electronic supplementary information (esi) for · 2016. 10. 10. · s1 electronic supplementary...

24
S1 Electronic Supplementary Information (ESI) for Stereoselective photoreaction in P-stereogenic dithiazolylbenzo[b]phosphole chalcogenides Shunsuke Iijima, a Takuya Nakashima a and Tsuyoshi Kawai a,b* a Graduate School of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan. E mail: [email protected] b NAIST-CEMES International Collaborative Laboratory for Supraphotoactive System, Centre d’Élaboration de Matériaux et d’Etudes Structurales, CEMES, 29, rue Jeanne Marvig, BP 94347, Toulouse 31055, France. Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Upload: others

Post on 07-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • S1

    Electronic Supplementary Information (ESI) for

    Stereoselective photoreaction in P-stereogenic

    dithiazolylbenzo[b]phosphole chalcogenides

    Shunsuke Iijima,a Takuya Nakashimaa and Tsuyoshi Kawaia,b*

    a Graduate School of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5

    Takayama, Ikoma, Nara, 630-0192, Japan.

    E mail: [email protected]

    b NAIST-CEMES International Collaborative Laboratory for Supraphotoactive System, Centre

    d’Élaboration de Matériaux et d’Etudes Structurales, CEMES,

    29, rue Jeanne Marvig, BP 94347, Toulouse 31055, France.

    Electronic Supplementary Material (ESI) for New Journal of Chemistry.This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

  • S2

    1. NMR characterizations

    Fig. S1 1H NMR spectrum of rac-1a in CDCl3.

    Fig. S2 13C NMR spectrum of rac-1a in CDCl3.

  • S3

    Fig. S3 31P NMR spectrum of rac-1a in CDCl3.

    Fig. S4 1H NMR spectrum of rac-2a in CDCl3.

    20151126 BPPS-2PTA CDCl3 1H-1-1.jdf

    8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

    Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Norm

    alized Inte

    nsity

    6.003.099.832.213.91

    a

    a b

    b

    b

    b

    c c

    d

    ef

    gh

    h

    h

    i

    i

    a

    20151126 BPPS-2PTA CDCl3 1H-1-1.jdf

    8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9

    Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Norm

    alized Inte

    nsity

    3.099.832.213.91

    b

    e

    c, h, f

    g, i

    d

  • S4

    Fig. S5 13C NMR spectrum of rac-2a in CDCl3.

    Fig. S6 31P NMR spectrum of rac-1a in CDCl3.

  • S5

    2. Photoreaction monitored with UV-vis spectra and 1H NMR

    2.1. UV-Vis absorption spectral change

    Fig. S7 Changes in the UV-vis absorption spectra of open form (rac-1a, blue solid line) to PSS (red

    dashed line), and closed form (1b, red solid line) in toluene (1.9 × 10-5 M).

    Fig. S8 Changes in the UV-Vis absorption spectra of open form (rac-1a, blue solid line) to PSS (red

    dashed line), and closed form (1b, red solid line) in methanol (2.3 × 10-5 M).

    0.8

    0.6

    0.4

    0.2

    0.0

    Ab

    so

    rban

    ce

    700600500400300

    Wavelength / nm

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    Ab

    so

    rban

    ce

    700600500400300

    Wavelength / nm

  • S6

    Fig. S9 Changes in the UV-Vis absorption spectra of open form (rac-2a, blue solid line) to PSS (red

    dashed line), and closed form (2b, red solid line) in toluene (2.9 × 10-5 M).

    Fig. S10 Changes in the UV-Vis absorption spectra of open form (rac-2a, blue solid line) to PSS (red

    dashed line), and closed form (2b, red solid line) in methanol (2.8 × 10-5 M).

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    Ab

    so

    rban

    ce

    700600500400300

    Wavelength / nm

    1.2

    0.8

    0.4

    0.0

    Ab

    so

    rban

    ce

    700600500400300

    Wavelength / nm

  • S7

    2.2. 1H NMR spectral change

    Fig. S11 1H NMR spectrum of photoproducts 1b prepared by UV irradiation to the toluene solution

    followed by the separated with RP-HPLC (measured in CDCl3).

    Fig. S12 1H NMR spectrum of photoproducts 1b prepared by UV irradiation to the methanol solution

    followed by the separated with RP-HPLC (measured in CDCl3).

    20150317 BPPO-2PTA-CF from PSS in chloroform CDCl3 1H-1-1.jdf

    8 7 6 5 4 3 2 1 0

    Chemical Shift (ppm)

    0

    0.05

    0.10

    0.15

    0.20

    0.25

    Norm

    alized Inte

    nsity

    2.350.620.622.3810.194.831.732.08

    TMS

    -0.0

    20

    .00

    0.1

    4

    1.2

    4

    1.5

    61

    .82

    2.0

    52

    .07

    7.2

    5

    7.4

    47

    .46

    7.5

    17

    .54

    7.9

    48

    .03

    8.0

    5

    20150317 BPPO-2PTA-CF from PSS in chloroform CDCl3 1H-1-1.jdf

    2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 1.75

    Chemical Shift (ppm)

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    0.10

    0.11

    Norm

    alized Inte

    nsity

    2.350.620.622.38

    1.8

    2

    1.8

    6

    2.0

    5

    2.0

    7

    20150331 BPPO-2PTA-CF from PSS in toluene CDCl3 1H-1-1.jdf

    9 8 7 6 5 4 3 2 1 0

    Chemical Shift (ppm)

    0

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    Norm

    alized Inte

    nsity

    3.003.1310.854.861.602.131.09

    TMS

    -0.0

    20

    .00

    1.6

    11

    .82

    1.8

    62

    .07

    7.2

    57

    .25

    7.4

    57

    .53

    7.5

    47

    .94

    7.9

    47

    .96

    8.0

    48

    .81

    20150331 BPPO-2PTA-CF from PSS in toluene CDCl3 1H-1-1.jdf

    2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 1.75 1.70 1.65

    Chemical Shift (ppm)

    0

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    Norm

    alized Inte

    nsity

    2.911.000.962.99

    1.8

    2

    1.8

    6

    2.0

    02.0

    5

    2.0

    7

  • S8

    Fig. S13 1H NMR spectrum of photoproducts 2b prepared by UV irradiation to the toluene solution

    followed by the separated with RP-HPLC (measured in CDCl3).

    Fig. S14 1H NMR spectrum of photoproducts 2b prepared by UV irradiation to the methanol solution

    followed by the separated with RP-HPLC (measured in CDCl3).

    20150331 BPPO-2PTA-CF from PSS in methanol CDCl3 1H-1-1.jdf

    8 7 6 5 4 3 2 1 0

    Chemical Shift (ppm)

    0

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    0.55

    Norm

    alized Inte

    nsity

    2.993.0310.145.131.562.151.21

    TMS

    0.0

    00

    .06

    1.5

    61

    .57

    1.5

    81

    .82

    1.8

    62.0

    7

    7.2

    57

    .44

    7.4

    67

    .53

    7.5

    47

    .94

    8.0

    38

    .04

    20150331 BPPO-2PTA-CF from PSS in methanol CDCl3 1H-1-1.jdf

    2.25 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 1.75

    Chemical Shift (ppm)

    0

    0.05

    0.10

    0.15

    0.20

    Norm

    alized Inte

    nsity

    2.281.011.002.34

    1.8

    2

    1.8

    6

    2.0

    5

    2.0

    7

    20151201 BPPS-2PTA-PSSinToluene CDCl3 1H-1-1.jdf

    8 7 6 5 4 3 2 1 0

    Chemical Shift (ppm)

    0

    0.05

    0.10

    0.15

    Norm

    alized Inte

    nsity

    5.511.131.005.3433.8524.522.887.064.604.842.36

    -0.0

    1

    1.2

    4

    1.5

    6

    1.8

    32

    .00

    2.0

    82

    .17

    2.3

    5

    3.4

    8

    7.1

    37.1

    57.1

    67

    .18

    7.2

    37

    .25

    7.2

    7

    7.4

    57

    .94

    7.9

    47

    .96

    8.0

    38

    .04

    20151201 BPPS-2PTA-PSSinToluene CDCl3 1H-1-1.jdf

    2.10 2.05 2.00 1.95 1.90 1.85 1.80

    Chemical Shift (ppm)

    0

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0.035

    0.040

    0.045

    0.050

    0.055

    0.060

    0.065

    Norm

    alized Inte

    nsity

    5.511.131.005.34

    1.8

    3

    1.8

    8

    1.9

    9

    2.0

    0

    2.0

    1

    2.0

    6

    2.0

    8

  • S9

    3. Chiral separation

    Fig. S15 Chiral HPLC chromatogram of rac-1a in ethanol. (Flow rate: 6 mL / min., Detection

    wavelength: 254 nm)

    Fig. S16 Chiral HPLC chromatogram of a) primary fraction and b) second fraction separated of rac-

    1a in ethanol, after optical resolution. (Flow rate: 6 mL / min., Detection wavelength: 254 nm)

    Fig. S17 Chiral HPLC chromatogram of rac-2a in ethanol. (Flow rate: 6 mL / min., Detection

    wavelength: 254 nm)

  • S10

    Fig. S18 Chiral HPLC chromatogram of a) primary fraction and b) second fraction separated of rac-

    2a in ethanol, after optical resolution. (Flow rate: 6 mL / min., Detection wavelength: 254 nm)

    Fig. S19 CD spectra for rac-1a of open form in toluene (blue: first fraction, red: second fraction).

    Fig. S20 CD spectra at PSS states achieved by UV irradiation to the solution in Fig. S15 in toluene.

    -10

    0

    10

    CD

    / m

    deg

    700600500400300

    wavelength / nm

    -10

    0

    10

    CD

    / m

    deg

    700600500400300

    wavelength / nm

  • S11

    Fig. S21 CD spectra for rac-2a of open form in toluene (blue: first fraction, red: second fraction).

    Fig. S22 CD spectra at PSS states achieved by UV irradiation to the solution in Fig. S17 in toluene.

    Fig. S23 CD spectra for rac-2a of open form in methanol (blue: first fraction, red: second fraction).

    -20

    -10

    0

    10

    20C

    D /

    md

    eg

    700600500400300

    wavelength / nm

    -20

    -10

    0

    10

    20

    CD

    / m

    deg

    700600500400300

    wavelength / nm

    20

    10

    0

    -10

    -20

    CD

    / m

    deg

    700600500400300

    wavelength / nm

  • S12

    Fig. S24 CD spectra at PSS states achieved by UV irradiation to the solution in Fig. S19 in methanol.

    -20

    0

    20C

    D /

    md

    eg

    700600500400300

    wavelength / nm

  • S13

    4. Study in crystalline state

    4.1 Photochromism in crystal

    Fig. S25 Photochromism of rac-1a in crystal; (a) before and after (b,c) UV irradiation.

    Fig. S26 Photochromism of rac-2a in crystal; (a) before and after (b,c) UV irradiation.

  • S14

    Fig. S27 1H NMR spectrum of photoproducts prepared by UV irradiation to single crystals 1a and

    dissolved in CDCl3.

    Fig. S28 1H NMR spectrum of photoproducts prepared by UV irradiation to single crystals 1b and

    dissolved in CDCl3.

  • S15

    4.2 X-ray crystallographic data

    Table S1. Crystallographic data for rac-1a and rac-2a

    Molecule rac-1a rac-2a

    Formula C34H25N2OPS2 C36H28N3PS3

    Mol weight (g mol-1) 572.68 629.79

    Crystal dimension (mm) 0.100 × 0.070 × 0.020 0.140 × 0.100 × 0.050

    Crystal system Monoclinic Triclinic

    Space group P21/c (#14) P1̅ (#2)

    a (Å) 11.4597(2) 10.0101(2)

    b (Å) 29.0720(5) 11.0471(2)

    c (Å) 16.6209(3) 14.5019(3)

    (°) 86.1262(7)

    (°) 93.7884(7) 83.4645(7)

    (°) 81.5450(7)

    V (Å3) 5525.24(17) 1573.81(5)

    Z value 8 2

    Dcalcd (g mol-1 ) 1.377 1.329

    F (0 0 0) 2384.00 656.00

    (Mo K) (cm-1) 2.825 3.171

    Temperature (K) 123 123

    No. of measured reflections 95332 27280

    No. of unique reflections 12666 7207

    Goodness of fit 1.05 1.09

    Final R indices

    R1 0.0395 0.0374

    wR2 [I > 2(I)] 0.0997 0.1026

    CCDC No. CCDC-1445542 CCDC-1445543

  • S16

    5. Computational data

    Optimization of molecular conformations of 1a and 2a were carried out by DFT calculation with

    B97XD/6-31G(d,p) level.

    5.1. Optimization of molecular conformation

    Fig. S29 Optimized structure of SP-P-1a.

    Fig. S30 Optimized structure of SP-M-1a.

    CH/N : 2.488 Å

    N-P distance : 3.2385 Å

    N-O distance : 3.726 Å

    CH/ : 3.494 Å CH/ : 3.093 Å

    C-C distance : 3.563 Å

    CH/ : 3.037 Å

    CH/N : 2.400 Å

    N-P distance : 3.261 Å

    N-O distance : 3.366 Å

    CH/ : 6.099 Å

    CH/ : 3.114 Å

    C-C distance : 3.564 Å

    CH/ : 2.995 Å

  • S17

    Fig. S31 Optimized structure of RP-P-1a.

    Fig. S32 Result of optimization of RP-M-1a.

    CH/N : 2.500 Å

    N-P distance : 3.261 Å

    N-O distance : 3.366 Å

    CH/ : 6.099 Å CH/ : 2.995 Å

    C-C distance : 3.564 Å

    CH/ : 3.115 Å

    CH/N : 2.488 Å

    N-P distance : 3.238 Å

    N-O distance : 3.726 Å CH/ : 3.494 Å

    CH/ : 3.036 Å C-C distance : 3.563 Å

    CH/ : 3.093 Å

  • S18

    Fig. S33 Optimized structure of SP-P-2a.

    Fig. S34 Optimized structure of SP-M-2a.

    CH/N : 2.538 Å

    N-P distance : 3.112 Å

    N-S distance : 3.804 Å

    CH/ : 3.552 Å CH/ : 3.253 Å

    C-C distance : 3.548 Å

    CH/ : 3.061 Å

    N-P distance : 3.332 Å

    N-S distance : 3.657 Å

    CH/ : 6.313 Å

    CH/N : 2.505 Å

    CH/ : 3.055 Å

    C-C distance : 3.590 Å

    CH/ : 3.096 Å

  • S19

    Fig. S35 Optimized structure of RP-P-2a.

    Fig. S36 Optimized structure of RP-M-2a.

    CH/N : 2.505 Å

    N-P distance : 3.332 Å

    N-S distance : 3.657 Å

    CH/ : 6.311 Å CH/ : 3.054 Å

    C-C distance : 3.590 Å

    CH/ : 3.0965 Å

    CH/N : 2.538 Å

    N-P distance : 3.112 Å

    N-S distance : 3.804 Å CH/ : 3.552 Å

    CH/ : 3.465 Å

    C-C distance : 3.548 Å CH/ : 3.193 Å

  • S20

    5.2. Energy difference between P- and M-conformers estimated by DFT

    Fig. S37 Diagram of energy difference between SP-P-1a and SP-M-1a optimized by B97XD/6-

    31G(d,p) level of DFT calculation.

  • S21

    Fig. S38 Diagram of energy difference between SP-P-2a and SP-M-2a optimized by B97XD/6-

    31G(d,p) level of DFT calculation.

    Fig. S39 Diagram of energy difference between diastereomers of SP-(R,R)-1b and SP-(S,S)-1b

    calculated by CAM-B3LYP/6-31G(d,p) level of DFT calculation.

  • S22

    6. Other NMR data

    Fig. S40 1H NMR spectrum of rac-1a in toluene-d8.

    Fig. S41 1H NMR spectrum of rac-2a in toluene-d8.

  • S23

    Fig. S42 31P NMR spectrum of rac-1a in toluene-d8.

  • S24

    Fig. S43 31P NMR spectrum of rac-2a in toluene-d8.