eit 90revisado

28

Upload: jpajaro

Post on 22-Oct-2015

127 views

Category:

Documents


3 download

TRANSCRIPT

ESCALA INTERNACIONALDE TEMPERATURA DE 1990 (EIT-90)

ESCALA INTERNACIONALDE TEMPERATURA DE 1990 (EIT-90)

La Escala Internacional de Temperatura de 1990 ha sido adoptada por el Comité

Internacional de Pesas y Medidas en su sesión de 1989, de acuerdo con la invitación

formulada en 1987 por la 18ª Conferencia General de Pesas y Medidas (Resolución 7).

Esta Escala reemplaza a la Escala Práctica Internacional de Temperatura de 1968

(edición corregida de 1975) y a la Escala Provisional de Temperatura de 1978 entre

0,5 K y 30 K.

1. Unidades de temperatura.

La unidad básica de la magnitud física temperatura termodinámica, símbolo T, es el

kelvin, símbolo K, definido como la fracción 1/273,16 de la temperatura termodinámica

del punto triple del agua1.

Teniendo en cuenta la forma en que se han venido definiendo anteriormente las

escalas de temperatura, es práctica corriente la expresión de una temperatura por su

diferencia a 273,15 K (punto de fusión del hielo). Una temperatura termodinámica T,

expresada de esta manera, se denomina temperatura Celsius símbolo t, definida por:

t /°C = T/K - 273,15 (1)

La unidad de temperatura Celsius es el grado Celsius, símbolo °C, que es, por

definición, igual en magnitud al kelvin. La diferencia de temperatura se puede expresar

en kelvin o en grado Celsius.

1 Comptes rendus des séances de la 13e Conférence Générale des poids et mesures (1967-1968) résolutions 3 et 4, pág. 104.

3

La Escala Internacional de Temperatura de 1990 (EIT-90) define a la vez la

Temperatura Kelvin Internacional, símbolo T90, y la Temperatura Celsius Internacional,

símbolo t90. La relación entre T90 y t90 es la misma que existe entre T y t, es decir:

t90 /°C = T90 /K - 273,15 (2)

La unidad de la magnitud física T90 es el kelvin, símbolo K y la de la magnitud física t90,

el grado Celsius, símbolo °C; son las mismas unidades que para la temperatura

termodinámica T y para la temperatura Celsius t.

2. Principios de la Escala Internacional de Temperatura de 1990.

La EIT-90 se extiende desde 0,65 K hasta la temperatura más elevada que sea posible

medir a partir de la ley de Planck para una radiación monocromática.

La EIT-90 comprende rangos y sub-rangos de temperatura y, en cada una de ellos,

existe una definición de T90. Varios de estos rangos o sub-rangos se solapan y, en los

intervalos de solapamiento, coexisten definiciones distintas; estas definiciones son

equivalentes y ninguna es preponderante. En las medidas de mayor precisión, pueden

aparecer diferencias numéricas perceptibles entre medidas hechas a la misma

temperatura pero siguiendo definiciones distintas. Análogamente, con la misma

definición, a una temperatura distinta de la de un punto fijo de definición, dos

instrumentos de interpolación aceptables (termómetros de resistencia, por ejemplo),

pueden dar valores numéricos de T90 que difieran de manera perceptible.

Prácticamente en todos los casos, estas diferencias son despreciables y representan el

umbral compatible con una escala de complejidad razonable; para más amplia

información sobre este punto, ver "Supplementary Information for the ITS-90"

(BIPM-1990).

La EIT-90 ha sido concebida de tal manera que, en toda su extensión y para toda

temperatura, T90 sea numéricamente tan próxima como sea posible a T siguiendo las

4

mejores estimaciones efectuadas en el momento de adopción de la escala. En

comparación con las medidas directas de la temperatura termodinámica, las medidas

de T90 son fáciles, precisas y muy reproducibles.

Existen diferencias numéricas significativas entre los valores de T90 y los valores

correspondientes de T68 medidos en la Escala Práctica Internacional de Temperatura

de 1968 (EPIT-68), ver figura 1 y tabla VI. Asimismo, existían diferencias entre la

EPIT-68 y la Escala Práctica Internacional de Temperatura de 1948 (EPIT-48), así

como entre la Escala Internacional de Temperatura de 1948 (EIT-48) y la Escala

Internacional de Temperatura de 1927 (EIT-27). Ver el Anexo y, para más detalles,

"Supplementary Information for the ITS-90".

3. Definición de la Escala Internacional de Temperatura de 1990.

Entre 0, 65 K y 5,0 K, la temperatura T90 se define por medio de las relaciones entre la

presión de vapor de saturación y la temperatura del 3He y del 4He.

Entre 3,0 K y el punto triple del neón (24,556 1 K), la temperatura T90 se define

mediante el termómetro de gas de helio calibrado a tres temperaturas realizables

experimentalmente y que tienen valores numéricos asignados (puntos fijos de

definición), utilizando fórmulas de interpolación especificadas.

Entre el punto triple del hidrógeno en equilibrio (13,803 3 K) y el punto de solidificación

de la plata (961,78 °C), la temperatura T90 se define mediante un termómetro de

resistencia de platino calibrado en series especificadas de puntos fijos de definición y

utilizando fórmulas de interpolación especificadas.

Los puntos fijos de definición de la EIT-90, se dan en la tabla I.

Por encima del punto de solidificación de la plata (961,78 °C), la temperatura T90 se

define, a partir de un punto fijo de definición y la ley de radiación de Planck.

5

En la realización práctica de los puntos fijos, los efectos de la presión sobre la

temperatura debidos a la profundidad de inmersión del termómetro o a otras causas, se

dan para la mayoría de estos puntos en la tabla II.

3.1. De 0,65 K a 5,0 K: las ecuaciones que relacionan la presión de vapor de

saturación y la temperatura del helio.

En este rango, la temperatura T90 se define en función de la presión de vapor de

saturación p del 3He o del 4He por ecuaciones de la forma:

( )( )[ ]i

ii CBpAA=T −⋅+ ∑

=PalnK/

9

1090

(3)

Los valores de las constantes A0, Ai, B y C se dan en la tabla III, en el rango de 0,65 K

a 3,2 K para el 3He, y en los rangos de 1,25 K a 2,176 8 K (punto λ) y de 2,176 8 K a

5,0 K para el 4He.

3.2. De 3,0 K al punto triple del neón (24,556 1 K): el termómetro de gas.

En este rango, la temperatura T90, se define mediante un termómetro de gas de 3He o

de 4He, del tipo de volumen constante, calibrado en tres temperaturas: la del punto

triple del neón (24,556 1 K), la del punto triple del hidrógeno en equilibrio (13,803 3 K) y

una temperatura comprendida entre 3,0 K y 5,0 K. Esta última se determina con un

termómetro de presión de vapor de saturación de 3He o de 4He, como el especificado

en el apartado 3.1.

3.2.1. De 4,2 K al punto triple del neón (24, 556 1 K) con 4He como gas

termométrico.

En este rango, la temperatura T90 se define por la ecuación:

T90 = a + b·p + c·p2 (4)

6

Donde:

- p es la presión en el termómetro,

- a, b y c son coeficientes cuyo valor numérico se obtiene por medidas

realizadas en los tres puntos fijos de definición indicados en el párrafo 3.2; pero

con una restricción: que la temperatura del punto mas bajo esté comprendida

entre 4,2 K y 5,0 K.

3.2.2. De 3,0 K al punto triple del neón (24, 556 1 K) con 3He o 4He como gas

termométrico.

Para el termómetro de gas de 3He y para el termómetro de gas de 4He utilizado por

debajo de 4,2 K, es preciso tener en cuenta explícitamente el hecho de que no se trata

de un gas perfecto y utilizar el segundo coeficiente del virial apropiado B3(T90) o B4

(T90). En este rango, la temperatura T90 se define por la ecuación:

( ) VNTBpcpb+T

x 90

290 1

a+

⋅+⋅=(5)

Donde:

- “p” es la presión en el termómetro,

- “a, b y c” son coeficientes cuyo valor numérico se obtiene por medidas

realizadas en los tres puntos fijos de definición indicados en el párrafo 3.2.

- N/V es la cantidad de sustancia por unidad de volumen del gas, siendo N la

cantidad del gas contenido en el depósito del termómetro de volumen V.

- Bx(T90), con x igual a 3 ó 4, según el isótopo considerado, es el segundo

coeficiente del virial, cuyos valores vienen dados por las ecuaciones:

para 3He:

B3(T90)/m3·mol-1 = [16,69 - 336,98·(T90/K)-1 + 91,04·(T90/K)-2 -

-13,82·(T90/K)-3]·10-6

(6a)

7

para 4He:

B4(T90)/m3·mol-1 = [16,708 - 374,05·(T90/K)-1 - 383,53·(T90/K)-2 +

+ 1 799,2·(T90/K)-3 - 4 033,2·(T90/K)-4 + 3 252,8·(T90/K)-5]·10-6

(6b)

La exactitud con la que puede realizarse la EIT-90, sirviéndose de las ecuaciones (4) ó

(5) depende de la concepción del termómetro y de la cantidad de sustancia por unidad

de volumen del gas considerado. Los criterios de concepción y las precauciones de

utilización necesarias para obtener una exactitud determinada se dan en

"Supplementary Information for the ITS-90".

3.3. Del punto triple del hidrógeno en equilibrio (13,803 3 K) al punto de

solidificación de la plata (961,78 ºC): el termómetro de resistencia de platino.

En este rango, la temperatura T90 se define por medio del termómetro de resistencia de

platino, calibrado en diferentes series especificadas de puntos fijos de definición,

utilizando funciones de referencia y funciones de desviación especificadas, para

interpolar en las temperaturas intermedias.

Ningún modelo de termómetro de resistencia de platino puede asegurar una exactitud

elevada, ni puede ser utilizado sobre todo el rango que va desde 13,803 3 K hasta

961,78 °C. La elección de uno o de varios rangos de temperatura, entre los

enumerados posteriormente, está normalmente limitada por el tipo de construcción del

termómetro.

Para los detalles y las precauciones de utilización relativas a los termómetros: tipos

disponibles, rangos de utilización posibles, exactitudes probables, resistencia de

aislamiento admisible, valores de la resistencia, tratamiento térmico, etc., ver

"Supplementary Information for the ITS-90". En particular, es importante respetar los

tratamientos térmicos apropiados, que se deben aplicar cada vez que un termómetro

de resistencia de platino se someta a temperaturas superiores a aproximadamente

420 °C.

8

Las temperaturas se determinan en función de la relación W(T90) entre la resistencia

R(T90) del termómetro a la temperatura T90 y su resistencia R(273,16 K) en el punto

triple del agua2, o sea:

( ) ( )( )

KW T

R TR90

90273 16

=,

(7)

Un buen termómetro de resistencia de platino debe estar hecho de platino puro, exento

de cualquier tensión, y debe satisfacer al menos una de las dos ecuaciones siguientes:

W (29,764 6 ºC) ≥ 1,118 07 (8a)W (-38,834 4 ºC) ≤ 0,844 235 (8b)

Para poder ser utilizado hasta el punto de solidificación de la plata, debe también

satisfacer la ecuación:

W (961,78 ºC) ≥ 4,284 4 (8c)

En cada uno de los rangos enumerados a continuación, la temperatura se obtiene a

partir de Wr (T90), utilizando para ello la función de referencia dada por las ecuaciones

(9b) ó (10b), según el caso, y por la de desviación W (T90) - Wr (T90). En los puntos fijos

de definición, esta desviación se conoce directamente a partir de la calibración del

termómetro; en las temperaturas intermedias, se obtiene por medio de la función de

desviación apropiada. Ecuaciones (12), (13) ó (14).

(a) En el rango que va desde 13, 803 3 K hasta 273,16 K la función de referencia

está dada por:

( )[ ]

i

iir

T

AATW

+

⋅+= ∑= 5,1

5,1 K16,273

lnln

9012

1090

(9a)

2 Esta definición de W (T90), difiere de la definición correspondiente utilizada en la EIT-27, EIT-48, EPIT-48 y EPIT-68. W (T) se definió entonces en función de la temperatura de referencia 0 ºC que, desde 1954, estaba definida como 273,15 K.

9

La función inversa, equivalente a la (9a) dentro de 0,1 mK, es:

( )[ ]i

r

ii

TWBBT

−⋅+= ∑= 35,0

65,0 K16,273

61

9015

10

90(9b)

Los valores de las constantes A0, Ai, B0 y Bi se dan en la tabla IV.

Un termómetro puede calibrarse para trabajar en todo este rango, o, utilizando

progresivamente un número menor de puntos fijos, en los sub-rangos que van

desde 24,556 1 K hasta 273,16 K, desde 54,358 4 K hasta 273,16 K o desde 83,805

8 K hasta 273,16 K.

(b) En el rango que va desde 0 °C hasta 961,78 ºC, la función de referencia está

dada por:

( )i

iir

TCTW

⋅+= ∑= 481

15,754KC 909

1090 (10a)

La función inversa equivalente a la (10a) dentro de 0,13 mK es:

( ) ir

ii

TWDD

⋅+=− ∑= 64,1

64,215,273KT 909

1090 (10b)

Los valores de las constantes C0, Ci, D0 y Di se dan en la tabla IV.

Un termómetro puede calibrarse para trabajar en todo este rango, o, utilizando

progresivamente un número menor de puntos fijos, en los sub-rangos que van

desde 0 °C hasta 660, 323 °C, desde 0 °C hasta 419,527 °C, desde 0 °C hasta

231,928 °C, desde 0 °C hasta 156,598 5 °C o desde 0 °C hasta 29,764 6 °C.

(c) Un termómetro puede calibrarse para trabajar en el rango que va desde

234,315 6 K (-38,834 4 °C) hasta 29,764 6 °C, la calibración se hace en los puntos

10

fijos correspondientes a esas temperaturas y en el punto triple del agua. Para cubrir

este rango , son necesarias las dos funciones de referencia dadas por (9) y (10).

Los puntos fijos de definición y las funciones de desviación para los diferentes rangos

se dan en forma resumida, en la tabla V.

3.3.1 Desde el punto triple del hidrógeno en equilibrio (13,803 3 K) hasta el punto

triple del agua (273,16 K).

El termómetro se calibra en los puntos triples del hidrógeno en equilibrio (13,803 3 K),

del neón (24,556 1 K), del oxígeno (54,358 4 K), del argón (83,805 8 K), del mercurio

(234,315 6 K) y del agua (273,16 K), así como en dos temperaturas próximas a 17,0 K

y a 20,3 K. Estas últimas pueden determinarse de dos maneras diferentes: utilizando

un termómetro de gas (ver párrafo 3.2), en cuyo caso, las dos temperaturas deben

estar comprendidas entre 16,9 K y 17,1 K y entre 20,2 K y 20,4 K respectivamente; o

bien utilizando la relación entre la presión de vapor de saturación y la temperatura del

hidrógeno en equilibrio y, en este caso, las dos temperaturas deben estar

comprendidas entre 17,025 K y 17,045 K y entre 20,26 K y 20,28 K respectivamente,

los valores precisos se determinan a partir de las ecuaciones (11a) y (11b):

T90/K - 17,035 = (p/kPa - 33,321 3) / 13,32 (11a)

T90/K - 20,27 = (p/kPa - 101,292) / 30 (11b)

La función de desviación3, viene dada por:

W (T90) - Wr (T90)=a·[W (T90) -1]+b·[W (T90) -1]2 + ∑=

5

1ici·[ln W (T90)]i+n

(12)

Los valores de los coeficientes a, b y ci, se obtienen en los puntos fijos de definición,

con n = 2.

3 Esta función de desviación (lo mismo que las dadas por (13) y (14)), pueden expresarse en función de Wr en lugar de W, para ello, ver “Supplementary Information for the ITS-90”.

11

Para este rango y para los sub-rangos de 3.3.1.1. a 3.3.1.3., los valores de Wr (T90), se

obtienen de la función (9a) o de la tabla I.

3.3.1.1. Desde el punto triple del neón (24,556 1 K) hasta el punto triple del agua

(273,16 K).

El termómetro se calibra en los puntos triples del hidrógeno en equilibrio (13,803 3 K),

del neón (24,556 1 K), del oxígeno (54,358 4 K), del argón (83,805 8 K), del mercurio

(234,315 6 K) y del agua (273,16 K).

La función de desviación viene dada por la ecuación (12), los valores de los

coeficientes a, b, c1, c2 y c3 se obtienen de las medidas en los puntos fijos de definición,

con c4 = c5 = n = 0.

3.3.1.2. Desde el punto triple del oxígeno (54,358 4 K) hasta el punto triple del agua

(273, 16 K).

El termómetro se calibra en los puntos triples del oxígeno (54,358 4 K), del argón

(83,805 8 K), del mercurio (234,315 6 K) y del agua (273,16 K).

La función de desviación viene dada por la ecuación (12), los valores de los

coeficientes “a, b y c1” se obtienen de las medidas en los puntos fijos de definición, con

c1 = c3 = c4 = c5 = 0 y n = 1.

3.3.1.3. Desde el punto triple del argón (83,805 8 K) hasta el punto triple del agua

(273, 16 K).

El termómetro se calibra en los puntos triples del argón (83,805 8 K), del mercurio

(234,313 6 K) y del agua (273,16 K).

12

La función de desviación viene dada por:

W (T90) - Wr (T90) = a·[W (T90) - 1] + b·[W (T90) - 1]·ln W (T90) (13)

Los valores de los coeficientes a y b se obtienen de las medidas en los puntos fijos de

definición.

3.3.2. Desde 0 ºC hasta el punto de solidificación de la plata (961,78 ºC).

El termómetro se calibra: en el punto triple del agua (0,01 °C) y en los puntos de

solidificación del estaño (231,928 °C), del zinc (419,527 °C), del aluminio (660,323 °C)

y de la plata (961,78 °C).

La función de desviación está dada por:

W (T90) – Wr (T90) = a·[W (T90) - 1] + b·[W (T90)-1]2 + c·[W (T90) -1]3 +

+ d·[W (T90) – W (660,323 ºC)]2

(14)

Para las temperaturas por debajo del punto de solidificación del aluminio, d = 0 y los

valores de los coeficientes “a, b y c” se obtienen de la medida de las desviaciones de

Wr (T90) en los puntos de solidificación del estaño, del zinc y del aluminio. Para las

temperaturas superiores al punto de solidificación del aluminio, el valor de d se

determina por la medida de la desviación respecto a Wr (T90) en el punto de

solidificación de la plata, conservando los valores anteriores de “a, b y c”.

Para este rango y para los sub-rangos de 3.3.2.1. a 3.3.2.5., los valores de Wr (T90) se

obtienen de la función (10a) o de la Tabla I.

3.3.2.1. Desde 0 °C hasta el punto de solidificación del aluminio (660,323 °C).

El termómetro se calibra en el punto triple del agua (0,01 ºC) y en los puntos de

solidificación del estaño (231,928 °C), del zinc (419,527 °C) y del aluminio

(660,323 °C).

13

La función de desviación viene dada por la ecuación (14), los valores de los

coeficientes “a, b y c” se obtienen de las medidas en los puntos fijos de definición, con

d = 0.

3.3.2.2. Desde 0 ºC hasta el punto de solidificación del zinc (419,527 ºC).

El termómetro se calibra en el punto triple del agua (0,01 ºC) y en los puntos de

solidificación del estaño (231,928 °C) y del zinc (419,527 °C).

La función de desviación viene dada por la ecuación (14), los valores de los

coeficientes “a y b” se obtienen de las medidas en los puntos fijos de definición, con

c = d = 0.

3.3.2.3. Desde 0 ºC hasta el punto de solidificación del estaño (231,928 °C).

El termómetro se calibra en el punto triple del agua (0,01 °C) y en los puntos de

solidificación del indio (156,598 5 °C) y del estaño (231,928 °C).

La función de desviación viene dada por la ecuación (14), los valores de los

coeficientes “a y b” se obtienen de las medidas en los puntos fijos de definición, con

c = d = 0.

3.3.2.4. Desde 0 °C hasta el punto de solidificación del indio (156,598 5 ºC).

El termómetro se calibra en el punto triple del agua (0,01 ºC) y en el punto de

solidificación del indio (156,598 5 °C).

La función de desviación viene dada por la ecuación (14), en la que el valor del

coeficiente “a” se obtiene de las medidas en los puntos fijos de definición, con

b = c = d = 0.

14

3.3.2.5. Desde 0 °C hasta el punto de fusión del galio (29,764 6 ºC).

El termómetro se calibra en el punto triple del agua (0,01 °C) y en el punto de fusión del

galio (29,764 6 °C).

La función de desviación viene dada por la ecuación (14), en la que el valor del

coeficiente “a” se obtiene de las medidas en los puntos fijos de definición, con

b = c = d = 0.

3.3.3. Desde el punto triple del mercurio (-38,834 4 ºC) hasta el punto de fusión

del galio (29,764 6 ºC).

El termómetro se calibra en los puntos triples del mercurio (-38,834 4 °C) y del agua

(0,01 °C) y en el punto de fusión del galio (29,764 6 ºC).

La función de desviación viene dada por la ecuación (14), los valores de los

coeficientes a y b se obtienen de las medidas en los puntos fijos de definición, con

c = d = 0.

Los valores de Wr (T90) se obtienen de las ecuaciones (9a) y (10a) para temperaturas

inferiores o superiores a 273, 16 K respectivamente, o de la tabla I.

3.4. Para temperaturas superiores al punto de solidificación de la plata

(961,78 ºC): La Ley de Radiación de Planck.

Para temperaturas superiores al punto de solidificación de la plata (961,78 ºC), la

temperatura T90 se define por la relación:

( )( )[ ]

( )[ ]( )[ ]( ) 1exp

1exp1

902

1902

90

90

−−= −

TcxTc

xTLTL

λλ

λ

λ

(15)

15

- T90 (x) es la temperatura de cualquiera de los puntos de solidificación de la

plata T90(Ag) = 1 234,93 K , del oro T90(Au) = 1 337,33 K , o del cobre

T90(Cu) = 1 357,77 K.

- Lλ (T90) y Lλ [T90(x)] son las densidades espectrales de la luminancia energética

del cuerpo negro a la longitud de onda λ (en el vacío), a T90 y a T90(x)

respectivamente4 ; c2 = 0,014 388 m·K.

Para mas detalles y para las precauciones de utilización en este rango, ver

"Supplementary Information for the ITS-90".

4. Informaciones complementarias y diferencias en relación con las

escalas precedentes.

Los instrumentos, métodos y procedimientos que servirán para realizar la EIT-90 se

describen en "Supplementary Information for the ITS-90". Este documento tiene

también en cuenta las anteriores escalas internacionales de temperatura y da las

diferencias numéricas entre escalas sucesivas. Además, se describen realizaciones

prácticas aproximadas de la EIT-90 en "Techniques for Approximating the ITS-90”

(BIPM -1990)5.

Estos dos documentos han sido preparados por el Comité Consultivo de Termometría y

serán publicados por el Bureau International Poids et Measures (BIPM); serán

revisados y puestos al día periódicamente.

Las diferencias T90 - T68 se indican en la figura 1 y en la tabla VI. El número de cifras

significativas dadas en la tabla, permite suavizar las interpolaciones; no obstante, la

reproducibilidad de la EPIT-68 es, en muchas zonas, substancialmente peor que lo

implicado por este número.4 Los valores T90 de los puntos de solidificación de la plata, del oro y del cobre, son suficientemente concordantes para que al sustituir uno de ellos por cualquiera de los otros dos como temperatura de referencia, T90(x) no suponga una diferencia significativa entre los valores medidos de la temperatura T90.5 Este documento se publicará en francés, en la colección de las monografías del BIPM, bajo el título “Realisation simplifiée de l’EIT-90”.

16

Anexo

Escala Internacional de Temperatura de 1927 (EIT-27).

La Escala Internacional de Temperatura de 1927 fue adoptada por la 7ª Conferencia

General de Pesas y Medidas, para superar las dificultades prácticas de la

determinación directa de las temperaturas termodinámicas, con la ayuda del

termómetro de gas, y para reemplazar, de forma universalmente aceptable, las

diferentes escalas nacionales de temperatura que existían.

La EIT-27 se estableció con el fin de permitir medidas de temperatura precisas y

reproducibles, tan próximas a la temperatura termodinámica como era posible

determinar en aquella época. Entre el punto de ebullición del oxígeno y el punto de

solidificación del oro, se basaba en un cierto número de temperaturas reproducibles

(puntos fijos), a los que se habían asignado valores numéricos, y en dos instrumentos

de interpolación normalizados. Cada uno de estos instrumentos de interpolación estaba

calibrado en uno o varios puntos fijos, lo que proporcionaba las constantes de las

fórmulas de interpolación en el rango de temperatura considerado. El termómetro de

resistencia de platino se utilizó en el rango inferior y el termopar platino/platino-rodio

para temperaturas superiores a 660 °C. Para el rango superior al punto de solidificación

del oro, la temperatura se definió siguiendo la ley de radiación de Wien; en la práctica,

esto conducía invariablemente a elegir un pirómetro óptico como instrumento de

trabajo.

Escala Internacional de Temperatura de 1948 (EIT-48).

La Escala Internacional de Temperatura de 1948 fue adoptada por la 9ª Conferencia

General. Con relación a la EIT-27, presentaba los siguientes cambios:

• El límite inferior del rango del termómetro de resistencia de platino se llevó

de nuevo desde -190 °C a la temperatura del punto de ebullición del oxígeno

17

(-182,97 °C) y la unión del rango del termómetro de resistencia de platino

con el del termopar se efectuaba a la temperatura de solidificación del

antimonio (alrededor de 630 °C) en lugar de 660 °C.

• El valor de la temperatura del punto de solidificación de la plata pasaba de

960,5 °C a 960,8 °C.

• Para el oro, el punto de solidificación reemplazaba al punto de fusión

(1 063 °C).

• La ley de radiación de Planck sustituía a la ley de Wien.

• A la segunda constante de radiación se le asignó el valor 0,014 38 m·K en

lugar de 0, 014 32 m·K.

• Se modificaron los márgenes de tolerancia para las constantes de las

fórmulas de interpolación utilizadas con el termómetro de resistencia

normalizado y con el termopar normalizado.

• La limitación relativa a λ·T para Ia pirometría óptica ( λ·T ≤ 3·10-3 m·K) se

reemplazó por la obligación de utilizar una radiación "visible".

Escala Práctica Internacional de Temperatura de 1948, edición corregida de 1960.

La Escala Práctica Internacional de Temperatura de 1948, edición corregida de 1960,

fue adoptada por la 11ª Conferencia General; la 10ª Conferencia General había

adoptado, con anterioridad, el punto triple del agua como punto único de definición del

kelvin, unidad de temperatura termodinámica. Además de la introducción del adjetivo

"práctica", las modificaciones aportadas a la EIT-48 eran las siguientes:

• El punto triple del agua, definido como 0,01 °C, reemplazaba al punto de

fusión del hielo como punto de calibración.

• El punto de solidificación del zinc (valor asignado: 419,505 °C) podía

reemplazar ventajosamente al punto de ebullición del azufre (444,6 °C) como

punto de calibración.

• Se modificaron de nuevo los márgenes de tolerancia para las constantes de

las fórmulas de interpolación utilizadas con el termómetro de resistencia

normalizado y el termopar normalizado.

18

• Se suprimió la restricción a la radiación “visible” para la pirometría óptica.

Los valores numéricos de las temperaturas eran los mismos en la EIT-48 que en la

EPIT-48, ésta última no era una revisión de la escala de 1948 sino solamente una

forma corregida.

Escala Práctica Internacional de Temperatura de 1968 (EPIT-68)

En 1968, el Comité Internacional de Pesas y Medidas promulgó la Escala Práctica

Internacional de Temperatura de 1968, siguiendo los acuerdos establecidos por la

13ª Conferencia General de 1967-1968. La EPIT-68 incorporaba, con relación a la

EPIT-48, numerosas e importantes modificaciones, en particular cambios de valores

numéricos para hacer T68 más aproximada a la temperatura termodinámica; estas

diferencias eran lo suficientemente importantes para ser apreciables para numerosos

usuarios. Los otros cambios fueron los siguientes:

• El límite inferior de la escala se bajó hasta 13,81 K.

• Para temperaturas más bajas aún (desde 0,5 K hasta 5,2 K), se

recomendaba el empleo de dos escalas utilizando la presión de vapor de

saturación del helio.

• Se introdujeron seis nuevos puntos fijos de definición: el punto triple del

hidrógeno en equilibrio (13,81 K), un punto de ebullición del hidrogeno en

equilibrio bajo presión reducida (17,042 K), el punto de ebullición normal del

hidrógeno en equilibrio (20,28 K), el punto de ebullición del neón (27,102 K),

el punto triple del oxígeno (54,361 K) y el punto de solidificación del estaño

(231,968 1 °C) que fue admitido como posible alternativa al punto de

ebullición del agua.

• Se suprimió el punto de ebullición del azufre.

• Se modificaron los valores asignados a cuatro puntos fijos: punto de

ebullición del oxígeno (90,188 K), punto de solidificación del zinc (419,58 °C),

punto de solidificación de la plata (961,93 °C) y punto de solidificación del oro

(1 064,43 °C).

19

• Las fórmulas de interpolación en el rango del termómetro de resistencia se

hicieron mucho más complejas.

• El valor asignado a la segunda constante de radiación fue 0,014 388 m·K.

• Los márgenes de tolerancia para las constantes de las fórmulas de

interpolación utilizadas con el termómetro de resistencia normalizado y el

termopar normalizado se modificaron de nuevo.

Escala Práctica Internacional de Temperatura de 1968, edición corregida de 1975

La Escala Práctica Internacional de Temperatura de 1968, edición corregida de 1975,

se adoptó por la 15ª Conferencia General en 1975.

Como en el caso de la EPIT-48 respecto a la EIT-48, la edición de 1975 no introducía

cambios numéricos; la mayor parte de las modificaciones eran de redacción y tenían

solamente como finalidad clarificar y simplificar su utilización. Los cambios más

importantes fueron los siguientes:

• El punto del oxígeno se definió como punto de rocío, no como punto de

ebullición.

• Se introdujo el punto triple del argón (83,798 K) que podía sustituir

válidamente al punto de rocío del oxígeno.

• Se adoptaron nuevos valores de la composición isotópica del neón normal.

• Se anuló la recomendación de utilizar los valores de T dados por las escalas

de 1958 y 1962 basados en la presión de vapor de saturación del 4He y del 3He respectivamente.

Escala Provisional de Temperatura de 1976 entre 0,5 K y 30 K (EPT 76).

La Escala Provisional de Temperatura de 1976 entre 0,5 K y 30 K se introdujo para

alcanzar dos condiciones importantes:

20

1. Ofrecer los medios de reducir substancialmente los errores (en relación

con las temperaturas termodinámicas correspondientes), que existían en la

EPIT-68, para temperaturas inferiores a 27 K y en todo el rango de las

escalas de 1958 y 1962 que utilizaban la presión de vapor de saturación

del 4He y del 3He.

2. Llenar la laguna entre 5,2 y 13,81 K, donde no existía previamente ninguna

escala internacional.

Los restantes objetivos que habían conducido a la elaboración de la EPT-76 eran "que

se limaran diferencias entre las temperaturas T76 y T, que se enlazara sin

discontinuidad en 27,1 K con la EPIT-68 y que estuviera de acuerdo con la temperatura

termodinámica T tan estrechamente como lo permitieran estas dos condiciones". Al

contrario que en la EPIT-68 y para asegurar su rápida adopción, se aprobaron varios

métodos de realización de la EPT-76, que incluían:

• Utilización de un instrumento termodinámico de interpolación calibrado en

uno o varios de los once puntos fijos de definición especificados.

• Para valores superiores a 13,81 K, utilización de la EPIT-68 con las

diferencias publicadas.

• Para valores inferiores a 5 K, utilización de escalas que se basaban en la

presión de vapor de saturación del helio con las diferencias publicadas.

• Utilización de escalas bien establecidas por algunos laboratorios con las

diferencias publicadas.

Como consecuencia de una "falta de coherencia interna", se admitía que pudieran ser

introducidas "ligeras ambigüedades entre las realizaciones". No obstante, se estimaba

que las ventajas obtenidas por la adopción de la EPT-76 como escala de trabajo en

espera de la revisión y de la extensión de la EPIT-68 compensaban ampliamente los

inconvenientes.

21

Tabla I

Puntos fijos de definición de la EIT-90.

Número Temperatura Sustancia6 Estado7 Wr(T90)T90 / K t90 / ºC

1 3 a 5 -270,15 a He V-268,15

2 13,803 3 -259,346 7 e-H2 T 0,001 190 073 ≈ 17 ≈ -256,15 e-H2 V

(o He) (o G)4 ≈ 20,3 ≈ -252,85 e-H2 V

(o He) (o G)5 24,556 1 -248,593 9 Ne T 0,008 449 746 54,358 4 -218,791 6 O2 T 0,091 718 047 83,805 8 -189,344 2 Ar T 0,215 859 758 234,315 6 -38,834 4 Hg T 0,844 142 11

9 273,16 0,01 H2O T 1,000 000 0010 302,914 6 29,764 6 Ga F 1,118 138 8911 429,748 5 156,598 5 ln S 1,609 801 8512 505,078 231,928 Sn S 1,892 797 68

13 692,677 419,527 Zn S 2,568 917 3014 933,473 660,323 Al S 3,376 008 6015 1 234,93 961,78 Ag S 4,286 420 5316 1 337,33 1 064,18 Au S17 1 357,77 1 084,62 Cu S

6 -Composición isotópica natural con excepción del 3He. - e-H2: Hidrógeno con la composición de equilibrio de las variedades moleculares orto y para.

7 - Para las definiciones completas y los consejos de realización, ver “Supplementary Information for the ITS-90”.

- V: presión de vapor de saturación. - T: punto triple (temperatura de equilibrio entre las fases sólida, líquida y vapor). - G: termómetro de gas. - F, S: punto de fusión, punto de solidificación (temperatura de equilibrio, a la presión de 101 325 Pa

entre las fases sólido y líquido)

22

Tabla IIEfecto de la presión sobre la temperatura de algunos puntos fijos de definición 8.

Sustancia Valor atribuido a la constante de

equilibrio

T90/K

Variación de la temperatura con la

presión, p (9)

(dT/dp)/(10-8K·Pa-1)

Variación de la temperatura con la

profundidad de inmersión, h (10)

(dT/dh)/(10-3K·m-1)

e-Hidrógeno (T) 13,803 3 34 0,25Neón (T) 24,556 1 16 1,9Oxígeno (T) 54,358 4 12 1,5Argón (T) 83,805 8 25 3,3

Mercurio (T) 234,315 6 5,4 7,1Agua (T) 273,16 -7,5 -0,73Galio 302,914 6 -2,0 -1,2lndio 429,748 5 4,9 3,3

Estaño 505,078 3,3 2,2Zinc 692,677 4,3 2,7Aluminio 933,473 7,0 1,6Plata 1 234,93 6,0 5,4

Oro 1 337,33 6,1 10Cobre 1 357,77 3,3 2,6

8 La presión de referencia para los puntos de fusión o de solidificación, es la presión atmosférica normal (p0 = 101 325 Pa). En el caso de los puntos triples (T), el efecto de la presión es consecuencia únicamente de la presión hidrostática de la columna de líquido.9 Equivalente a milikelvins por atmósfera.10 Equivalente a milikelvins por metro de líquido.

23

Tabla III

Presión de vapor de saturación del helio.

Valores de las constantes de la ecuación (3) según el rango de

temperatura considerado.

3Hede 0,65 K a 3,2 K

4Hede 1,25 K a 2,176 8 K

4Hede 2,176 8 K a 5,0 K

A0 1,053 447 1,392 408 3,146 631A1 0,980 106 0,527 153 1,357 655A2 0,676 380 0,166 756 0,413 923

A3 0,372 692 0,050 988 0,091 159A4 0,151 656 0,026 514 0,016 349A5 -0,002 263 0,001 975 0,001 826

A6 0,006 596 -0,017 976 -0,004 325A7 0,088 966 0,005 409 -0,004 973A8 -0,004 770 0,013 259 0

A9 -0,054 943 0 0B 7,3 5,6 10,3C 4,3 2,9 1,9

24

Tabla IV

Termómetro de resistencia de platino.

Valores de las constantes A0, Ai, B0, Bi, C0, Ci, D0 y Di de las funciones de referencia

(9a), (9b), (10a), y (10b).

A0 -2,135 347 29 B0 0,183 324 722 B13 -0,091 173 542A1 3,183 247 20 B1 0,240 975 303 B14 0,001 317 696A2 -1,801 435 97 B2 0,209 108 771 B15 0,026 025 526

A3 0,717 272 04 B3 0,190 439 972

A4 0,503 440 27 B4 0,142 648 498A5 -0,618 993 95 B5 0,077 993 465A6 -0,053 323 22 B6 0,012 475 611A7 0,280 213 62 B7 -0,032 267 127

A8 0,107 152 24 B8 -0,075 291 522A9 -0,293 028 65 B9 -0,056 470 670A10 0,044 598 72 B10 0,076 201 285A11 0,118 686 32 B11 0,123 893 204A12 -0,052 481 34 B12 -0,029 201 193

C0 2,781 572 54 D0 439,932 854C1 1,646 509 16 D1 472,418 020C2 -0,137 143 90 D2 37,684 494C3 -0,006 497 67 D3 7,472 018

C4 -0,002 344 44 D4 2,920 828C5 0,005 118 68 D5 0,005 184C6 0,001 879 82 D6 -0,963 864C7 -0,002 044 72 D7 -0,188 732

C8 -0,000 461 22 D8 0,191 203C9 0,000 457 24 D9 0,049 025

25

Tabla V

Funciones de desviación y puntos de calibración para los termómetros de resistencia

de platino en los rangos de T90 considerados.

(a) Rangos que tienen su límite superior en 273,16 KPárrafo Límite

InferiorFunción de desviación Puntos de

calibración11

3.3.1 13,803 3 K a·[W(T90) -1]+b·[W(T90)-1]2+ ∑=

5

1ici·[lnW(T90)]i+n, n =2 2 a 9

3.3.1.1 24,556 1 K como en 3.3.1 con c4 = c5 = n = 0 2,5 a 93.3.1.2 54,358 4 K como en 3.3.1 con c2 = c3 = c4= c5 =0 y n=1 6 a 93.3.1.3 83,805 8 K a·[W(T90) -1]+b·[W(T90) -1]·ln W(T90) 7 a 9(b) Rangos que tienen su límite inferior en 0ºCPárrafo Límite

SuperiorFunción de desviación Puntos de

calibración3.3.2 (12) 961,78 ºC a·[W(T90) -1]+b·[W(T90) -1]2 + c·[W(T90) -1]3+

+ d·[W(T90) - W(660,323 ºC)]2

9,12 a 15

3.3.2.1 660,323 ºC como en 3.3.2 con d = 0 9,12 a 143.3.2.2 419,527 ºC como en 3.3.2 con c = d = 0 9,12,133.3.2.3 231,928 ºC como en 3.3.2 con c = d = 0 9,11,123.3.2.4 156,598 5 ºC como en 3.3.2 con b = c = d = 0 9,113.3.2.5 29,764 6 ºC como en 3.3.2 con b = c = d = 0 9,10

(c) Rango desde 234,315 6 K (-38,834 4 ºC) hasta 29,764 6 ºC3.3.3 como en 3.3.2 con c = d = 0 8 a 10

11 Los puntos se citan aquí por su número de orden de la tabla I.12 Puntos de calibración 9, 12 a 14, con d = 0 para t90 ≤ 660,323 ºC; los valores de “a, b y c” así obtenidos, se conservan para t90 > 660,323 ºC, con d determinado por calibración en el punto 15.

26

Tabla VI

Diferencias entre la EIT-90 y la EIPT-68 y entre la EIT-90 y la EPT-76

en función de T90 o de t68.

(T90 - T76) / mK

T90 / K 0 1 2 3 4 5 6 7 8 90 -0,1 -0,2 -0,3 -0,4 -0,5

10 -0,6 -0,7 -0,8 -1,0 -1,1 -1,3 -1,4 -1,6 -1,8 -2,020 -2,2 -2,5 -2,7 -3,0 -3,2 -3,5 -3,8 -4,1

(T90 - T68) / K

T90 / K 0 1 2 3 4 5 6 7 8 910 -0,006 -0,003 -0,004 -0,006 -0,008 -0,00920 -0,009 -0,008 -0,007 -0,007 -0,006 -0,005 -0,004 -0,004 -0,005 -0,00630 -0,006 -0,007 -0,008 -0,008 -0,008 -0,007 -0,007 -0,007 -0,006 -0,00640 -0,006 -0,006 -0,006 -0,006 -0,006 -0,007 -0,007 -0,007 -0,006 -0,00650 -0,006 -0,005 -0,005 -0,004 -0,003 -0,002 -0,001 0,000 0,001 0,00260 0,003 0,003 0,004 0,004 0,005 0,005 0,006 0,006 0,007 0,00770 0,007 0,007 0,007 0,007 0,007 0,008 0,008 0,008 0,008 0,00880 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,00890 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,009 0,009 0,009

T90 / K 0 10 20 30 40 50 60 70 80 90100 0,009 0,011 0,013 0,014 0,014 0,014 0,014 0,013 0,012 0,012200 0,011 0,010 0,009 0,008 0,007 0,005 0,003 0,001

(t90 - t68)/ ºC/

t90 / ºC 0 - 10 - 20 - 30 - 40 - 50 - 60 - 70 - 80 - 90-100 0,013 0,013 0,014 0,014 0,014 0,013 0,012 0,010 0,008 0,008

0 0,000 0,002 0,004 0,006 0,008 0,009 0,010 0,011 0,012 0,012

t90 / ºC 0 10 20 30 40 50 60 70 80 900 0,000 -0,002 -0,005 -0,007 -0,010 -0,013 -0,016 -0,018 -0,021 -0,024

100 -0,026 -0,028 -0,030 -0,032 -0,034 -0,036 -0,037 -0,038 -0,039 -0,039200 -0,04 -0,040 -0,040 -0,040 -0,040 -0,040 -0,040 -0,039 -0,039 -0,039300 -0,039 -0,039 -0,039 -0,040 -0,040 -0,041 -0,042 -0,043 -0,045 -0,046400 -0,048 -0,051 -0,053 -0,056 -0,059 -0,062 -0,065 -0,068 -0,072 -0,075500 -0,079 -0,083 -0,087 -0,090 -0,094 -0,098 -0,101 -0,105 -0,108 -0,112600 -0,115 -0,118 -0,122 -0,125(13) -0,08 -0,03 0,02 0,06 0,11 0,16700 0,20 0,24 0,28 0,31 0,33 0,35 0,36 0,36 0,36 0,35800 0,34 0,32 0,29 0,25 0,22 0,18 0,14 0,10 0,06 0,03900 -0,01 -0,03 -0,06 -0,08 -0,10 -0,12 -0,14 -0,16 -0,17 -0,18

1000 -0,19 -0,20 -0,21 -0,22 -0,23 -0,24 -0,25 -0,25 -0,26 -0,26

t90 / ºC 0 100 200 300 400 500 600 700 800 9001000 -0,26 -0,30 -0,35 -0,39 -0,44 -0,49 -0,54 -0,60 -0,662000 -0,72 -0,79 -0,85 -0,93 -1,00 -1,07 -1,15 -1,24 -1,32 -1,413000 -1,50 -1,59 -1,69 -1,78 -1,89 -1,99 -2,10 -2,21 -2,32 -2,43

13 En t90 = 630,6 ºC, la derivada primera de (t90 - t68) presenta una discontinuidad, (t90 - t68) = -0,125 ºC

27

Figura 1

Diferencia entre la EIT-90 y la EPIT-68.

NIPO: 706-11- 002- 0

28