),Austria(Naderietal.,2007),China(Liuetal.,2005));HaplogroupF(Sicily:Sardinaetal.,2006);HaplogroupG(Iran,TurkeyandEgypt(Naderietal.,2007))

Page 7: Edinburgh Research Explorer · C, D, F, and G) with a weak phylogeographic structure have been re-ported in domestic goats (Luikart et al., 2001; Naderi et al., 2007). This was initially

6  |     TAREKEGN ET Al.

(2015)appearsalsotoshowbimodalpeaksforhaplogroupsAandGinKenyangoats.Takentogether,theseresultssuggesteitheraspa-tialand/ordemographicexpansionfortheEthiopianindigenousgoatsandthetwohaplogroups,respectively.

To obtain a better resolution of the demographic history andprofile of Ethiopian goats, we modeled changes in maternal effec-tivepopulationsizes (Ne)over timebygeneratingBSP’s for thetwohaplogroups(Figure4a,b).TheyrevealanincreaseinNefromaround55,000and21,500YBPforhaplogroupsAandG, respectively.ThisincreaseisfollowedbyagradualdeclineinNefromaround5,000and1,500YBPwhichcontinuestodate,foreachhaplogroup,respectively.

4  | DISCUSSION

Althoughevidence indicatesthat theHornofAfricawasagatewayfor various domesticates into the African continent (Hassan, 2000;Newman,1995;Wetterstrom,1993), thedemographicdynamicsofindigenousgoats intheregionremainpoorly investigated.Here,weanalyzedthesequencevariationof themtDNAd-loopregionof13populations of Ethiopian indigenous goats to assess their maternalorigin, genetic differentiation, and demographic historical profiles.Theresultsrevealed231haplotypesfromtheanalysisof309mtDNAd-loop sequences which gave an average haplotype diversity of0.997±0.001 (range0.950±0.037 to1.000±0.020).This averagevalueissimilartothatofIberian(0.996)andEuropean(0.994)goatsbut itshigherthanthatofSicilian (0.806–0.969),SouthandCentralAmerican (0.963), Atlantic (0.965; Amills etal., 2008), and Kenyan

goats (0.981±0.006;Kibegwaetal.,2015).TheseresultssuggestahighlevelofmaternalgeneticvariationinEthiopianindigenousgoatsthat have arisen from past and recent population intermixing. Thisintermixinghasprovidedabroadrangeofgeneticdiversitythatcanbeexploitedinthedesignofgeneticimprovementandconservationprograms.Theresultalsosuggeststhatthematernalgeneticdiversityoftheindigenousgoatsisnotunderimminentdangeroflossthroughextinctionordilutionthroughcrossbreedingwithexoticsbreedsandintheeventthatonepopulationislost,itispossibletoreconstituteitfromtheothers.

To portray the genetic relationships among Ethiopian goats,weusedthe231haplotypestoconstructaNJtree(Figure1)andMJnet-work (Figure2).Theclusteringpattern revealed twowell-supportedhaplogroups with no phylogeographic structure. The incorporationof reference haplotypes revealed them to be haplogroupsA andG(Naderietal.,2007,2008).AMOVAshowedthatthetwohaplogroupsaccountedfor40.89%ofthematernalgeneticvariationinEthiopiangoats.Thisprovidesfurthersupportforthegeneticdistinctionofthetwohaplogroupsandsuggestingtheintroductionandpresenceofatleasttwodistinctgeneticgroupsofgoats intheHornofAfrica.Thetwo haplogroups could have been introduced from different geo-graphic domestication areas as Nomura etal. (2013) showed thattheirdivergenceoccurredprior todomestication.Wealsoobservedahighnumberofmedianvectors(n=137)exceedingthoseobservedinotherpopulations(Amillsetal.,2008;Chenetal.,2005;Joshietal.,2004;Luikartetal.,2001;Naderietal.,2007,2008;Sultana,Mannen,& Tsuji, 2003). This large number of median vectors may likely bean inherent feature of the Ethiopian indigenous goats because we

TABLE  2 ResultsofAMOVAbasedontheanalysisoftheHV-IregionofthemtDNAd-loopin13Ethiopiangoatpopulations

Grouping Source of variation Degrees of freedom Variance componentsPercentage of variation

Allpopulations Amonggroups 12 0.220 2.63

Withinindividuals 294 8.166 97.37

Total 306 8.386

Agro-ecology Amonggroups 2 0.061 0.73

Amongpopulationswithingroups 10 0.177 2.11

Withinindividuals 294 8.166 97.16

Total 306

Productionsystem Amonggroups 1 0.027 0.33

Amongpopulationswithingroups 11 0.208 2.48

Withinindividuals 294 8.166 97.19

Total 306 8.402

Goatfamily Amongfamilygroups 3 0.030 0.37

Amongpopulationswithinfamilygroups

9 0.196 2.34

Withinindividuals 294 8.171 97.29

Total 306 8.398

Basedonhaplogroups Amonghaplogroups 1 4.881 40.89

Withinhaplogroups 305 7.055 59.11

Total 306 11.936

Page 8: Edinburgh Research Explorer · C, D, F, and G) with a weak phylogeographic structure have been re-ported in domestic goats (Luikart et al., 2001; Naderi et al., 2007). This was initially

     |  7TAREKEGN ET Al.

observedalargenumberofnodes(n=192)andedges(n=335)thatrepresent subpopulations and population subdivisions, respectively(Huson&Bryant,2006) in aphylogenetic tree thatweconstructedforthe13populationsusingautosomalSNPmarkers(MekuriawGM,LiuB,OsamaS,ZhangW,TesfayeK,DessieT,MwaiAM,DjikengA,Mwacharo JM “unpublished data”). These results demonstrate notonly the presence of high genetic variation in Ethiopian indigenousgoatsbutalsoa likelycomplexmaternalgenetichistory.The lackofphylogeographic structure appears to be a common feature of do-mestic goats; it has been observed in aworldwide dataset (Luikartetal., 2001; Naderi etal., 2007, 2008), in the Indian subcontinent(Joshietal.,2004;Sultanaetal.,2003)andChina(Chenetal.,2005).Theeaseoftransportinggoats,theiruseasitemsoftradeandsocio-culturalexchange(tostrengthenfriendshipandfamilybonds/ties),and

their inherent ability to adapt to a diverse rangeof production andecologicalenvironments,relativetoforinstancecattle,hasbeenusedto explain their lack of phylogeographic structure and high level ofgeneticdiversity.

HaplogroupAisthemostdiverseandhasthewidestgeographicdistributionacrossEthiopiaandtheworld(Naderietal.,2007,2008).Naderietal.(2008)suggestedthatitoriginatedfromEasternAnatolia.HaplogroupGhas beenobserved inTurkey, Iran, SaudiArabia, andEgyptandNaderietal. (2007)suggestedthat itoriginatesfromIran(Northern and Central Zagros). Both haplogroups (A and G) havebeen observed in Egypt (Naderi etal., 2007), one of the historicalentrypointsofdomesticatesintotheAfricancontinent,andrecentlyinKenya(Kibegwaetal.,2015).GiventhattheearliestarcheologicalevidenceforthepresenceofdomesticgoatsinAfricadatesto5000

F IGURE  3 Mismatchdistributionpatternsforeachandacrossthe13EthiopiangoatpopulationsanalyzedinthisstudyandforthetwohaplogroupsrevealedbytheNJtreeandMJnetworkanalysis

Page 9: Edinburgh Research Explorer · C, D, F, and G) with a weak phylogeographic structure have been re-ported in domestic goats (Luikart et al., 2001; Naderi et al., 2007). This was initially

8  |     TAREKEGN ET Al.

BCinNorthAfrica,that is,Egypt,Libya,andAlgeria (Hassan,2000),it is likelythatthetwohaplogroupsarrivedattheirearliest inEgyptfollowingterrestrialroutescrisscrossingtheSinaiPeninsula,RedSeaHills, andMediterranean Sea Coast (Hassan, 2000). Following theirarrival inEgypt,archeologicalevidence indicates that, togetherwithsheep,goatsdispersedsouthwardsintoSudanandEthiopiafollowingtheNileriverbasin(Chaix&Grant,1987;Clutton-Brock,2000).Thefactthatweobservedtwohaplotypes(H128andH133)ofhaplogroupAthataresharedbetweenEthiopianandEgyptiangoats,two(H164andH166)sharedbetweenEthiopiaandKenyangoatsandone(H102)sharedbetweenEthiopianandSaudiArabiangoats(Figure2andTableS4), suggest that the southwardmovement of goats along theNilevalley,aswellas,themovementofgoatsacrosstheRedSeafromtheArabian Peninsula could have introduced haplogroupA to Ethiopia.The Ethiopian and Kenyan goats also shared the central haplotype(H13)ofhaplogroupGwithSaudiArabiangoatssuggestingapossibleintroductionofthishaplogrouptoEthiopia,eitherindependentlyorasacompaniontohaplogroupA,fromtheArabianPeninsula.Indeed,theprehistoricandhistorictranslocationofdomesticatesincludingcattle,sheep,andgoatsbetweentheArabianPeninsula,northeastAfrica,andtheHornofAfricafollowingterrestrialandmaritimerouteshasbeenreported (see review by Boivin & Fuller, 2009). Similarly, Ethiopiangoats share four haplotypes (two each of haplogroupA (H164 andH166) andG (H13 andH125))withKenyan goats suggestingmostlikelycommonmaternaloriginsanddispersionpatternsofgoatsfoundinthewiderHornofAfricaregion.

We observed a bimodal pattern of distribution ofmismatches ineach,andacrossthe13populations,ofEthiopianindigenousgoats.Thisresultappearstosuggestthelikelyexpansionofthetwohaplogroups

into Ethiopia as they are found in each of the populations analyzed.However,thismaynotbethecase.Aseparateanalysisofthetwohap-logroupsalsorevealedthebimodalpattern,suggestingtheexistenceoflargevariationwithinthehaplogroups.Collietal.(2015)foundatleastsevensubhaplogroups (A1–A7)withinhaplogroupA.Althoughnotasdistinctasweobserveinourdataset,thedataofKibegwaetal.(2015)alsoappeartoshowbimodalpeaksforhaplogroupsAandGinKenyangoatsandChenetal.(2005)alsoobservedabimodalpeakforhaplogoupBinChinesegoats.Furthermore,theBSPanalysisinterestinglyindicatesthattheexpansionofthetwohaplogroupspredatesthetimeperiodofgoatdomestication,afindingthatwasalsoreportedbyNomuraetal.(2013)andCollietal. (2015).Their introductionalone intoEthiopia isthereforenot sufficient toexplain thebimodalpatterns.Toouropin-ion, an alternative interpretationwould be that the bimodal patternsindicate, in general, two independent expansion events of goats intoEthiopiaand,mostlikely,thewiderHornofAfricaregion.Theexpansiondepictedbythefirstpeakcouldcorrespondtothe initial introductionofgoatstotheregionfromeitherEgyptand/ortheArabianPeninsulaandthesecondpeakcouldrepresentthesecondarydispersalofgoats,throughtradeandsocio-culturalinteractions,withinandacrossEthiopiaandtheregionatlarge.Thissecondarydispersalmostlikelycontributedto the geographic inter-mixing of the two haplogroups. Indeed, mo-leculargeneticevidencehasrevealedtheabsenceofphylogeographicstructure among Ethiopian ethnic communities (Christopher, 2011;Paganietal.,2012)andindigenouscattlepopulations(Dadietal.,2008;Edeaetal.,2013).Thishasbeenattributedtopastandrecentextensivehumanmovementsassupportedbyhistorical,social,andanthropolog-icalevidences(Habitamu,2014;Mpofu,2002;Yilma,1967).TheBSPsrevealedareductioninNebeginningaround5,000and1,500YBPfor

TABLE  3 PopulationdemographicparametersestimatedfromtheanalysisoftheHV-IregionofthemtDNAd-loopin13Ethiopiangoatpopulations

Population/haplogroup N S SSD (p-value)Raggedness index “r” (p- value)

Tajima’s D (p-value)

Fu’s FS (p-value)

Short-earedSomali 17 66 0.02(.14) 0.01(.74) −0.61(.28) −6.31(.01)

Long-earedSomali 19 67 0.02(.12) 0.01(.74) −0.67(.27) −3.8(.07)

HarargheHighland 22 65 0.03(.12) 0.02(.11) −0.09(.56) −9.77(.00)

Nubian 37 88 0.01(.08) 0.01(.23) −0.82(.22) −3.95(.11)

Abergelle 35 78 0.02(.04) 0.01(.64) 0.01(.60) −12.32(.00)

Arsi-Bale 19 69 0.01(.53) 0.01(.82) −1.16(.12) −6.22(.01)

Ambo 16 68 0.03(.09) 0.02(.51) −0.52(.32) −0.73(.31)

Afar 33 80 0.02(.22) 0.01(.86) −0.87(.20) −15.69(.00)

Agew 15 56 0.03(.13) 0.06(.04) −0.51(.2) −1.86(.15)

Gumez 25 66 0.02(.28) 0.01(.46) −0.06(.51) −3.06(.11)

Gondar 27 70 0.02(.13) 0.01(.50) 0.10(.58) −6.39(.02)

Keffa 24 62 0.01(.40) 0.01(.63) 1.574(.03) −5.55(.02)

Woyto-Guji 18 63 0.02(.37) 0.01(.89) −0.22(.47) −6.8(.01)

HaplogroupA 258 164 0.001(.23) 0.01(.31) −1.50(.02) −24.99(.00)

HaplogroupG 49 89 0.0002(.97) 0.03(.79) −1.86(.01) −26.31(.00)

All 309 174 0.02(.20) 0.02(.55) −1.53(.05) −25.63(.00)

N,samplesizes;S,segregatingsites;SSD,sumofsquareddeviations.

Page 10: Edinburgh Research Explorer · C, D, F, and G) with a weak phylogeographic structure have been re-ported in domestic goats (Luikart et al., 2001; Naderi et al., 2007). This was initially

     |  9TAREKEGN ET Al.

haplogroupAandG,respectivelysuggestingdifferentdemographichis-toriesforthetwohaplogroups.Thetimingofthiseventseemstosug-gestthatthedeclineinNeforhaplogroupAstartedpriortoitsarrivalinEthiopiawhilethatofhaplogroupGstartedwhenithadalreadyarrivedinthecountry.WhilethedeclineinhaplogroupAcanbeattributedtothebottleneckcreatedbytheintroductionofasmallnumberofindivid-ualsoftheoriginalgeneticstock(Bruford,Bradley,&Luikart,2003),thatofhaplogroupGmayhavebeendrivenbytherinderpestpandemicofthe1800s(Blench,1993;Payne&Hodges,1997)andasequelofseveredroughtsandpoliticalupheavals(Verschuren,Laird,&Cumming,2000)thatoccurredinthewiderHornofAfricaregion.ThelattercouldalsohaveaffectedhaplogroupA.AsimilardeclineinNedatingtothesametimeperiodhasalsobeenobservedintheEastAfricanshorthornzebucattle fromwestern Kenya using SNP genotype data (Mbole-Kariukietal.,2014).

5  | CONCLUSIONS

WeobservedahighlevelofmaternalgeneticdiversityinEthiopiangoatpopulationswhichwasexplainedby231haplotypes thatde-finedtwohaplogroups(AandG)thatlackedaclearphylogeographicstructure.Asobservedinotherpopulations,haplogroupAwasthe

most diverse and geographically widespread. Human-mediatedtranslocationsthroughcommercialtrading,socio-culturalexchanges,and seasonal migrations in search of forage and water resourcescould explain the lackof phylogeographic structure. The initial in-troductionof the twohaplogroupsand their subsequent intermix-inghascreatedagenetictreasure-troveofcaprinegeneticdiversitythatcanbeexploitedinbreedingprogramsaimedatimprovingthespecies.

ACKNOWLEDGMENTS

We extend special thanks to flock owners and the district agricul-ture and rural development offices in Ethiopia for support duringsampling.ThisprojectwassupportedbytheBecA-ILRIHubthroughthe Africa Biosciences Challenge Fund (ABCF) program. The ABCFProgramisfundedbytheAustralianDepartmentforForeignAffairsandTrade(DFAT)throughtheBecA-CSIROpartnership;theSyngentaFoundation for Sustainable Agriculture (SFSA); the Bill & MelindaGates Foundation (BMGF); the UK Department for InternationalDevelopment (DFID); and the Swedish International DevelopmentCooperation Agency (Sida). JMM was supported by the CGIARResearchprogramonLivestock(LivestockCRP)andILRIandICARDAthankthedonorssupportingtheLivestockCRP.Thisstudyformspart

F IGURE  4 BayesianSkylinePlotsfor(a)HaplogroupAand(b)HaplogroupGbasedontheanalysisoffirst481bpoftheHV-IregionofmtDNAd-loop

Page 11: Edinburgh Research Explorer · C, D, F, and G) with a weak phylogeographic structure have been re-ported in domestic goats (Luikart et al., 2001; Naderi et al., 2007). This was initially

10  |     TAREKEGN ET Al.

ofourongoingeffortstounderstandlocalindigenouslivestocktoim-provetheirproductivity.

CONFLICT OF INTEREST

Nonedeclared.

AUTHOR CONTRIBUTIONS

KT,OAM,AD,TD,andJBconceivedthestudy.GMdidthesampling;OAM,AD,TD,andJBprovidedguidanceduringsamplingandlabora-toryanalysis;GM,SO,NZ,AA,GA,JT,CM,andJNperformedlabo-ratoryanalysis anddatamanagement.GManalyzed thedata; JMMguideddataanalysisandinterpretation;GMandJMMwrotetheman-uscript.Allauthorsreadandapprovedthefinalmanuscript.

ETHICAL CLEARANCE

All theanimalsused in thisstudyareownedbysmall-scale farmersandpastoralists inEthiopia.Prior tosampling, theobjectivesof thestudywerecommunicatedtoallthefarmers,intheirlocallanguagesforeaseofunderstanding,followingwhichpermissionwasobtainedtosampletheanimals.

ORCID

Getinet Mekuriaw Tarekegn http://orcid.org/0000-0001-7221-2473

Collins Mutai http://orcid.org/0000-0002-0951-9023

REFERENCES

Abegaz,S.(2014).DesignofcommunitybasedbreedingprogramsfortwoindigenousgoatbreedsofEthiopia.DoctoralThesis,BOKU-Universityof Natural Resources and Life sciences, Department of SustainableAgriculturalSystems,DivisionofLivestockSciences,Vienna,Austria.

Amills, M., Ramírez, O., Tomàs, A., Badaoui, B., Marmi, J., Acosta, J., …Capote,J. (2008).MitochondrialDNAdiversity andoriginsof SouthandCentralAmericangoats.Animal Genetics,40,315–322.

Bandelt,H.J.,Forster,P.,&Röhl,A.(1999).Median-joiningnetworksforin-ferringintraspecificphylogenies.Molecular Biology and Evolution,16(1),37–48.https://doi.org/10.1093/oxfordjournals.molbev.a026036

Blench,R.(1993).EthnographicandlinguisticevidencefortheprehistoryofAfricanruminant,livestock,horsesandponies.InT.Shaw,P.Sinclair,B.Andah,&A.Okpoko (Eds.),The archeology of Africa (pp. 71–103).London,UK:Routledge.

Boivin,N.,&Fuller,D.Q.(2009).Shellmiddens,shipsandseeds:Exploringcoastalsubsistence,maritimetradeandthedispersalofdomesticatesinandaroundtheancientArabianPeninsula.Journal of World Prehistory,22,113–180.https://doi.org/10.1007/s10963-009-9018-2

Bruford,M.W.,Bradley,D.G.,&Luikart,G. (2003).DNAmarkersrevealthecomplexityoflivestockdomestication.Nature Reviews Genetics,4,900–910.https://doi.org/10.1038/nrg1203

Chaix,L.,&Grant,A.(1987).Astudyofaprehistoricpopulationofsheep(O. aries L.) fromKerma (Sudan) archaeozoologial and archaeologicalimplications.Archaeozoologia,1,93–107.

Chen,S.Y.,Su,Y.H.,Wu,S.F.,Sha,T.,&Zhang,Y.P.(2005).Mitochondrialdiversity and phylogeographic structure of Chinese domestic goats.

Molecular Phylogenetics and Evolution, 37(3), 804–814. https://doi.org/10.1016/j.ympev.2005.06.014

Christopher, A. P. (2011). Variation in Y chromosome, mitochondrialDNAand labelsof identity inEthiopia.PhDdissertation,TheCentrefor Genetic Anthropology, department of Genetics Evolution andEnvironment,UniversityCollege,London.

Clutton-Brock,J.(2000).Cattle,sheep,andgoatssouthoftheSahara:Anarchaezoologicalperspective.InR.M.Blench&K.C.MacDonald(Eds.),The origins and development of African livestock: Archaeology, genetics, linguistics and ethnography(pp.30–37).London,UK:UCLPress.

Colli,L.,Lancioni,H.,Cardinali,I.,Olivieri,A.,Capodiferro,M.R.,Pellecchia,M.,…Achilli,A.(2015).Wholemitochondrialgenomesunveiltheim-pactofdomesticationongoatmatrilinealvariability.BMC Genomics,16,1115.https://doi.org/10.1186/s12864-015-2342-2

Dadi,H.,Tibbo,M.,Takahashi,Y.,Nomura,K.,Hanada,H.,&Amano,T.(2008).MicrosatelliteanalysisrevealshighgeneticdiversitybutlowgeneticstructureinEthiopianindigenouscattlepopulations.Animal Genetics,39,425–431.https://doi.org/10.1111/j.1365-2052.2008.01748.x

Doro,M.G.,Piras,D.,Leoni,G.G.,Casu,G.,Vaccargiu,S.,Parracciani,D.,…Novelletto,A. (2014).Phylogenyandpatternsofdiversityof goatmtDNA haplogroup A revealed by resequencing complete mitoge-nomes. PLoS ONE, 9(4), e95969. https://doi.org/10.1371/journal.pone.0095969

Drummond,A.J.,Rambaut,A.,Shapiro,B.,&Pybus,O.G.(2005).Bayesiancoalescentinferenceofpast484populationdynamicsfrommolecularsequences.Molecular Biology and Evolution,22,1185–1192.https://doi.org/10.1093/molbev/msi103

Drummond,A.J.,Suchard,M.A.,Xie,D.,&Rambaut,A. (2012).BayesianphylogeneticswithBEAUti486andtheBEAST1.7.Molecular Biology and Evolution,29,1969–1973.https://doi.org/10.1093/molbev/mss075

Edea,Z.,Dadi,H.,Kim,S.W.,Dessie,T.,Lee,T.,Kim,K.,…Kim,K.S.(2013).Geneticdiversity,populationstructureandrelationshipsinindigenouscattlepopulationsofEthiopiaandKoreanHanwoobreedsusingSNPmarkers.Frontiers in Genetics,4,35.

Excoffier, L., & Lischer, H. (2010). An Integrated Software Package forPopulationGeneticsDataAnalysis.ARLEQUINver3.5.1.3Userman-ual.Retrievedfromhttp://cmpg.unibe.ch/software/arlequin3

FARM-Africa(1996).GoatTypesofEthiopiaandEritrea.Physicaldescriptionandmanagementsystems.PublishedjointlybyFARM-Africa,London,UK,andILRI(InternationalLivestockResearchInstitute),Nairobi,Kenya,pp76.

Fu,Y.X. (1997).Statistical testsofneutralityofmutationsagainstpopu-lationgrowth,hitchhikingandbackgroundselection.Genetics,147(2),915–925.

Gifford-Gonzalez,D.,&Hanotte,O.(2011).DomesticatinganimalsinAfrica:Implications of genetic and archaeological findings. Journal of World Prehistory,24(1),1–23.https://doi.org/10.1007/s10963-010-9042-2

Girma, A. (1988). Drought and Famine in Ethiopia and the Effort toOvercomeIt,3NotreDameJ.L.EthicsandPub.Poly71.

Habitamu,A.(2014).(2006E.C.).Countryandpolitics(Amharicversion,1sted.).AddisAbaba,Ethiopia.

Harpending,H.C.(1994).Signatureofancientpopulationgrowthinalow-resolutionmitochondrialDNAmismatchdistribution.Human Biology,66,591–600.

Hassan,F.A.(2000).ClimateandcattleinNorthAfrica:Afirstapproxima-tion.InK.C.MacDonald&R.M.Blench(Eds.),The origins and develop-ment of African Livestock: Archaeology, genetics, linguistics, and ethnogra-phy(pp.61–86).London,UK:UCLPress.

Huson,D.H.,&Bryant,D.(2006).Applicationofphylogeneticnetworksinevolutionarystudies.Molecular Biology and Evolution,23(2),254–267.https://doi.org/10.1093/molbev/msj030

Joshi, M. B., Rout, P. K., Mandal, A. K., Tyler-Smith, C., Singh, L., &Thangaraj, K. (2004). Phylogeography and origin of Indian domesticgoats.Molecular Biology and Evolution,21(3),454–462.

Kibegwa,F.M.,Githui,K.E.,Jung’a,J.O.,Badamana,M.S.,&Nyamu,M.N.(2015).MitochondrialDNAvariationofindigenousgoatsinNarok

Page 12: Edinburgh Research Explorer · C, D, F, and G) with a weak phylogeographic structure have been re-ported in domestic goats (Luikart et al., 2001; Naderi et al., 2007). This was initially

     |  11TAREKEGN ET Al.

and IsiolocountiesofKenya.Journal of Animal Breeding and Genetics,133(3),1–10.

Librado,P.,&Rozas,J. (2009).DnaSPv5:A software for comprehensiveanalysis of DNA polymorphism data. Bioinformatics, 25(11), 1451–1452.https://doi.org/10.1093/bioinformatics/btp187

Liu,R.U.,Yang,G.S.,&Lei,C.Z.(2006).TheGeneticDiversityofmtDNAd-loop and theOrigin of Chinese Goats.Acta Genetica Sinica,33(5),420–428.

Luikart, G., Gielly, L., Excoffier, L.,Vigne, J.D., Bouvet, J., &Taberlet, P.(2001).Multiplematernaloriginsandweakphylogeographicstructureindomestic goats.Proceedings of the National Academy of Sciences of the United States of America,98,5927–5932.https://doi.org/10.1073/pnas.091591198

Mannen,H.,Nagata,Y.,&Tsuji,S.(2001).MitochondrialDNArevealthatdomesticgoat(Capra hircus)aregeneticallyaffectedbytwosubspeciesofBezoar(Capra aegagurus).Biochemical Genetics,39(5/6),145.https://doi.org/10.1023/A:1010266207735

Mbole-Kariuki, M. N., Sonstegard, T., Orth, A., Thumbi, S. M., de CBronsvoort,B.M.,Kiara,H.,…Tapio,M.(2014).Genome-wideanalysisrevealstheancientandrecentadmixturehistoryofEastAfricanshort-hornZebu fromwesternKenya.Heredity,113, 297–305.https://doi.org/10.1038/hdy.2014.31

Mpofu,N. (2002).ThemultiplicationofAfrica’s indigenouscattlebreedsinternationally: The story of the Tuli and Boran breeds.AGTR CaseStudy.Nairobi,Kenya: ILRI.Retrieved fromhttps://cgspace.cgiar.org/handle/10568/3600

Naderi, S., Rezaei, H. R., Pompanon, F. O., Blum, M. G. B., Negrini, R.,Naghash,H.R.,…Taberet,P.(2008).Thegoatdomesticationprocessinferredfromlarge-scalemitochondrialDNAanalysisofwildanddo-mestic individuals. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 17659–17664. https://doi.org/10.1073/pnas.0804782105

Naderi,S.,Rezaei,H.R.,Taberlet,P.,Zundel,S.,Rafat,S.A.,Naghash,H.R.,…EconogeneConsortium (2007).Large-scalemitochondrialDNAanalysisof thedomesticgoatrevealssixmaternal lineageswithhighhaplotypediversity.PLoS ONE,2(10),e1012.https://doi.org/10.1371/journal.pone.0001012

Newman, J. L. (1995). The peopling of Africa: A geographic interpretation. NewHaven,CT:YaleUniversityPress,Yale.

Nomura, K., Yonezawa, T., Mano, S., Kawakami, S., Shedlock, A. M.,Hasegawa,M.,&Amano,T.(2013).Domesticationprocessofthegoatrevealedbyananalysisofthenearlycompletemitochondrialprotein-encoding genes. PLoS ONE, 8(8), e67775. https://doi.org/10.1371/journal.pone.0067775

Oliver,J.(1983).BeefcattleinZimbabwe.Zimbabwe Journal of Agricultural Research,21,1–17.

Pagani, L., Kivisild, T., Tarekegn,A., Ekong, R., Plaster, C., Romero, I. G.,… Tyler-Smith, C. (2012). Ethiopian genetic diversity reveals lin-guistic stratification and complex influences on the Ethiopian genepool.The American Journal of Human Genetics,91,83–96.https://doi.org/10.1016/j.ajhg.2012.05.015

Payne,W. J. A., & Hodges, J. (1997). Tropical cattle: Origins, breeds and breeding policies.Oxford,UK:BlackwellScience.

Pereira,F.,Pereira,L.,Van-Asch,B.,Bradley,D.G.,&Amorim,A. (2005).ThemtDNAcatalogueofallPortugueseautochthonousgoat(Capra hir-cus)breeds:HighdiversityoffemalelineagesatthewesternfringeofEuropeandistribution.Molecular Ecology,14,2313–2318.https://doi.org/10.1111/j.1365-294X.2005.02594.x

Rogers,A.R.,&Harpending,H.(1992).Populationgrowthmakeswavesinthedistributionofpairwisegeneticdifferences.Molecular Biology and Evolution,9,552–569.

Salim,B.,Taha,B.K.,Hanotte,O.,&Mwacharo,J.M.(2014).Historicalde-mographicprofilesandgeneticvariationoftheEastAfricanButanaandKenanaindigenousdairyzebucattle.Animal Genetics,45(6),782–790.https://doi.org/10.1111/age.12225

Sardina,M.T.,Ballester,M.,Marmi,J.,Finocchiaro,R.,vanKaam,J.B.C.H.M.,Portolano,B.,&Folch,J.M.(2006).PhylogeneticanalysisofSiciliangoatsrevealsanewmtDNAlineage.Animal Genetics,37(4),376–378.https://doi.org/10.1111/j.1365-2052.2006.01451.x

Shinde, D. B., Gujar, B.V., Patil, H. B., Satpute, S.A., & Kashid, U. B.(2008).Protocolfor isolationofgenomicDNAfromlivestockbloodfor microsatellite analysis. Indian Journal of Animal Research, 42(4),279–281.

Sievers,F.,Wilm,A.,Dineen,D.,Gibson,T.J.,Karplus,K.,Li,W.,…Higgins,D.G.(2011).Fast,scalablegenerationofhigh-qualityproteinmultiplesequencealignmentsusingClustalOmega.Molecular Systems Biology,7,539.

Sultana, S., Mannen, H., & Tsuji, S. (2003). Mitochondrial DNA diver-sity of Pakistani goats.Animal Genetics, 34(6), 417–421. https://doi.org/10.1046/j.0268-9146.2003.01040.x

Tajima,F. (1989). Statisticalmethod for testing theneutralmutationhy-pothesisbyDNApolymorphism.Genetics,123,585–595.

Tamura,K.,Stecher,G.,Peterson,D.,Filipski,A.,&Kumar,S.(2013).MEGA6:Molecularevolutionarygeneticsanalysisversion6.0.Molecular Biology and Evolution,30(12),2725–2729.https://doi.org/10.1093/molbev/mst197

Tesfaye, A. T. (2004). Genetic Characterization of Indigenous GoatPopulations of Ethiopia using Microsatellite DNA Markers. A PhDthesis submitted to the National Dairy Research Institute, DeemedUniversity,Karnal-Haryana,India.

Verschuren,D.,Laird,K.R.,&Cumming,B.F.(2000).RainfallanddroughtinequatorialeastAfricaduringthepast1,100years.Nature,403,410–414.https://doi.org/10.1038/35000179

Wetterstrom,W.(1993).ForagingandfarminginEgypt:ThetransitionfromhuntingandgatheringtohorticultureintheNileValley.InT.Shaw,P.Sinclair,B.Andah,&A.Okpoko(Eds.),The archaeology of Africa: Foods, metals, and towns(pp.165–226).London,UK:Routledge.

Yilma, D. (1967) (1959 E.C.). Ethiopian history in the 16th century.Berhanina Selam Kedamawi Hailie-Silassie Printing Agency. AddisAbaba,Ethiopia.

Zeder, M. A. (2008). Domestication and early agriculture in theMediterraneanBasin:Origins,diffusion,andimpact.Proceedings of the National Academy of Sciences of the United States of America,105(33),11597–11604.https://doi.org/10.1073/pnas.0801317105

Zeder,M., &Hesse, B. (2000).The initial domestication of goats (Capra hircus)intheZagrosMountains10,000yearsago.Science,287,2254–2257.https://doi.org/10.1126/science.287.5461.2254

SUPPORTING INFORMATION

Additional Supporting Informationmay be found online in the sup-portinginformationtabforthisarticle.

How to cite this article:TarekegnGM,TesfayeK,MwaiOA,etal.MitochondrialDNAvariationrevealsmaternaloriginsanddemographicdynamicsofEthiopianindigenousgoats.Ecol Evol. 2018;00:1–11. https://doi.org/10.1002/ece3.3710