視覚情報処理論 (visual information processing )7 5 8 8 median filter 3 x 3 filter gaussian...

of 98 /98
視覚情報処理論 (Visual Information Processing ) 開講所属: 学際情報学府 (Wed)5 [16:50-18:35]

Author: others

Post on 07-Jun-2020

3 views

Category:

Documents


0 download

Embed Size (px)

TRANSCRIPT

  • 視覚情報処理論

    (Visual Information Processing )開講所属: 学際情報学府水(Wed)5 [16:50-18:35]

  • Schedule• 9/ 26 Introduction (Prof. Oishi)• 10/3 Patch-based Object Recognition (1) (Dr. Kagesawa)• 10/10 Patch-based Object Recognition (2) (Dr. Kagesawa)• 10/17 Computer Vision basics (1)(Prof. Oishi)• 10/24 Computer Vision basics (2)(Prof. Oishi)• 10/31 Image and Video Inpainting (1) (Dr. Roxas) (※in English)• 11/7 Image and Video Inpainting (2) (Dr. Roxas) (※in English)• 11/14 (Cancelled)• 11/21 Vision for Robotics Applications (1) (Dr. Sato)• 11/28 Vision for Robotics Applications (2) (Dr. Sato)• 12/5 3D Data Visualization (1) (Dr. Okamoto)• 12/12 3D Data Visualization (2) (Dr. Okamoto)• 12/19 3D Data Processing (1) (Prof. Oishi)• 1/9 3D Data Processing (2) (Prof. Oishi)

  • Computer Vision Paradigm (Marr)

    2.5D Image

    2D Image

    3D representation

    Integration

    Brightness Texture Line drawing Stereo Motion

    Observer oriented

    3D Feature Extraction(shape-from-x)

    Object oriented 3D Model

  • Digital image processing (2D)

  • What is digital image?Analog information (Film, Painting, Real world)

    Digital image• Digital camera• Smart phone• PC data, IT• Digital broadband

    Discretization & Sampling

  • SamplingDiscrete segmentation of analog data

    Analog data(Time and value are sequential)

    Sampling data(Time is discrete)

    Sampling interval

  • Sampling2D digital image

    Image resolution is defined by sampling interval

  • What is pixel?Unit of 2D digital image Space sampling

    0 1 N-1

    0

    1

    M-1

    columns

    rows

    Digital imageM x N pixels

    n

    m

  • Sampling-Resolution

    320 x 240pixels

    160 x 120pixels

    80 x 60pixels

    40 x 30pixels

  • QuantizationSampled values are discretized

    Sampled data(Time line is discrete)

    Quantization bit:3 bit = 8 level8 bit = 256 level

    Digital data(Both time and value are discrete)

  • Quantization2-D digital image

    Number of color depends on quantization bit

    0

    0

    0

    1

    1

    1

    1

    0

    0

    1

    2

    2

    2

    1

    0

    0

    2

    3

    3

    2

    1

    0

    2

    3

    5

    3

    2

    0

    0

    2

    3

    3

    3

    2

    0

    0

    1

    2

    2

    2

    0

    0

    0

    1

    1

    1

    0

    0

    0

    Color is represented by number

  • Color representationHow many colors do we need?

    4colors(2bi)

    16colors(4bit)

    256colors(8bit)

    16.7 millioncolors(32bit)

  • High Dynamic Range Imaging: HDRI

  • Exposure time - Intensity [Mathias Eitz, Claudia Stripf,High Dynamic Range Imaging, 2007]

    Under Exposure Over Exposure

  • Dynamic range

    Human

    Camera

  • Multiple capturing

  • Camera response function

    Exposure Exposure

  • Estimation of camera response functionCapturing multiple images with different exposure time

  • Computation of response curve

    Zij = f (Eitj )f −1 (Zij ) = Eitjln f −1 (Zij ) = ln Ei + lntj

    Log Exposure

    Zij : Pixel valuef : Camera response functionEi : Radiancetj : Exposure time

  • Displaying HDRI

    HDRI

    LDRI

  • Tone mappingLinear mapping Logarithmic mappingGlobal Reinhard operator

    L (x, y) = L(x,y) / 1+L(x,y)

  • Results of tone mapping

    without tone mapping with tone mapping

  • HDRI Video [Kalantari et al. Patch-Based High Dynamic Range Video, TOG 2013]

  • Filtering

  • FilteringPre-processing for Computer Vision

    • Noise reduction• Image enhancement• Feature extraction

    FILTER ?

  • Spatial – Frequency filterProcessing in spatial domain

    • Neighboring pixels

    Processing in frequency domain• Using Fourier Transform

  • Image NoiseNoise source

    • Capturing

    • Compression/Transfer

  • Mean filterReplace value with mean of neighboring points

    0 5

    5

    3

    3

    1

    4

    10

    8

    8

    7

    6

    8

    5

    0

    9

    4

    8

    5

    9

    10

    9

    7

    7

    5 3 x 3(5 x 5)(7 x 7)

    1 / 9

    1 / 9

    1 / 9

    1 / 9

    1 / 9

    1 / 9

    1 / 9

    1 / 9

    1 / 9

    10 / 9

    8 / 9

    8 / 9

    8 / 9

    5 / 9

    0 / 9

    9 / 9

    7 / 9

    7 / 9

    0 5

    5

    3

    3

    1

    4

    10

    8

    8

    7

    6

    8

    5

    0

    9

    4

    8

    5

    9

    10

    9

    7

    7

    5

    7

    8

  • Mean filterWeighted average

    0 5

    5

    3

    3

    1

    4

    10

    8

    8

    7

    6

    8

    5

    0

    9

    4

    8

    5

    9

    10

    9

    7

    7

    5

    4 / 16

    2 / 16

    2 / 16

    2 / 16

    1 / 16

    1 / 16

    2 / 16

    1 / 16

    1 / 16

    40 / 16

    16 / 16

    16 / 16

    16 / 16

    5 / 16

    0 / 16

    18 / 16

    7 / 16

    7 / 16

    0 5

    5

    3

    3

    1

    4

    10

    8

    8

    7

    6

    8

    5

    0

    9

    4

    8

    5

    9

    10

    9

    7

    7

    5

    8

    6

  • Mean filter (Smoothing, Averaging)for Gaussian noise

    Noise image(5% Gaussian)

    Average Weighted average

  • Mean filterEx. Shot noise

    Noise image(Random binary)

    Average Weighted average

  • Non-linear filterMaximum filter

    • Replace target value with maximum value in a window

    Minimum filter• Replace target value with minimum value in a window

    Median filter

  • 1098887750

    7859108780

    ソート 中央値

    Median filterReplace target value with median value in a window

    0 5

    5

    3

    3

    1

    4

    10

    8

    8

    7

    6

    8

    5

    0

    9

    4

    8

    5

    9

    10

    9

    7

    7

    5

    0 5

    5

    3

    3

    1

    4

    10

    8

    8

    7

    6

    8

    5

    0

    9

    4

    8

    5

    9

    10

    9

    7

    7

    5

    8

    8

  • Median filter3 x 3 Filter

    Shot noiseGaussian noise

  • Edge detection

  • Edge typesStep edge

    Roof edge

    Peak edge

    x

    x

    x

  • 1-D edge differentialFirst and second order differentials

    Fig. from Digital Image Processing (Springer)

    Original signal

    First order

    Second order

  • Gradient-baseOperator of first order differential

    Discrete difference equation

    y

    f

    x

    fyxf ,,

    nmfnmfnmf

    nmfnmfnmf

    y

    x

    ,1,,

    ,,1,

    2 x 2 size

    1,1,,

    ,1,1,

    nmfnmfnmf

    nmfnmfnmf

    y

    x

    3 x 3 size

    Strength and direction of edge

  • Gradient-baseOperators

    • Roberts

    • Prewitt

    • Sobel

    10

    01

    01

    10\/ DD

    111

    000

    111

    101

    101

    101

    yx DD

    121

    000

    121

    101

    202

    101

    yx DD

  • Gradient-basePrewitt operator

    Dx Dy

  • Laplacian operatorOperator of second order differential

    Strength of edge is estimated

    010

    141

    010

    2

    2

    1

    121222 yx DD xxx DDD 2

    010

    141

    0102

    111

    181

    1112

    4 direction 8 direction

    yyy DDD 2

  • Laplacian operatorLaplacian operator

    4 direction 8 direction

  • Laplacian of GaussianDifferential operation is weak to noiseGaussian filter (noise reduction) -> Laplacian operator

    Laplacian of Gaussian 222 2/

    2

    1,G

    yxeyx

    222 2/2

    22

    42 2

    2

    1,G

    yxeyx

    yx

  • Laplacian of GaussianLOGオペレータ

    1 2

  • Line drawing analysis

  • Line drawing extraction

    Original image Differential image Line drawing image

  • 3D Information form Line DrawingGiven

    • Line drawing(2D)Find

    • 3D object that projects to given lines

    Find• How do you think it’s a cube,

    not a painted pancake?

  • Line types

    convex concave

    occluding occluding

  • Labeling a Line Drawing

    Easy to label lines for this solid→Now invert this in order to understand shape

  • Enumerating Possible Line Labeling without Constraints

    •9 lines•4 labels each

    →4x4x4x4x4x4x4x4x4= 262,144 possibilitiesWe want just one reality

    must reduce surplus possibilities→Need constraints (by 3D relationship)

  • Huffman & Clows Junction DictionaryAny other arrangements

    cannot ariseHave reduced configuration

    from 208 to 12

    • L-type - 6• ARROW-type - 3• FORK-type - 3

  • Constraints on LabelingWithout constraints-- 262,144 possibilitiesConsider →3x3x3x6x6x6x3= 17496 possibilitiesconstraints

    We can reduce more bycoherency/consistency along line.

  • Labeling by Constraint Propagation“Waltz filtering”By coherence rule, line label constrains neighborsPropagate constraint through common vertexUsually begin on boundaryMay need to backtrack

  • Impossible objectsNo consistent labelingBut some do have a consistent labeling

    • What’s wrong here?

  • Limitations of Line LabelingOnly qualitative; only gets topologySomething wrong

  • Color theory

  • Color Theory for Computer VisionColor in several domains:

    • Physics• Human vision• Psychophysics• Perception• Computer Vision

    Color problems in Computer Vision:• Color for segmentation• Color for reflection physics

  • Color spectrum

    Intensity at each wavelength

  • RGB imageRGB color model

    r=255g=5b=10

    DSC(Digital Still Camera)

    Spectrum is compressed to three color valuesResponse function

  • IlluminationSpectrum is richer than RGB

  • Are RGB enough?5900K light

    MetamerismNatrium light

    Standard illumination

    D50 light

  • Spectral distribution measurement

  • Interference CameraSpectrum varies along the position

    Interference filter

  • Y

  • Panoramic Multispectral Imaging SystemLCTF Capturing System

    Automatic Pan/Tilt Platform

  • LCTF Capturing system

    ・・・

    t (s)400nm ~ ~720nm

    Target scene

    LCTFMonochromatic CCD camera

    400nm404nm408nm416nm・・・nm・・・nm・・・nm・・・nm・・・nm・・・nm・・・nm712nm716nm720nm

    PC

    [Tominaga et al. 00]

  • Tumulus and hill

  • In what condition painted?under sun-lightunder torch?

    � U Tokyo / Topan / Kyushu National Museum

  • Simulation ResultsSimulation results suggest that

    • Painted most likely under sun light• First paints, and then covers the tumulus

    Torch Sun light

  • Point light source(Incandescent)

    Spectral measurement sensor

    Target object: Tomato

    RGB camera

    Data analysis

    Spectral measurement of Aging process

  • Measurement time: every 12 hours in 14 days

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    380 480 580 680

    波長(nm)

    分光反

    射率

    Temporal variation

  • 1st principal component proportion : 61.1%Regressioncurve: -0.1996240.0153333t

    3t0.00013939358t0.00000773 231

    Y

    2nd principal component proportion : 23.3%Regressioncurve: 0.008506940.0720887t0.0225962t

    0.002247t86t0.00008970-553t0.000001252

    3452

    Y

    -0.25

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    380 480 580 680

    波長(nm)

    主成分の係数

    第一主成分

    第二主成分

    -0.25

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    0 5 10 15 20 25

    日数

    得点

    第一主成分得点

    第二主成分得点

    第一主成分得点(回帰曲線)

    第二主成分得点(回帰曲線)

    Principal component analysis

  • Reflectance image

    Color image Texture image Reconstructed image

    3D model rendering

  • Human visionRetina

    Retina has 4 cells

    •“red” cone cell•“green” cone cell•“blue” cone cell• Rod cell Intensity

    Color

  • Human vision

    380nm 760nm

    )(bC

    )(gC

    )(rC

    Response of red cone =

    Response of green cone =

    Response of blue cone =

    dECr )()(760

    380 dECg )()( dECb )()(

  • Color spacered = green =blue =

    dECr )()( dECg )()( dECb )()(

    If we approximate spectral power distribution by vector, it’s a matrix multiplication.

    )(E

    red greenblue

    =)(rC)(gC)(bC )(E

    13 3 1

    spectral space : infinitely many dimensionscolor space : 3 dimensions

  • Alternate color spaceother isomorphic color spaces formed by linear transforms

    red greenblue

    =)(rC)(gC)(bC )(E

    define new axesABC

    =red greenblue

    =

    =

    )(rC)(gC)(bC )(E

    )(a)(b)(c )(E

    linear transform gives new axes

    new response function

    green

    bluered

    A

    C B

  • Psychophysical color (X-Y-Z)international standard color space agreed upon byCommision Internationale de I’Eclairage (CIE)• particular linear transform of human cone responses• Two spectral distributions that result in the same values in the

    space appear indistinguishable • all colors have positive x, y, zEach point in X-Y-Z is a different colorChromaticity

    x = X / (X+Y+Z) ≒ R / (R+G+B)y = Y / (X+Y+Z) ≒ G / (R+G+B)z = Z / (X+Y+Z) ≒ B / (R+G+B)since x+y+z = 1, z = 1-(x+y). --- redundant usually plotted o x-y diagram

    Each point is many XYZ colors

  • Chromaticity diagram

    r = R / (R+G+B)g = G / (R+G+B)b = B / (R+G+B)

  • Color perceptionHow do people describe color ?NOT “X-Y-Z” nor “R-G-B” !People use cylindrical coordinates.hue, saturation, brightness

    B H

    S

    blue

    white

    violetred

    yellow

    green

    SH

    One plane of constant brightness

    hue+saturation form polar coordinates

    relationship to red-green-blue

  • Hue-Saturation-Brightness (Value) Space

    blue

    black whitehue

  • Photometric properties

  • )()()( ESI Observed color

    ObservedSurfacereflectance

    Illumination

  • Role of Color in Robot Vision1. Feature space for 2D segmentation

    more features → beer discrimina�on2. Color physics of reflection

    What physical information can color provide?

  • Color reflection physicssurface reflection and body reflection

    bodyair

    incident lightsurfacereflection

    bodyreflection

    internalpigment

  • Separating reflection components by colorPixel color vectors are

    Make a histogram fit parallelogramProject each pixel onto vectorsDetermine everywhere

    Klinker 88bbss CC

    bs CC ,

    bs ,

    body reflection

    surface reflection

    b

    ssC

    bC

    R

    G

    B

  • Color space analysis

    dbLL

    dgLL

    drLL

    dbL

    dgL

    drL

    B

    G

    R

    C

    bs

    bs

    bs

    )())()((

    )())()((

    )())()((

    )()(

    )()(

    )()(

    bbss

    b

    b

    b

    b

    s

    s

    s

    sbs

    b

    b

    b

    s

    s

    s

    bs

    bs

    bs

    CC

    B

    G

    R

    B

    G

    R

    dbO

    dgO

    drO

    dbI

    dgI

    drI

    dbO

    dgO

    drO

    dbI

    dgI

    drI

    dbOI

    dgOI

    drOI

    )()(

    )()(

    )()(

    )()(

    )()(

    )()(

    )()(

    )()(

    )()(

    )()(

    )()(

    )()(

    )())()((

    )())()((

    )())()((

    body color vector in RGB spacesurface color vector in RGB spaceColor vector at a pixel is a linear combination of surface + body reflection color vector

  • Dichromatic Reflection Modelsurface reflection has SPD of incident lightbody reflection has SPD of body color

    brightness reflected)( Lsurface reflection body reflection

    SPD of body colorSPD of incident light

  • Klinker et al.’s method

    Steps:

    1. Color segmentation

    2. T-shape identification

  • Separation Results

  • Chromaticity-Intensity Space

    a. Specular image c. Chromaticity Intensity space

    a b c

    b. Spatial Intensity space

  • 96

    Iteration Framework

  • Result: a single object

    Input image Specular-free image

  • Separation Result

    Diffuse reflection component

    Specular reflection component

  • Separation using High Frequency Illumination

    [S.K. Nayar et al. SIGGRAPH 2006]

  • Summary2D digital image processingEdge detectionLine drawing analysisColor theoryPhotometric properties