emlab 1 6. capacitance. emlab 2 contents 1.capacitance 2.capacitance of a two-wire line...

32
EMLAB 1 6. Capacitance

Upload: hector-watts

Post on 03-Jan-2016

226 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

1

6. Capacitance

Page 2: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

2Contents

1. Capacitance

2. Capacitance of a two-wire line

3. Poisson’s and Laplace’s equations

4. Examples of Laplace’s equation

5. Examples of Poisson’s equation : p-n junction

Page 3: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

3

Capacitance

Page 4: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

4

0V

0Q

Due to Coulomb force, positive charges rush to the capacitor. As the amount of charges increases, the voltage increases.

If the voltage difference between the terminals of the capacitor is equal to the supply voltage, net flow of charges becomes zero.

Charging capacitor

Page 5: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

5Potential distribution near parallel plates

Page 6: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

6Capacitance

The magnitude of an electric field is proportional to charges, and voltages are pro-portional to electric field. Hence, charges are proportional to voltages. This propor-tionality constant is called capacitance.

CVQVQQEV

VV

d

d

d

V

QC SS

aE

sE

aE

Page 7: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

7

V

QC

h

VolumeS

Capacitor

Page 9: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

9

Page 10: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

10

SS

S

d

d

SC

d

S

dz

da

dz

da

d

d

V

QC

d

S

SS

dS

S

S

S

S

00

1ˆˆ

)ˆ(ˆ

ˆ

zz

zz

sE

aE

zE

z

x

Example: Capacitance of a parallel plate capacitor

y

Page 11: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

11Capacitance from electrostatic energy

22

22

2

2

1

2

1

2

1

2

1

2

1)2(

2

1

2

1)1(

sE

EE

EEED

d

d

V

WC

CVQC

QCVQVdVdVW

ddW

Ve

VV

e

VV

e

SS

S

dzx

d

SC

d

S

d

Sd

V

W2C

ddzˆˆV

Sd2

d2

1d

2

1W

ˆ

2

S

2S

2e

Sd

0

S

2S

V

2

S

V

e

S

zz

EE

zE

Example : parallel plate capacitor

Page 12: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

12Capacitance of 2-wire transmission line

PEC

In this problem, capacitance between two parallel wires needed to be obtained whose radius is b. The distance between the center of the wires is 2h.

LρLρ

- +++++

++

+

+-------

-

With finite radii, the distribution of charges on the wires are non-uniform, which prevents the application of Gauss’ law.

-

To simplify the problem, the potential field is approximated by that of two wires with infini-tesimal radii.

--

-

--

- -

-

h2

b:radius

--

-

--

- -

- LρLρ

a2

0radius

Page 14: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

14Capacitance : 2-wire line

LL

(a,0,0)

(-a,0,0)

P(x,y,0)

z

x

1

0

10101 ln

2,

charge) line one todue potential(

0r

r

rdV

rL

r

r

L

sErE

1r2r

VV

Equation for equi-potential surfaces

h2 )/(cosh)/(cosh2

)/(coshln2

10

1

0

1

0

22

0

222

1

0

bh

L

bh

L

V

L

V

QC

bhb

bhhV

b

bhheK

L

LL

LL

V

L

If the surfaces of wires are fitted to those equi-potential surfaces, bound-ary conditions on PEC’s are satisfied.

With the surfaces fitted to equi-potential contours, the relation between the volt-age and the charge density is

2

1

12

2

1

1

1

4

22

22

22

22

01

2

0

222

221

1

2

202

0

201

0

10

1

2

1

1

)(

)(

)(

)(log

4log

2

)(,)(

ln2

ln2

ln2

) wires two todue potential(

0

K

Kay

K

Kax

Keyax

yax

yax

yax

r

rV

yaxryaxr

r

r

rr

r

rr

r

rV

L

V

LL

LLL

a2

b:radius

b

bhhK

K

K

h

b

K

Kab

K

Kah

22

11

1

1

1

1

1

,1

2

1

2,

1

1

Page 15: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

15Capacitance of a wire above a PEC plane

z

x

2r

LL

(a,0,0)

(-a,0,0)

z

x

1r2r

If image method is adopted, the PEC plane is replaced with a wire with negative charges. Then the problem geometry be-comes that of the previous example.

)b/h(cosh

L2

)b/h(cosh2

L

V

L

V

QC

)b/h(cosh2b

bhhln

2V

b

bhheK

b

bhhK,

1K

K2

h

b

1K

Ka2b,

1K

1Kah

10

1

0

L

LL

1

0

L22

0

L

22V2

1

22

11

1

1

1

1

1

L

0

In calculating capacitance, it should be noted that the voltage difference is V as compared with 2V of the previous example.

L

(a,0,0)

1r

Page 16: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

16

Poisson’s and Laplace’s equations

Page 17: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

17Derivation of Poisson’s & Laplace’s equations

EDD ,

)equationsPoisson'(2

V

VE

)()( VE

VV 2

for homogeneous medium

2

2

2

2

2

2

ˆˆˆˆˆˆ

ˆˆˆ

z

V

y

V

x

V

z

V

y

V

x

V

zyx

z

V

y

V

x

VV

zyxzyx

zyx

Laplace operator has different forms for different coordinate systems.

Page 18: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

18Laplace’s equations

The differential equation for source-free region becomes a Laplace equation.

)equations'Lapace(0V2

2

2

2

2

22 11

z

VVVV

2

2

2

2

2

22

z

V

y

V

x

VV

2

2

2222

22

sin

1sin

sin

11

V

r

V

rr

Vr

rrV

(rectangular coordinate)

(cylindrical coordinate)

(spherical coordinate)

Page 19: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

19Uniqueness theoremSolution of a differential equation

The solution that satisfies the differential equation and its boundary condition is unique regardless of the solution proce-

dure.

conditionboundary

),( yxVb

)y,x(Vinterior)(

)()boundary(,0

)()boundary(,0

21

222

112

VV

fVV

fVV

r

r

022

2 VV

e ddW EE

boundary:S To prove the uniqueness theorem, we assume that there exist two distinct solutions that satisfy the same boundary condition.

Then, the difference of the those two solutions will have zero value at the boundary and will have non-zero value in the inte-rior region.

0)interior(

0)boundary(,02

21

VV

0(interior)

This situation is contradictory to the original assumption that there exist two distinct solution that satisfy the same boundary condition.

0constant(interior)0(interior)

)0(02

)(2

)(22

22

Sondd

dd

SV

VV

a

Page 20: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

20Example 1 : Laplace eqs.

Sd

zx

0V

V0

Unlike the procedures in the previous chapters, the potential V is first obtained solving Laplace equation. Then, using the potential, E, D, , Q, C are obtained.

02

2

2

2

2

2

2

22

zzyx

d

S

dV

SV

V

QC

d

SVSdaQ

d

Vd

Vd

Vd

V

zd

Vz

s

S

s

s

s

0

0

0

0

0

0

0

0

)6(

)5(

ˆˆbottom)(

ˆˆtop)()4(

ˆ)3(

ˆ)2(

)()1(

DzDn

DzDn

zED

zE

If the plates are wide enough to ignore the variation of electric field along x and y directions

0,0

yx

constant),( BABAzAz

zd

Vz

d

VA

BVBAdd

00

0

)(

0)0(,)(

Using the boundary conditions on the two plates,

Page 21: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

21Example 2

)/ln(

)/ln()(

)/ln(

ln,

)/ln(

ln)(,0ln)(

,conditionsboundary theUsing

constants),(ln,0

0,0

symmetricaxially anddirectionz in the infinite be toassumed iscylinder The

0111

000

0

2

2

2

2

2

2

2

2

22

ab

bVV

ba

bVB

ba

VA

VBaAaVBbAbV

BABAVAVV

z

VV

V

z

VVVV

)/ln(

2)6(

2)/ln(

1)5(

)/ln(

1ˆˆ)(

)/ln(

1ˆˆ)()4(

ˆ)/ln(

1)3(

ˆ)/ln(

1)2(

)/ln(

)/ln()()1(

0

0

0

0

0

0

ab

L

V

QC

aLaba

VdaQ

abb

Vb

aba

Va

ab

V

ab

VV

ab

bVV

S

s

s

s

DρDn

DρDn

ρED

ρE

x

y

r

a

b

V00V

Page 22: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

22

2tanln

2tanln

)(0,

2tanln

02

,2

tanln)(

,conditionsboundary theUsing

2tanln

2tan

2sec

21

2cos

2cos

2sin2

2cos

2sin2sin

) ,(sin

,sin0sin

0,0

symmetricaxially are anddirection radial thealonginfinity toextend surfaces The

0sinsin

1

sin

1sin

sin

11

00

0

2

2

2

2

2

2

2

2222

22

VVBV

A

BVVBAV

Ad

AdAdAdA

BABdA

VAVV

V

r

V

V

r

V

r

V

rr

Vr

rrV

상수는

0V

V0

2cotln

r2

V

QC)6(

dr

2cotln

V2

sinr

drdsinr

2cotln

VdaQ)5(

2cotlnsinr

Vˆˆ)a()4(

ˆ

2tanlnsinr

V)3(

ˆ

2tanlnsinr

VˆV

r

1V)2(

2tanln

2tanln

V)(V)1(

1

r

0

0

r

0

2

0

0

S

s

0s

0

0

0

11

DθDn

θED

θθE

Example 3

Page 24: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

24Intrinsic semiconductor

Page 25: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

25Semiconductor doping

Page 26: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

26

Page 27: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

27Example : Poisson eq. Diode (simple model)

V

P

NNxPx

P-type N-type VV 2

V

dx

Vd

2

2

1Cxdx

dV V

02

2

dx

Vd02 C

dx

dV03 CV

1Cxdx

dVE P

x

)(,

0)(

1

1

pP

xpP

pP

px

xxExC

Cxdx

dVxE

)( pP xx

dx

dV

22)(

2)( CxxxV p

P

0)( 2 CxV p

2)(2

)( pP xxxV

xE

PN

NxPx

)( pN xx

dx

dV

22)(

2)( CxxxV N

N

2

)(2

)(2

)0(

22

2

22

2

PPNN

PP

NN

xxC

xCxxV

2)(

2)(

222 PPNN

NN xx

xxxV

V

NxPx

P-type region

N-type region

Page 28: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

28Method of separation of variables

)()()(),,(

02

2

2

2

2

2

zZyYxXzyx

zyx

0)(1

011

0111

0111

,by Divided

0

222

222

2

2

22

22

2

22

2

2

22

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

Zdz

Zd

dz

Zd

Z

Ydy

Yd

dz

Zd

Zdy

Yd

Y

Xdx

Xd

dx

Xd

Xdz

Zd

Zdy

Yd

Y

dz

Zd

Zdy

Yd

Ydx

Xd

X

XYZ

dz

ZdXY

dy

YdXZ

dx

XdYZ

zyx

s.conditioinboundary thefrom fixed becan ,,,,,

coshsinh)(

cossin)(

cossin)(

0)(

0

0

0111

2222

222

2

22

2

22

2

2

2

2

2

2

2

FEDCBA

zFzEzZ

xDxCyY

xBxAxX

Zdz

Zd

Ydy

Yd

Xdx

Xd

dz

Zd

Zdy

Yd

Ydx

Xd

X

•The original equation on the left is split into three equations containing single variable. The equa-tions are related to one another through variables and .• , can be fixed using boundary conditions.

• If the boundary condition becomes complex, three dimensional Laplace equa-tion is very difficult to solve. This is because the Laplace equation is a partial differential equation that contains three variables x, y and z.

• If the boundary is parallel to coordinate axes, the solution to Laplace equation can be represented as a multiplication of three functions that contain only one variable.

• This method is called as a method of separation of variables.

Page 29: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

29Example : Separation of variables

0VV0

V0

V0 a

b

),( yxV

)()(),(

02

2

2

2

yYxXyxV

y

V

x

V

If the boundary extends to infinity in

the z-direction, the derivative with re-spect to z becomes zero.

01

1

22

2

22

2

2

2

2

2

sinsinh),(

sinsinh),(

),3,2,1(

0sinsinh),(

0

0)coshsinh()0,(

0

0)cossin(),0(

)cossin(

)coshsinh(),(

cossin

coshsinh

0

00

11

Vb

yn

b

anAyaV

b

yn

b

xnAyxV

nb

nnb

bxAbxV

D

DxBxAxV

B

yDyCByV

yDyC

xBxAyxV

yDyCY

xBxAX

Ydy

Yd

Xdx

Xd

dy

Yd

Ydx

Xd

X

nn

nn

10

00

0

0

0

00

01

)12(sin

)12(sinh)12(

)12(sinh

4),(

;sinh

4

sinh

])1(1[2

])1(1[cossin2

sinh

~0 sin

sinsinh),(

n

m

m

mb

b

m

nn

b

yn

ban

n

bxn

VyxV

m

bam

m

V

bamm

VA

m

bV

b

ym

m

bVdy

b

ymV

b

b

amA

bb

ym

Vb

yn

b

anAyaV

홀수은

적분하면까지곱하고를양변에

nmforb

nmfor

b

ymn

mnb

ymn

mn

b

dyb

ymn

b

ymndy

b

ym

b

yn

b

bb

2

0

)(sin

1)(sin

1

2

)(cos

)(cos

2

1sinsin

0

00

Page 30: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

30Result-Matlab code

% potential_demo.m% 변수 분리 방법에 의해 푼 전압을 그림 .

clear,clf;hold on;imax = 30;jmax = 30;a=2.5; b = 1;for i=1:imax+1 for j=1:jmax+1 x(i,j) = (i-1)*a/imax; y(i,j) = (j-1)*b/jmax; z(i,j) = Vseries(x(i,j),y(i,j)); endend

colormap jet;surf(x,y,z);shading interp;%caxis([0,100]);colorbar('vert');view([0,90]);

%Vseries.m

% 변수 분리 방법에 의한 전압 계산function f=Vseries(x,y)

V=100;f=0;a=2.5;b=1;

for i=1:10 n=2*i-1; f=f+sinh(n*pi*x/b)/sinh(n*pi*a/b)*sin(n*pi*y/b)*(1/n);endf=f*4*V/pi;

Page 31: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

31

)(0

0

,,

0,0

2

2

2

2

2

2

2

LaplacianV

z

V

y

V

x

V

z

VE

y

VE

x

VE

z

E

y

E

x

E

zyx

zyx

E

Solving Laplace equation through Finite difference method

43210

204321

2

2

2

2

24002

2

2

23001

2

2

3001

4

1

04

,

VVVVV

h

VVVVV

y

V

x

V

h

VVVV

h

xV

xV

y

V

h

VVVV

hxV

xV

x

V

h

VV

x

V

h

VV

x

V

db

ca

ca

0V 1V

2V

3V

4V

acd

b

0V

0V

0V

10V Electrostatic potentials can be found from the Laplace equation.

43210 4

1VVVVV Numerical Laplace equation

Page 32: EMLAB 1 6. Capacitance. EMLAB 2 Contents 1.Capacitance 2.Capacitance of a two-wire line 3.Poisson’s and Laplace’s equations 4.Examples of Laplace’s equation

EMLAB

32

0

0

0

0

0

0

10

10

10

V

V

V

V

V

V

V

V

V

410100000

141010000

014001000

100410100

010141010

001014001

000100410

000010141

000001014

0V0V0V4:V

0VVVVV4:V

0V100VV4:V

0V10VVV4:V

0V10V0V4:V

3,3

2,3

1,3

3,2

2,2

1,2

3,1

2,1

1,1

1,1N2,N1,N1,N

1j,i1j,ij,1ij,1ij,ij,i

3,22,13,13,1

2,23,11,12,12,1

1,22,11,11,1

1,1V 2,1V 3,1V

1,2V 2,2V

10

0

The unknown voltages on the lattice points are set to V(i,j). Using the numerical Laplace equation, the un-knowns are related to one another. If as many equations as the number of unknowns are generated, a set of si-multaneous equations is formed that has unique solu-tion.

Matrix formulation

04: 1,1,,1,1,, jijijijijiji VVVVVV

][]][[ SVVA