eecs 126: probability & random processes fall 2020

13
EECS 126: Probability & Random Processes Fall 2021 PageRank Shyam Parekh

Upload: others

Post on 05-Nov-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EECS 126: Probability & Random Processes Fall 2020

EECS 126: Probability & Random ProcessesFall 2021

PageRank

Shyam Parekh

Page 2: EECS 126: Probability & Random Processes Fall 2020

โ€ข Originally used by Google for ranking the pages from a keyword search.

๐œ‹ ๐‘– =

๐‘—โˆˆ๐‘‹

๐œ‹ ๐‘— ๐‘ƒ ๐‘—, ๐‘– , โˆ€ ๐‘– โˆˆ ๐’ณ โŸบ ๐œ‹ = ๐œ‹๐‘ƒ

โ€ข Original algorithm also used a damping factor.

โ€ข With the normalization condition ๐‘–๐œ–๐‘‹ ๐œ‹(๐‘–) = 1, ฯ€ =1

39[12, 9, 10, 6, 2]

โ€ข This is similar to a Markov Chain (defined next).

PageRank

๐‘ƒ ๐ด, ๐ต = 1/2, ๐‘ƒ ๐ท, ๐ธ = 1/3, โ€ฆ

Page 3: EECS 126: Probability & Random Processes Fall 2020

โ€ข DTMC ๐‘‹(๐‘› , ๐‘› โ‰ฅ 0} over state space ๐’ณ with ๐‘ƒ = [๐‘ƒ(๐‘–, ๐‘—)] as the transition probability matrix with ๐‘ƒ ๐‘–, ๐‘— = ๐‘ƒ ๐‘‹ ๐‘› + 1 = ๐‘— ๐‘‹ ๐‘› = ๐‘–].

โ€“ State transition diagram.

โ€“ Memoryless Property: ๐‘ƒ ๐‘‹ ๐‘› + 1 = ๐‘— ๐‘‹ ๐‘› = ๐‘–, ๐‘‹ ๐‘š ,๐‘š < ๐‘›] = ๐‘ƒ ๐‘–, ๐‘— โˆ€ ๐‘–, ๐‘—.

โ€ข ๐œ‹๐‘›+1 i = ๐‘—โˆˆ๐‘‹ ๐œ‹๐‘› ๐‘— ๐‘ƒ(๐‘—, ๐‘–) โŸบ ๐œ‹๐‘›+1 = ๐œ‹๐‘›๐‘ƒ โŸบ ๐œ‹๐‘› = ๐œ‹0๐‘ƒ๐‘›, โˆ€ ๐‘› โ‰ฅ 0.

โ€“ A normalized ๐œ‹ is an invariant distribution โŸบ ๐œ‹ = ๐œ‹P.

โ€“ Irreducible: MC can reach any state from any other state (possibly in multiple steps).

โ€“ Aperiodic: Let ๐‘‘ ๐‘– โ‰” ๐‘”. ๐‘. ๐‘‘. ๐‘› โ‰ฅ 1 ๐‘ƒ๐‘› ๐‘–, ๐‘– > 0}. An irreducible DTMC is aperiodic if ๐‘‘ ๐‘– = 1, โˆ€ ๐‘–. (Fact: In an irreducible DTMC, ๐‘‘ ๐‘– is same โˆ€ i.)

Discrete Time Markov Chain (DTMC)

Irreducible & Periodic

Irreducible & Aperiodic

Reducible

Page 4: EECS 126: Probability & Random Processes Fall 2020

โ€ข Theorem: Consider an irreducible DTMC over a finite state space. Then,

(a) There is a unique invariant distribution ๐œ‹.

(b) Long-term fraction of time (๐‘‹ ๐‘› = ๐‘–) โ‰” lim๐‘โ†’โˆž

1

๐‘ ๐‘›=0๐‘โˆ’11{๐‘‹ ๐‘› = ๐‘–} = ฯ€(๐‘–).

(c) If the DTMC is aperiodic, ๐œ‹๐‘› โ†’ ๐œ‹.

โ€ข Example showing aperiodicity is necessary for (c).

โ€ข In part (c), ๐œ‹๐‘› โ†’ ๐œ‹ irrespective of the initial distribution ๐œ‹0.

โ€“ This implies each row of ๐‘ƒ๐‘› converges to ๐œ‹ as ๐‘› โ†’ โˆž.

Big Theorem for Finite DTMC

0 1

Page 5: EECS 126: Probability & Random Processes Fall 2020

Illustrations

Page 6: EECS 126: Probability & Random Processes Fall 2020

1. Mean Hitting Time ฮฒ ๐‘– โ‰” ๐ธ ๐‘‡๐ด ๐‘‹0 = ๐‘–], ๐‘– โˆˆ ๐’ณ, A โŠ‚ ๐’ณ.

โ€“ First Step Equations (FSEs) are: ๐›ฝ ๐‘– = 1 + ๐‘— ๐‘ƒ ๐‘–, ๐‘— ๐›ฝ ๐‘— , ๐‘–๐‘“ ๐‘– โˆ‰ ๐ด

0, ๐‘–๐‘“ ๐‘– โˆˆ ๐ด

2. Probability of hitting a state before another ฮฑ ๐‘– โ‰” ๐‘ƒ ๐‘‡๐ด < ๐‘‡๐ต ๐‘‹0 = ๐‘–], ๐‘– โˆˆ ๐’ณ, ๐ด, ๐ต โŠ‚ ๐’ณ, ๐ด โˆฉ ๐ต = โˆ….

โ€“ FSEs are: ๐›ผ ๐‘– =

๐‘— ๐‘ƒ ๐‘–, ๐‘— ๐›ผ ๐‘— , ๐‘–๐‘“ ๐‘– โˆ‰ ๐ด โˆช ๐ต

1, ๐‘–๐‘“ ๐‘– โˆˆ ๐ด0, ๐‘–๐‘“ ๐‘– โˆˆ ๐ต

3. Average discounted reward ๐›ฟ ๐‘– โ‰” ๐ธ ๐‘ ๐‘‹0 = ๐‘–], ๐‘– โˆˆ ๐’ณ, where ๐‘ = ๐‘›=0

๐‘‡๐ด ๐›ฝ๐‘›โ„Ž ๐‘‹ ๐‘› ,๐ด โŠ‚ ๐’ณ with 0 < ๐›ฝ โ‰ค 1 as the discount factor.

โ€“ FSEs are: ๐›ฟ ๐‘– = โ„Ž ๐‘– + ๐›ฝ ๐‘— ๐‘ƒ ๐‘–, ๐‘— ๐›ฟ ๐‘— , ๐‘–๐‘“ ๐‘– โˆ‰ ๐ด

โ„Ž ๐‘– , ๐‘–๐‘“ ๐‘– โˆˆ ๐ด

Hitting Times

Page 7: EECS 126: Probability & Random Processes Fall 2020

โ€ข Canonical Sample Space with outcome ๐œ” being the Markov Chain trajectory/realization:

โ€ข ๐‘ƒ ๐‘‹0 = ๐‘–0, ๐‘‹1 = ๐‘–1, โ€ฆ , ๐‘‹๐‘› = ๐‘–๐‘› = ๐œ‹ ๐‘–0 ๐‘ƒ ๐‘–0, ๐‘–1 โ€ฆ๐‘ƒ(๐‘–๐‘›โˆ’1, ๐‘–๐‘›)

โ€ข There exists a consistent probability measure over the sample space.

Markov Chain Trajectory/Realization

Page 8: EECS 126: Probability & Random Processes Fall 2020

โ€ข Let {๐‘‹ ๐‘– , ๐‘– โ‰ฅ 1} be a sequence of Independent and Identically Distributed (IID) RVs with mean ๐œ‡, and let ๐‘†(๐‘›) = ๐‘–=1

๐‘› ๐‘‹(๐‘–). Assume ๐ธ ๐‘‹ ๐‘– < โˆž.

โ€ข Strong Law of Large Numbers (SLLN): ๐‘ƒ( lim๐‘›โ†’โˆž

๐‘†(๐‘›)

๐‘›= ฮผ) = 1.

โ€“๐‘†(๐‘›)

๐‘›converges to ๐œ‡ almost surely.

โ€ข Weak Law of Large Numbers (WLLN): lim๐‘›โ†’โˆž๐‘ƒ(๐‘†(๐‘›)

๐‘›โˆ’ ๐œ‡ > ๐œ–) = 0, โˆ€ ๐œ– > 0.

โ€“๐‘†(๐‘›)

๐‘›converges to ๐œ‡ in probability.

โ€ข Almost sure convergence implies convergence in probability.

โ€ข SLLN Example: ๐‘Œ ๐‘› =๐‘†(๐‘›)

๐‘›, where ๐‘‹ ๐‘– = outcome of ith roll of a balanced die.

โ€ข Part (b) of the Big Theorem indicates almost sure convergence.

โ€“ For an irreducible DTMC over a finite numerical state space, 1

๐‘› ๐‘–=0๐‘›โˆ’1๐‘‹(๐‘–) converges almost

surely to ๐ธ(๐‘‹) where ๐‘‹ is an RV with the distribution same as the invariant distribution ๐œ‹.

Laws of Large Numbers

Page 9: EECS 126: Probability & Random Processes Fall 2020

โ€ข Let {๐‘‹ ๐‘– , ๐‘– โ‰ฅ 1} be a sequence of Independent and Identically Distributed (IID) RVs with mean ๐œ‡, and let ๐‘†(๐‘›) = ๐‘–=1

๐‘› ๐‘‹(๐‘–). Assume ๐ธ ๐‘‹(๐‘–)4 < โˆž.

โ€ข Strong Law of Large Numbers (SLLN): ๐‘ƒ( lim๐‘›โ†’โˆž

๐‘†(๐‘›)

๐‘›= ฮผ) = 1.

SLLN vs. WLLN, SLLN Proof

Page 10: EECS 126: Probability & Random Processes Fall 2020

โ€ข Ti = Time to return to i. Tiโ€™s are IID.

Key Points from the Big Theorem Proof

T0 T1 T2 T3 T4 T5

Page 11: EECS 126: Probability & Random Processes Fall 2020
Page 12: EECS 126: Probability & Random Processes Fall 2020
Page 13: EECS 126: Probability & Random Processes Fall 2020