emerging symmetries and condensates in turbulent inverse cascades

29
Emerging symmetries and condensates in turbulent inverse cascades Gregory Falkovich Weizmann Institute of Science Cambridge, September 29, 2008 חח חחחח חחח''ח

Upload: dacey

Post on 16-Jan-2016

25 views

Category:

Documents


0 download

DESCRIPTION

Emerging symmetries and condensates in turbulent inverse cascades. Gregory Falkovich Weizmann Institute of Science. Cambridge, September 29, 2008 כט אלול תשס''ח. Lack of scale-invariance in direct turbulent cascades. 2d Navier-Stokes equations. Kraichnan 1967. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Emerging symmetries and condensates in turbulent inverse cascades

Emerging symmetries and condensates

in turbulent inverse cascades

Gregory FalkovichWeizmann Institute of Science

Cambridge, September 29, 2008 כט אלול תשס''ח

Page 2: Emerging symmetries and condensates in turbulent inverse cascades
Page 3: Emerging symmetries and condensates in turbulent inverse cascades

Lack of scale-invariance in direct turbulent cascades

Page 4: Emerging symmetries and condensates in turbulent inverse cascades

2d Navier-Stokes equations

E

1

2u

2d2x

Z

1

22d2x

Kraichnan 1967

Page 5: Emerging symmetries and condensates in turbulent inverse cascades

lhs of (*) conserves

(*)

pumping

k

Family of transport-type equations

m=2 Navier-Stokes m=1 Surface quasi-geostrophic model,m=-2 Charney-Hasegawa-Mima model

Electrostatic analogy: Coulomb law in d=4-m dimensions

Page 6: Emerging symmetries and condensates in turbulent inverse cascades

Small-scale forcing – inverse cascades

Page 7: Emerging symmetries and condensates in turbulent inverse cascades

Strong fluctuations – many interacting degrees of freedom → scale invariance. Locality + scale invariance → conformal invariance

Polyakov 1993

Page 8: Emerging symmetries and condensates in turbulent inverse cascades
Page 9: Emerging symmetries and condensates in turbulent inverse cascades
Page 10: Emerging symmetries and condensates in turbulent inverse cascades

_____________=

Page 11: Emerging symmetries and condensates in turbulent inverse cascades

P Boundary Frontier Cut points

Boundary Frontier Cut points

Bernard, Boffetta, Celani &GF, Nature Physics 2006, PRL2007

Page 12: Emerging symmetries and condensates in turbulent inverse cascades

Vorticity clusters

Page 13: Emerging symmetries and condensates in turbulent inverse cascades

Schramm-Loewner Evolution (SLE)

Page 14: Emerging symmetries and condensates in turbulent inverse cascades

C=ξ(t)

Page 15: Emerging symmetries and condensates in turbulent inverse cascades
Page 16: Emerging symmetries and condensates in turbulent inverse cascades

Different systems producing SLE

• Critical phenomena with local Hamiltonians • Random walks, non necessarily local • Inverse cascades in turbulence• Nodal lines of wave functions in chaotic systems • Spin glasses • Rocky coastlines

Page 17: Emerging symmetries and condensates in turbulent inverse cascades

Bose-Einstein condensation and optical turbulenceGross-Pitaevsky equation

Page 18: Emerging symmetries and condensates in turbulent inverse cascades
Page 19: Emerging symmetries and condensates in turbulent inverse cascades
Page 20: Emerging symmetries and condensates in turbulent inverse cascades

Condensation in two-dimensional turbulence

M. G. Shats, H. Xia, H. Punzmann & GF, Suppression of Turbulence by Self-Generated and Imposed Mean Flows, Phys Rev Let 99, 164502 (2007) ;

What drives mesoscale atmospheric turbulence? arXiv:0805.0390

Page 21: Emerging symmetries and condensates in turbulent inverse cascades
Page 22: Emerging symmetries and condensates in turbulent inverse cascades

Atmospheric spectrum Lab experiment, weak spectral condensate

Nastrom, Gage, J. Atmosph. Sci. 1985Nastrom, Gage, J. Atmosph. Sci. 1985

1E-10

1E-09

1E-08

1E-07

1E-06

10 100 1000

k -3

k -5/3

k -3

k (m )-1

E k( )

Shats et al, PRL2007

Page 23: Emerging symmetries and condensates in turbulent inverse cascades

Mean shear flow (condensate)

changes all velocity moments:

0.02 0.04 0.06 0.08

turbulence condensate

S3 (10 m s )-7 3 -3

2

4

r (m)

6

0

-2

(b) 10-6

10 100 1000

k -3

k -5/3

k -3

k (m )-1

E k (m /s ) 3 2

10-7

10-8

10-9

10-10

ktkf

turbulencecondensate

(a)

VVV~

22 ~~2 VVVVV

32233 ~~3

~3 VVVVVVV

Inverse cascades lead to emerging symmetries but eventually to condensates which break symmetries in a different way for different moments

Page 24: Emerging symmetries and condensates in turbulent inverse cascades

Mean subtraction recovers isotropic turbulence1.Compute time-average velocity field (N=400):

0.02 0.04

S3 ( )10 m s-9 3 -3

r (m) -2

0

4

6

2

10 100 1000

10 -6

10 -8

10 -9

10 -7

k (m ) -1

k -5/3E (k)

0

6

12

18

0 0.02 0.04-0.3

0.0

0.3

Flatness Skewness

r (m)

(a) (b) (c)

N

n ntyxVNyxV1

),,(1),(

2. Subtract from N=400 instantaneous velocity fields),( yxV

Recover ~ k-5/3 spectrum in the energy range

Kolmogorov law – linear S3 (r) dependence in the “turbulence range”;

Kolmogorov constant C≈7

Skewness Sk ≈ 0 , flatness slightly higher, F ≈ 6

Page 25: Emerging symmetries and condensates in turbulent inverse cascades

Weak condensate Strong condensate

Page 26: Emerging symmetries and condensates in turbulent inverse cascades

Conclusion

Inverse cascades seems to be scale invariant.

Within experimental accuracy, isolines of advected quantities are conformal invariant (SLE) in turbulent inverse cascades.

Condensation into a system-size coherent mode breaks symmetries of inverse cascades.

Condensates can enhance and suppress fluctuations in different systems

For Gross-Pitaevsky equation, condensate may make turbulence conformal invariant

Page 27: Emerging symmetries and condensates in turbulent inverse cascades

Case of weak condensate

10 100 1000

k -3

E k ( )10 -5

10 -6

10 -7

10 -8

10 -9

k -5/3

k (m ) -1

(a) (b)

0.1

1

S 3 (10 )-7

0.01 0.1r (m)2

3

4

0.01 0.10

0.2

0.4Flatness

Skewness

r (m)

(c)

rrS L 2

3VVV)( 2

TL3L3 2

24 / SSF

2/323 / SSSk

Weak condensate case shows small differences with isotropic 2D turbulence

~ k-5/3 spectrum in the energy range

Kolmogorov law – linear S3 (r) dependence; Kolmogorov constant C≈5.6

Skewness and flatness are close to their Gaussian values (Sk=0, F=3)

Page 28: Emerging symmetries and condensates in turbulent inverse cascades
Page 29: Emerging symmetries and condensates in turbulent inverse cascades