eic & fcc-ee common elements of collider rings · 2020. 10. 22. · thibaut levefre (cern) david...

14
EIC & FCC-ee common elements of collider rings M. Benedikt (CERN), M. Blaskiewicz (BNL), A. Blondel (U. Geneva & CNRS), M. Boscolo (INFN-LNF), H. Burkhardt (CERN), M. Chamizo Llatas (BNL), W. Fischer (BNL), J. Fox (Stanford U.), C. Garion (CERN), D. Gassner (BNL), F. Gerigk (CERN), E. Gianfelice (FNAL), C. Hetzel (BNL), W. Höfle (CERN), E. Jensen (CERN), R. Kersevan (CERN), M. Koratzinos (MIT), T. Lefevre (CERN), E. Levichev (BINP), F. Lin (JLab), T. Mastoridis (Cal Poly), G. McIntyre (BNL), M. Migliorati (Sapienza), A.-S. Müller (KIT), A. Novokhatski (SLAC), K. Oide (CERN and KEK), D. Padrazo (BNL), B. Parker (BNL), V. Ptitsyn (BN), R. Rimmer (JLab), T. Satogata (JLab), A. Seryi (JLab), E. Shaposhnikova (CERN), K. Smith (BNL), M. Sullivan (SLAC), J. Wenninger (CERN), F. Willeke (BNL), M. Wiseman (JLab), H. Witte (BNL), W. Wittmer (JLab), F. Zimmermann (CERN) EIC Collaboration Workshop, 8 October 2020

Upload: others

Post on 30-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • EIC & FCC-ee common elements of collider rings

    M. Benedikt (CERN), M. Blaskiewicz (BNL), A. Blondel (U. Geneva & CNRS), M. Boscolo (INFN-LNF), H. Burkhardt (CERN), M. Chamizo Llatas (BNL), W.

    Fischer (BNL), J. Fox (Stanford U.), C. Garion (CERN), D. Gassner (BNL), F. Gerigk (CERN), E. Gianfelice (FNAL), C. Hetzel (BNL), W. Höfle (CERN), E.

    Jensen (CERN), R. Kersevan (CERN), M. Koratzinos (MIT), T. Lefevre (CERN), E. Levichev (BINP), F. Lin (JLab), T. Mastoridis (Cal Poly), G. McIntyre (BNL), M.

    Migliorati (Sapienza), A.-S. Müller (KIT), A. Novokhatski (SLAC), K. Oide (CERN and KEK), D. Padrazo (BNL), B. Parker (BNL), V. Ptitsyn (BN), R. Rimmer (JLab), T. Satogata (JLab), A. Seryi (JLab), E. Shaposhnikova (CERN), K. Smith (BNL), M. Sullivan (SLAC), J. Wenninger (CERN), F. Willeke (BNL), M. Wiseman (JLab), H.

    Witte (BNL), W. Wittmer (JLab), F. Zimmermann (CERN)

    EIC Collaboration Workshop, 8 October 2020

  • EICFCC-ee

    97.75 km double ring, full-energy 𝑒± injection,injection every ~2 min. into same bucket

    3.83 km double ring, full-energy 𝑒− injection, injection rate 1 Hz, every 2 min into same bucket

  • Vol 1 Physics, Vol 2 FCC-ee,

    Vol 3 FCC-hh, Vol 4 HE-LHC

    published in European Physical Journal C (Vol 1) and ST (Vol 2 – 4)

    EPJ C 79, 6 (2019) 474 , EPJ ST 228, 2 (2019) 261-623 , EPJ ST 228, 4 (2019) 755-1107 , EPJ ST 228, 5 (2019) 1109-1382 [Open Access]

    FCC Conceptual Design Report

    https://link.springer.com/article/10.1140/epjc/s10052-019-6904-3https://link.springer.com/article/10.1140/epjst/e2019-900045-4https://link.springer.com/article/10.1140/epjst/e2019-900087-0https://link.springer.com/article/10.1140/epjst/e2019-900088-6

  • Most challenging FCC-ee parameters: initial Z pole running. Parameters of NSLS-II for comparison. EIC and FCC-ee

    designs foresee an identical bunch population, at least an order of magnitude higher than in typical light sources or linear

    colliders, comparable bunch spacing in the 10-20 ns range, similar short bunch lengths in the few mm range, average

    beam currents in Ampere or few-Ampere range, beam energies of 10s of GeV, synchrotron radiation power per unit

    length in the kW/m range, and critical photon energies of 10s of keV.

    NSLS-II EIC FCC-ee-Z

    Beam energy [GeV] 3 10 (18) 45.6 (80)

    Bunch population [1011] 0.08 1.7 1.7

    Bunch spacing [ns] 2 10 15, 17.5 or 20

    Rms bunch length [mm] 4.5 - 9 10 3.5 from SR12 incl. BS

    Beam current [A] 0.5 2.5 (0.27) 1.39

    RF frequency [MHz] 500 591 or 394 400

    SR power / beam /meter [W/m] 900 7000 600

    Critical photon energy [keV] 2.4 9 (54) 19 (100)

    NSLS-II, EIC & FCC-ee beam parameters

  • Beside SC RF systems, efficient RF power sources, high-power couplers,

    HOMs & HOM damping, etc. (→E. Jensen), possible collaboration topics include:

    beam instrumentation, esp. BPMs, beamstrahlung, beam loss, bunch

    intensity,

    impedance models, assessment of impedance-driven beam instabilities and their

    mitigation, higher-order mode heating, and beam ion instability,

    beam feedback systems,

    interaction region (IR) design including masking and shielding of

    synchrotron radiation from dipoles and quadrupoles,

    development and perhaps prototyping of the SC final-focus quadrupole system,

    and possibly other magnetic elements related to the interaction region,

    synchrotron-radiation monitors and handling equipment associated withe IR,

    self-polarization (or depolarization), strategies for spin-orbit matching, and

    simulation tool adaptations or developments of new tools, polarimeter design,

    arc vacuum system, possible NEG coating, photon absorbers, water cooling

    and radiation shielding, low-impedance flanges, bellows, antechambers

  • Domain CERN/FCC BNL/EIC JLAB Other FCC Other EIC

    impedance model,

    instabilities, HOM,

    ion instability

    Mauro Migliorati

    (INFN), Elena

    Shaposhnikova

    Mike

    Blaskiewicz

    Todd Satogata Alexander Novokhatski

    (SLAC)

    polarization Jorg Wenninger

    (CERN), Alain

    Blondel (UNIGE)

    Vadim Ptitsyn Todd Satogata

    Fanglei Lin

    Eliana Gianfelice (FNAL)

    beam

    instrumentation, SR

    monitors

    Thibaut Levefre

    (CERN)

    David Gassner

    Dany Padrazo

    Todd Satogata Anke-Susanne Müller

    (KIT)

    beam feedback

    systems

    Wolfgang Hofle

    (CERN)

    Mike

    Blaskiewicz

    Todd Satogata

    Robert Rimmer

    John Fox (SU)

    vacuum system Roberto Kersevan,

    Cedric Garion (CERN)

    Charles Hetzel Mark Wiseman

    final focus

    quadrupoles

    Brett Parker,

    Holger Witte

    Walter Wittmer Mike Koratzinos (MIT),

    Eugene Levichev (BINP)

    SRF Erk Jensen, Frank

    Gerigk (CERN)

    Kevin Smith Robert Rimmer

    MDI, IR shielding,

    handling equipment

    associated with the IR

    Manuela Boscolo

    (INFN), Helmut

    Burkhardt (CERN)

    Gary McIntire

    Holger Witte

    Walter Wittmer Mike Sullivan (SLAC)

    Contact persons for collaboration domains (preliminary convener in bold)

  • Stefan Funkner et al., Phys. Rev. Accel. Beams 22, 022801 (2019)Benjamin Kehrer et al., Phys. Rev. Accel. Beams 21, 102803 (2018)

    longitudinal bunch profiles recorded with the KALYPSO-based electro-optical

    spectral decoding setup

    setup to measure longitudinal charge density profiles of electron bunches at KARA

    S. Funkner et al.,https://arxiv.org/abs/1912.01323

    FCC-ee R&D: bunch-by-bunch diagnostics

    high-throughput electro-optical

    single-shot diagnostics

    developed at KIT

    https://arxiv.org/abs/1912.01323

  • EIC R&D: beamstrahlung monitor

    schematic for EIC LABM

    implementation at SuperKEKB

    S. Di Carlo and G. Bonvicini NIM A 984 (2020) 164656

  • simulation of fast beam-ion instability

    Bunch train evolution over 75 turns for CO2 (A = 44) gas in the arcs, with 7.5 ns bunch spacing: vertical centroid motion of the last bunch (left) and vertical emittance growth of most unstable bunch (right).

    from FCC CDR vol. 2

    → sufficiently low pressure, bunch-by-bunch feedback, residual emittance growth?

    Lotta Mether

    PyECLOUD + PyHEADTAIL

  • 10

    FCC/EIC common elements

    EIC collaboration workshop

    8 October 2020

    FCC boosted by ESPPU 2020a) An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology …

    Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update. “

    → FCC integrated programme prepares for both: e+e- Higgs and electroweak factory as

    possible first stage and highest energy hadron collider as ultimate goal

    ESU 2020, CERN-ESU-014: “It is important therefore to launch a feasibility study for such a collider to be completed in time for the next Strategy update, so that a decision as to whether this project can be implemented can be taken on that timescale. The feasibility study should involve the following aspects: the possibility of constructing such a large infrastructure in the vicinity of CERN, the financial plan to complete and operate a project of this scale with internationalpartners, its governance, and the handling of the energy consumption.”

  • 11

    FCC/EIC common elements

    EIC collaboration workshop

    8 October 2020

    FCC Roadmap

    2011 circular Higgs factory proposal

    2013 ESPPU

    2014 FCC study kickoff

    2012 Higgs discovery announced

    2018 FCC CDR

    2025/26Feasibility proof

    2020 ESPPU

    2040 firstcollisions

    2020 FCCIS kickoff

    2026/7 ESPPU

    2030start tunnelconstruction

    2036 machineinstallation

    today

    2028 approval

    2030 - 37 element production

    2026 - 30 full technical design

  • 12

    FCC/EIC common elements

    EIC collaboration workshop

    8 October 2020

    CE preparatory activities 2020 - 2030

    • Schedule of major processes leading to start of construction begin 2030.

    • For proof of principle feasibility: High risk site investigations 10 - 15 MCHF in 2022/23.

  • 13

    EIC reference schedule

    EIC beam operation from 2030 onwards, ~10 years before FCC-ee commissioning J. Yeck

  • References:1. F. Willeke, Designs of Electron Ion Colliders, IPAC’20 (2020).

    2. Electron-Ion Collider eRHIC Pre-Conceptual Design Report, BNL Report BNL-

    211943-FORE, July 2019 – not publicly available.

    3. M. Mangano et al., FCC Physics Opportunities - Future Circular Collider

    Conceptual Design Report Volume 1, EPJ C 79, 6 (2019) 474 [Open Access]

    4. M. Benedikt et al., FCC-ee: The Lepton Collider – Future Circular Collider

    Conceptual Design Report Volume 2, EPJ ST 228, 2 (2019) 261-623 [Open

    Access]

    5. M. Benedikt et al., “Future Circular Colliders succeeding the LHC,” Nature

    Physics, vol. 16, pp 402–407 (2020) [Open Access]

    https://link.springer.com/article/10.1140/epjc/s10052-019-6904-3https://link.springer.com/article/10.1140/epjst/e2019-900045-4https://link.springer.com/article/10.1140/epjst/e2019-900045-4https://link.springer.com/article/10.1140/epjst/e2019-900045-4https://www.nature.com/articles/s41567-020-0856-2