electron observation : past, present and future s.torii : waseda university (japan) rome pamela...
Embed Size (px)
TRANSCRIPT

Electron Observation : Past, Present and Future
S.Torii : Waseda University (Japan)
Rome PAMELA Workshop 11.05.2009

Model Dependence of Nearby Source Effect
Ec=∞ 、 ΔT=0 yr, Do=2x1029 cm2/s at 1 TeV Do=5 x 1029 cm2/s
Ec= 20 TeV Ec=20 TeV 、 ΔT=1-104 yr
Kobayashi et al. ApJ 2003
We need a precise measurement at TeV energies to confirm the near-by sources for all of the models.

As a conclusion, we will wait for much more study by ATIC, PAMELA, FERMI-LAT, H.E.S.S.and a new experiment in space, AMS-02.
Moreover,we need accurate measurements up to 10 TeV for detection of nearby sources and ,naturally ,very-high-statistics observation for Dark Matter search in sub-TeV region with a detector which has performance:
The systematic errors including GF is less than a few %. The absolute energy resolution is less than 5 % ( ~ATIC). The exposure factor is as large as several 100 m2srday ( ~ FERMI-LAT). Possibly, the performance does not depend on energies.
It should be a dedicated detector for electron observation in space.
Calorimetric Electron Telescope (CALET) is proposed.

CALorimetric Electron Telescope
Dark Matter
Japanese Experiment Module (Kibo)
International Space Station
Cosmic Ray Sources
SNR
γ
γ
PairAnnihilation
PulsarAGN
γ e
P χ χ
e+
e-
CALET
A Dedicated Detector for Electron Observation in 1GeV – 10,000 GeV

International Collaboration Team
Waseda University : S. Torii, K.Kasahara, S.Ozawa, S.Udo, N. Hasebe, M.Hareyama, N.Yamashita, O.Okudara , S.KodairaJAXA/ISAS : J. Nishimura, T. Yamagami , Y. Saito H. Fuke, M.Takayanagi, H. Tomida, S. Ueno, K.Ebis
awaKanagawa University : T. Tamura, N. Tateyama, K. Hibino, S.Okuno Aoyama Gakuin University : A.Yoshida, T.Kobayashi, K.Yamaoka, T.Kotani Shibaura Institute of Technology : K. Yoshida , A.Kubota, E.KamiokaICRR, University of Tokyo : Y.Shimizu, M.Takita, T.Yuda Yokohama National University : Y.Katayose, M.ShibataHirosaki University: S. Kuramata, M. Ichimura, T okyo Technology Inst.: T.Terasawa, Y. IchisadaNational Inst. of Radiological Sciences : Y. Uchihori, H. Kitamura Rikkyo University: H. Murakami Kanagawa University of Human Services : Y.Komori Saitama University: K.Mizutani Shinshu University : K.Munekata Nihon University: A.Shiomi
NASA/GSFC: J.W.Mitchell, A.J.Ericson, T.Hams, A. A.Moissev, J.F.Krizmanic, M.SasakiLouisiana State University: M. L. Cherry, T. G. Guzik, J. P. WefelWashington University in St Louis: W. R. Binns, M. H. Israel, H. S. KrawzczynskiUniversity of Denver: J.F.Ormes
University of Siena and INFN: P.S.Marrocchesi , M.G.Bagliesi, G.Bigongiari, A.Caldaroe, M.Y.Kim, R.Cesshi, P.Maestro, V.Millucci , R.Zei
University of Florence and INFN: O. Adriani, P. Papini, L. Bonechi, E.VannucciniUniversity of Pisa and INFN: C.Avanzini, T.Lotadze, A.Messineo, F.Morsani
Purple Mountain Observatory: J. Chang, W. Gan, J. YangInstitute of High Energy Physics: Y.Ma, H.Wang,G.Chen

CALET Overview
CALET Mission Concept
Observation: Electrons in 1GeV - 20 TeV Gamma-rays in 20 MeV - 10TeV + Gamma-ray Bursts in 7 keV - 20MeV P-Fe in several 10GeV - 1000 TeV
Launch: HTV: H-IIB Transfer Vehicle
Attach Point on the ISS: Exposed Facility of Japanese Experiment Module (JEM-EF)
Life Time: 3(min.) - 5 years
Mission Status Phase A for Launch around 2013 in Plan
CALET Payload High Energy Electron and Gamma- Ray Telescope Consisted of - Imaging Calorimeter - Total Absorption Calorimeter Weight: 1500 kg Geometrical Factor: ~0.7 m2sr Power Consumption: 640 W Data Rate: 300 kbps
JEM/EF
CALET

CALET launched by CALET launched by HTVHTV
CALET
HTV
HTV
ISS
Approach to Approach to ISSISS
Pickup of Pickup of CALETCALET
H-IIA Transfer VehicleH-IIA Transfer Vehicle (( HTV)HTV)
Launching of H-II RocketLaunching of H-II Rocket Separation from Separation from H-IIH-II
Launching Procedure of CALET
CALET

SIA
IMC
TASC
SACS
Schematic Structure of the CALET Payload
GBM
MDP
VSC
GBM: Gamma-Ray Burst MonitorVSC: Visual Sky CameraMDP: Mission Data Processor
SACS:Scitillator Anti-Coincidence SystemSIA: Silicon Pixel ArrayIMC: Imaging CalorimeterTASC: Total Absorption Calorimeter

Scintillating Fibers(64 fibers = 1 unit)
Tungsten Prate+
Honeycomb Plate
Side Support Structure
1 Layer
Front End Processor Units
FEC +64 anode PMT
ATCS Coldplate
Scintillating Fibers(64 fibers = 1 unit)
Tungsten Prate+
Honeycomb Plate
Side Support Structure
1 Layer
Front End Processor Units
FEC +64 anode PMT
ATCS ColdplateBGO(12 x6 x2)
FEC
SUPPORT PANELS
CFRP BGO CASE
PDPMT
BGO(12 x6 x2)FEC
SUPPORT PANELS
CFRP BGO CASE
PDPMT
Details of Each Component
IMC TASC
SIA SACS(ACD)
Silicon Pixel Array x 2 layers ( Pixel ~1cmx 1cm) Charge resolution: 0.1e for p, 0.35e for Fe
• Segmented Plastic Scintillators for Anti-Coincidence
Co-PI:Pier S. Marrocchesi

Examples of Simulation Events

Purposes of Electron Observation
Expected Electron Spectrum by the CALET Observation for 3 years(~ 1000 m2 sr day)
Cygnus Loop20,000 years2,500 ly
Monogem86,000 years1,000 ly
Vela 10,000 years820 ly
Chandra
ROSAT
・CALET
Vela
近傍ソースの検出-エネルギースペクトル-到来方向の異方性
超新星における衝撃波加速加速機構と拡散過程超新星の頻度、分布
太陽変調
Anisotropy
W=1048 erg/SNI(E)=I0E-α
N =1/30yrD=D0(E/TeV)0.3
Search for the signature of nearby HE electron sources (believed to be SNR) in the electron spectrum above ~ TeV
Search for anisotropy in HE electron flux as an effect of the nearby sources.
Precise measurement of electron spectrum above 10 GeV to define a model of accele-ration and propagation.
Observation of electron spectrum in 1~10 GeV for study of solar modulation
Possible Nearby Sources• T< 105 years• L< 1 kpc
Nearby Pulsars or Dark Matter

IMC
TASC>
(C) (A)
Geometry for Analysis
Energy Resolution
Geometrical Factor
Angular Resolution
CALET Performance by Simulation

i BGOlayerBGOlayer iEE 12FE =
RE = i BGOlayeri BGOlayeri iiEER
Rejection Power for survival of 95 % electrons @ 4 TeV ~ 105 ( ~1 % residual protons) @100 GeV ~ 4x 105 ( ~ 0. 1 %)
1.27 M events of protons
4 TeV Electron 7.;8 TeV Proton
A little effect on electron flux by uncertainties in simulation model
Rejection Power against Background Protons

Detector Energy Region
(GeV)
Energy Resolution
e/p selection power
Key Instrument
(Thickness of CAL)
SΩT
( m 2 srday)
PPB-BETS
(+BETS)
10 -1,000 13%
@100 GeV
4000
(> 10 GeV)
IMC
: (Lead: 9 X0 )
~0.42
ATIC1+2
(+ ATIC4)
10 -
a few 1,000
<3%
( >100 GeV)
~10,000 Thick Seg. CAL
(BGO: 22 X0)
+C Targets
3.08
PAMELA 1-700 5%
@200 GeV
105 Magnet+IMC
(W:16 X0)
~1.4
(2 years)
FERMI-LAT 20-1,000 5-20 %
(20-1000 GeV)
103-104
(20-1,000GeV)Energy dep. GF &
residual protons
Tracker+ACD
+Thin Seg. CAL
(W:1.5X0+CsI:8.6X0)
300@TeV
(1 year)
AMS* 1-1,000 ~ 2.5 %@ 100 GeV
104
(x 102 by TRD)
Magnet+IMC
+TRD+RICH
(Lead: 17Xo)
~100(?)
(1year)
CALET* 1-10,000 ~2%
(>100 GeV)
> 105 IMC+Thick Seg. CAL
(W: 4Xo+BGOr or PWO :27 Xo)
800
(3 years)
Electron(+Postron) Detector and Performance
*) Future Project