engr 2370 chap 5

Upload: luc-le

Post on 05-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 ENGR 2370 Chap 5

    1/18

    Chapt er 5 Laplace Tr ansf or ms

    5 . 1 I nt r oductionI t was shown ear lier in t he course t hat 1st order ODEs of t he f orm

    x = f ( x,t ) x(0) = a

    can be solved by int egrat ion one t ime wrt t . This reduces t he ODE

    t o an algebr aic equat ion t hat can be solved f or x(t ) which sat isf ies t he

    I C, x(0) = a. However, as t he order of t he ODE is 2 or higher, mor e

    t han one int egrat ion is requir ed t o r educe t he ODE t o an algebraic

    equat ion. Theref or e, more wor k is r equir ed.

    Anot her met hod of solving linear ODEs is t he so-called M et hod of

    Laplace Tr ansf or ms which r educes t he ODE t o an algebraic equat ion

    in one st ep and sat isf ies t he init ial condit ions as par t of t he same

    process. Laplace (1749-1827) and Cauchy (1789-1857) are normally

    credit ed wit h developing t he mat h t heory, and Heaviside, an English

    elect r ical engineer (1850-1925), f ir st applied t he met hod t o cir cuit

    problems. The met hod was originally called Heaviside Transf orms, but

    t he name Laplace Tr ansf orms is used t oday.

    Def init ion: The Laplace Tr ansf orm of a f unct ion f (t ) is def ined by

    t he int egr al

    L{ f (t ) } = F(s) = dtef ( t )0

    st-

    (2)

    where s is a paramet er .

    Note: I n or dinar y dif f er ent ial and int egral calculus t he int egral is t he

    inverse operat ion of a der ivat ive and can be t hought of as a

    t ype of t r ansf orm.

    Page 1

  • 8/2/2019 ENGR 2370 Chap 5

    2/18

    5 . 2 Calculat ion of Some Simple T r ansf or ms

    Example 3 : f (t ) = 1

    F(s) = dtef ( t )0

    st-

    = dte10

    st-

    = -s1 (-s)dte

    0

    st-

    = -s

    1e

    -st= -

    s

    1{Lim [ e

    -st] - 1 } =

    s

    1

    Theref or e: L{1} =s

    1, s 0 (5)

    Example 4 : f (t ) = e

    at

    F(s) = dtee0

    st-at

    = dte0

    a)t-(s-

    = -a)-(s

    1dta)](s[e

    0

    a)t-(s-

    = -a)-(s

    1 e

    a)t--(s= -

    a)-(s

    1{Lim [ e

    a)t--(s] - 1 }

    =a)-(s

    1(6)

    Ther ef or e: L{ eat

    } =a)-(s

    1, s a

    Example: f (t ) = t

    Shor t Cut

    F(s) = dtet0

    st-

    D I

    t + e-st

    1 - -s

    1e

    -st

    0 +s

    12

    e-st

    Page 2

    0

    t

    0

    t

  • 8/2/2019 ENGR 2370 Chap 5

    3/18

    Example (Cont inued )

    F(s) = [ -s

    1t e

    -st-

    s

    12

    e-st

    ]

    = Lim [ -s

    1t e

    -st-

    s

    12

    e-st

    ] - Lim [ -s

    1t e

    -st-

    s

    12

    e-st

    ]

    t = 0

    =s

    12

    Theref or e: L{ t } =s

    1

    2, s 0

    Since t he Laplace Transf or m int egral dtef ( t )0

    st-

    must exist in order t o be

    used, cer t ain requir ement s on f (t ) must , in general, be met :

    (1) f (t ) must be at least piecewise ( in sect ions) cont inuous.

    f ( t )

    t

    (2) f (t ) e-st

    must be bounded as t

    Ex: f (t ) = t , Lim t e-st

    = Lime

    tst

    =

    = Limes

    1st

    = 0

    Theref or e: f (t ) = t = O( est

    ), s 0 Page 3

    0

    t

    t t

    t

  • 8/2/2019 ENGR 2370 Chap 5

    4/18

    Ex: f (t ) = et2

    Lime

    est

    2t

    =

    t

    Lim e stt2

    = NOT BOUNDED!

    t

    Theref or e: et2

    O( est

    ), s 0.

    5. 3 T ransf orms of Derivat ives

    Consider L{ f ' (t )} = dte(t )'f0

    st-

    { I nt egr at e by par t s }

    u = e-st

    v = f (t )

    u = - s e-st

    v = f (t )

    dte(t )'f0

    st-

    = e-st

    f ( t ) - dte(t )(-s)f0

    st-

    = Lim e-st

    f (t) - f (0) + s dte(t )f0

    st-

    t

    Since f (t ) = O( est

    ) f or s 0, t hen Lim e-st

    f (t ) = 0 as t .

    Theref or e: L{ f (t ) } = = sL{ f (t ) } - f (0) = sF(s) - f (0) (8)

    I n a similar mannerL{ f (t ) } = sL{ f (t ) } - f (0) = s[sL{ f (t ) } - f (0) ] f (0)

    = s2L{ f (t) } - sf (0) - f (0) (13)

    Page 4

    0

  • 8/2/2019 ENGR 2370 Chap 5

    5/18

    I nverse T ransf orms Let t he symbol L-1

    {F(s)} = f (t ) denot e a f unct ion

    whose Laplace Tr ansf orm is F(s). Then, if

    L{f (t )} = F(s) t hen L-1

    {F(s)} = f (t )

    Example: I f L{ eat

    } =a)-(s

    1, t hen L

    -1{

    a)-(s

    1} = e

    at

    As a pract ical mat t er , ever y given f unct ion F(s) cannot have more t han one

    inverse t r ansf orm f (t ) t hat is cont inuous f or each t 0.

    T he Use of Part ial Fr act ions For I nver se T r ansf or ms.

    Example: Find L-1

    {2ss

    1s2

    } .

    Let2ss

    1s2

    =

    2)s(s

    1s

    =

    s

    A+

    2s

    B

    Mult iply bot h sides of t he equat ion by s(s+2).

    s + 1 = (s + 2)A + sB = (A + B)s + 2A

    Equat e coef f icient s of like power s of s:

    A + B = 1 and 2A = 1

    or

    A =2

    1and B =

    2

    1

    Theref or e, L-1

    {2ss

    1s2

    } = L

    -1{

    2

    1

    s

    1} + L

    -1{

    2

    1

    2)(s

    1

    }

    =2

    1+

    2

    1e

    -2t

    Page 5

  • 8/2/2019 ENGR 2370 Chap 5

    6/18

    PARTI AL FRACTI ON SHORT CUT:

    A =2)(s

    1s

    at s = 0 A =

    2

    1

    B = s

    1s at s = - 2 B = 2

    1

    Example: Repeat ed Linear Fact or s.

    Find L-1

    {

    a)s(s

    a2

    2

    } .

    Assume:

    a)s(s

    a

    2

    2

    = s

    A

    + as

    B

    + a)(s

    C

    2

    Convent ional M et hod: Mult iply bot h sides by s a)(s2

    .

    a2

    = A a)(s2

    + Bs(s + a) + Cs

    Mult iply out and collect like power s of s

    a2

    = A( s2

    + 2as + a2

    ) + B( s2

    + as) + Cs

    or

    a2

    = ( A + B)s2

    + ( 2aA + aB + C)s + a2

    A

    Ther ef ore: A = 1, A + B = 0 B = - 1

    2aA + aB + C = 0 C = - a

    and

    a)s(s

    a

    2

    2

    = s

    1

    - as

    1

    - a)(s

    a

    2

    L-1

    {a)s(s

    a2

    2

    } = L

    -1{

    s

    1} - L

    -1{

    as

    1

    } - aL

    -1{

    a)(s

    12

    }

    = 1 - e-at

    - at e-at

    Page 6

  • 8/2/2019 ENGR 2370 Chap 5

    7/18

    PARTI AL FRACTI ON SHORT CUT:

    A =

    a)(s

    a2

    2

    at s = 0 A = 1

    C =s

    a2

    at s = - a C = - a

    B = )ds

    dC(

    a-s

    = -s

    a2

    2

    at s = - a B = - 1

    These are t he same result s as wit h t he convent ional met hod!

    Example 2 (Text ): Find L-1

    {

    10-3ss

    32

    }.

    10-3ss

    32

    =2)-5)(s(s

    3

    =

    5s

    A

    +

    2-s

    B

    A = )2-s

    3(

    5-s

    = -7

    3

    B = )5s

    3(

    2s =

    7

    3

    L-1

    {10-3ss

    32

    } = -7

    3L

    -1{

    5s

    1

    } +

    7

    3L

    -1{

    2-s

    1}

    Using L-1

    {a-s

    1} = e

    at,

    L-1

    {10-3ss

    32

    } = -7

    3e

    -5t+

    7

    3e

    2t=

    7

    3( e

    2t- e

    -5t)

    Page 7

  • 8/2/2019 ENGR 2370 Chap 5

    8/18

    Convolut ion ( Pr oduct of T r ansf or ms)

    Let F(s) = L{f (t )} and G(s) = L{g(t )}

    Then consider t he product

    F(s)G(s) = dxef (x )0

    xs-

    dyeg(y)0

    ys-

    =

    0

    dydxg(y)f (x )e0

    y)x(s-

    (1)

    Consider t he f ollowing region in t he 1st Quadrant :

    y

    (0,a)

    (0,0) (a,0) x

    I n t he limit as a the triangle cover s t he 1st quadrant . Now consider

    t he f ollowing change in variables:

    Let t = t (x,y) = x + y and = (x,y) = y

    The reverse t r ansf ormat ion is given by

    x = x(t , ) = t - and y = y(t , ) =

    Eq(1) can be wri t t en

    F(s)G(s) = Lim dtdJ)g()-f (test-

    (2)

    where t he limit s of int egrat ion will depend on a , and J is t he J acobian of

    t he t r ansf ormat ion.

    Page 7a

    a

  • 8/2/2019 ENGR 2370 Chap 5

    9/18

    J is given by J (t ,

    yx,) = = = 1

    Theref or e, eq(2) becomes

    F(s)G(s) = Lim dtd)g()-f (test- 1

    Limit s of int egr at ion are f ound as f ollows: (0,0) (0,0) , (a,0) (a,0) ,

    and (0,a) (a,a)

    a (a,a)

    = t

    0 dt a t

    F(s)G(s) = Lim a

    0

    dtd)g()-f (tet

    0

    st-

    F(s)G(s) =

    0

    st-e [ dtd)g()-f (tt

    0 ] (3)

    Let f (t)*g(t ) = t

    0

    d)g()-f (t (4)

    Then, F(s)G(s) = L{ f (t )*g(t ) } or f (t )*g(t ) = L-1 { F(s)G(s) } (5)

    or L-1

    { F(s)G(s) } = f (t )*g(t ) = t

    0

    d)g()-f (t

    Page 7b

    t

    x

    t

    y

    x

    y

    1 0

    - 1 1

    a

    a

  • 8/2/2019 ENGR 2370 Chap 5

    10/18

    Example: L-1

    {s

    14

    } =6

    t 3f r om Laplace Transf orm Table.

    Rework using Convolut ion t r ansf orm. Let F(s) =s

    1

    2

    and G(s) =s

    1

    2

    .

    L-1

    { F(s)G(s) } = f (t )*g(t ) = t * t

    f (t ) = t , g(t ) = t or g() =

    Then, using eqs(4) and (5)

    L-1 { F(s)G(s) } = f (t )*g(t ) = t

    0

    d)g()-f (t =

    = t

    0

    2 d)(t = [ t2

    2

    -3

    3

    ]

    =2

    t 3-

    3

    t 3=

    6

    t 3Same Result !

    Example: L-1

    {s

    13

    } =2

    t 2f r om Laplace Tr ansf orm t able.

    L-1

    {s

    13

    } = L-1

    {s

    1s

    12

    } = f (t )*g(t )

    where F(s) =s

    1or f (t ) = 1

    G(s) = s

    12 or g(t ) = t

    L-1

    {s

    13

    } = 1* t = t

    0

    d)( 1 =2

    2

    =2

    t 2

    Page 7c

    t

    0

    d)-(t

    t

    0

    t

    0

  • 8/2/2019 ENGR 2370 Chap 5

    11/18

    Sect ion 5. 3, Example 3: Part ial Fract ion (See Ex 2) Versus Convolut ion

    Met hod

    L-1

    {

    10-3ss

    32

    } = L-1

    {

    2)-5)(s(s

    3

    } = L

    -1{

    5)(s

    3

    2)-(s

    1}

    Then F(s) =5)(s

    3

    or f (t ) = 3 e

    -5t

    and G(s) =2)-(s

    1or g(t ) = e

    2t

    L-1

    { F(s)G(s) } = f (t )*g(t ) = t

    0

    2)-5(t- dee3 = 3 t

    0

    255t- deee

    = 3 e-5t

    t

    0

    7 de =7

    3e

    -5t

    t

    0

    7 7de

    =7

    3e

    -5t[ e

    7t- 1 ] =

    7

    3[ e

    2t- e

    -5t]

    This is t he same result as Example 2!

    Page 7d

  • 8/2/2019 ENGR 2370 Chap 5

    12/18

    5 . 4 Solut ions of OD Es Using Laplace T ransf or m.

    Example: ODE y (t ) + a2y = 0

    I C y(0) = A

    y (0) = B

    L{ y (t ) } + a2L{ y(t ) } = 0 (1)

    From eq(13)

    L{ y (t ) } = s2L{ y(t ) } - sy(0) - y(0)

    = s2y(s) - A s - B

    Eq(1) becomes an algebr aic equat ion in y(s)

    s2y(s) - A s - B + a

    2y(s) = 0

    Solve f or y(s).

    y(s)( s2

    + a2

    ) = As + B

    or

    y(s) = A (as

    s22

    ) + B(

    as

    122

    ) = A(

    as

    s22

    ) +

    a

    B(

    as

    a22

    )

    Using t he inver se t r ansf orm t able

    L-1

    {y(s)} = A L-1

    {as

    s22

    } +

    a

    BL

    -1{

    as

    a22

    }

    y(t ) = Acos(at ) +a

    Bsin(at )

    or t he solut ion t o eq(1) becomes

    y(t ) = Acos(at ) + Bsin(at )

    where A and B ar e arbit rar y constant s based on t he I C.

    Page 8

  • 8/2/2019 ENGR 2370 Chap 5

    13/18

    Example: ODE y (t ) - y (t ) - 6y(t ) = 2

    I C y(0) = 1

    y (0) = 0

    Take t he Laplace Tr ansf orm of both sides of t he ODE.

    s2y(s) - sy(0) - y (0) - [ sy(s) - y(0) ] - 6y(s) =

    s

    2

    s2y(s) - s - sy(s) + 1 - 6y(s) =

    s

    2

    Solve f or y(s).

    y(s) [ s2

    - s - 6 ] = s - 1 +s

    2=

    s

    2s-s2

    y(s) ( s 3)( s + 2) =s

    2s-s2

    or

    y(s) =2)s3)(-s(s

    2s-s2

    To f ind t he inverse t r ansf orm, use par t ial f r act ions.

    y(s) =2)s3)(-s(s

    2s-s2

    =

    s

    A+

    3s

    B

    +

    2s

    C

    Using t he shor t cut ,

    A =2)s3)(-s(

    2s-s2

    at s = 0 A =

    2)3)(-(

    2= -

    3

    1

    B =2)s(s

    2s-s2

    at s = 3 B =

    2)3(3

    23-)3(2

    =

    15

    8

    C =3)-s(s

    2s-s2

    at s = - 2 C =

    3)-2-(-2)(

    2(-2)-(-2)2

    =

    10

    8=

    5

    4

    Page 9

  • 8/2/2019 ENGR 2370 Chap 5

    14/18

    Theref or e, y(s) = - (3

    1)

    s

    1+ (

    15

    8)

    3s

    1

    + (

    5

    4)

    2s

    1

    Taking t he inver se t r ansf orm,

    y(t ) = = -3

    1+ (

    15

    8) e

    3t+ (

    5

    4) e

    -2t

    Page 10

  • 8/2/2019 ENGR 2370 Chap 5

    15/18

    Example 2 (T ext ) Solve t he I nit ial Value Pr oblem:

    ODE y (t ) - y(t ) = 0 (16)

    I C y(0) = 1

    y (0) = y (0) = y (0) = 0

    Tale t he Laplace Tr ansf or m of each t erm of t he ODE:

    L{ y (t ) } - L{ y(t ) } = 0

    From Appendix C Tr ansf orm No. 26

    s4Y(s) - s

    3y (0) - s

    2y (0) - sy (0) - y (0) - Y(s) = 0 (17)

    s4Y(s) - s

    3(1) - s

    2(0) - s(0) - y (0) - Y(s) = 0

    Y(s) [ s4 - 1 ] = s3

    Y(s) =1s

    s

    4

    3

    (18)

    To f ind t he I nverse Transf or m use t he Met hod of Par t ial Fract ions

    wit h t he shor t cut .

    Y(s) =1s

    s

    4

    3

    = 1)s1)(-s(

    s

    22

    3

    = i)-i)(s1)(s-1)(s(s

    s3

    = 1s

    A

    + 1s

    B

    + is

    C

    + is

    D

    (19)

    A =1)s1)(-(s

    s

    2

    3

    =

    1)1)(1-(-1

    (-1)3

    =

    (-2)(2)

    1-=

    4

    1

    B =1)s1)((s

    s

    2

    3

    =

    1)1)(1(1

    (1)3

    =

    (2)(2)

    1=

    4

    1

    C =i)-1)(ss(

    s

    2

    3

    ==

    i)-1)(-i-(-1

    (-i)3

    =(-2)(-2i)

    i)(-i)(-i)(-=

    4i

    i=

    4

    1

    D =i)1)(ss(

    s

    2

    3

    =

    i)1)(i-(-1

    (i)3

    =

    (-2)(2i)

    (-1)(i)=

    4i

    i=

    4

    1Page 11

    s = -1

    s = 1

    s = -i

    s = +i

  • 8/2/2019 ENGR 2370 Chap 5

    16/18

    Theref or e, t he t r ansf orm in par t ial f r act ion f orm is

    Y(s) =4

    1

    1)(s

    1

    +

    4

    1

    1)(s

    1

    +

    4

    1

    i)(s

    1

    +

    4

    1

    i)(s

    1

    y(t ) =4

    1L

    -1{

    1s

    1

    } +

    4

    1L

    -1{

    1s

    1

    } +

    4

    1L

    -1{

    is

    1

    } +

    4

    1L

    -1{

    is

    1

    }

    Using t he I nver se Tr ansf or m L-1

    {a-s

    1} = e

    at

    y(t ) =4

    1e

    -t+

    4

    1e

    t+

    4

    1e

    -i t+

    4

    1e

    it

    Recall: cosh(t ) =21 ( et + e-t )

    and eit

    = cos(t ) + isin(t )

    e-i t

    = cos(t ) - isin(t )

    Addit ion gives 2cos(t ) = eit

    + e-i t

    or

    cos(t ) =21 ( eit + e-i t )

    Theref or e, t he f inal solut ion t o eq(16) is

    y(t ) =2

    1cosh(t ) +

    2

    1cos(t ) (20)

    Page 12

  • 8/2/2019 ENGR 2370 Chap 5

    17/18

    Example 3 (Text) Solve the 1 st or der I nit ial Value Pr oblem:

    ODE x (t ) + px(t ) = q(t ) (21)

    I C x(0) = xo

    where p is a constant and q(t ) is a given f or cing f unct ion of t .

    Take t he Laplace Transf or m of both sides of eq(21).

    L{ x (t ) } + pL{ x(t ) } = L{ q(t ) }

    sX(s) - x(0) + pX(s) = Q(s)

    or X(s)( s + p ) = xo + Q(s)

    or X(s) = xo(

    ps

    1

    ) + (

    ps

    1

    )Q(s)

    Taking t he I nver se Transf or m,

    x(t ) = xoe

    -pt+ L

    -1{ (

    ps

    1

    )Q(s) }

    Consider t he 2nd

    t erm as a Convolut ion wit h

    F(s) =ps

    1

    and G(s) = Q(s)

    f ( t ) = e-pt

    and g(t ) = q(t )

    or f (t - ) = e)-p(t -

    and g() = q()

    Theref or e,

    x(t) = xoe

    -pt+

    t

    0

    d)g()-f (t = xoe

    -pt+

    t

    0

    )-p(t- d)q(e

    Page 13

  • 8/2/2019 ENGR 2370 Chap 5

    18/18

    x(t) = xoe

    -pt+ e

    -pt

    t

    0

    p d)q(e

    = e-pt

    [ xo

    + t

    0

    p d)q(e

    ] (23)

    Let q(t ) = t . Then, eq(23) represent s a closed f orm solut ion since

    I nt egrat ion by par t s using t he shor t cut D I

    + ep

    1 -p

    1e

    p

    0 +p

    12

    ep

    t

    0

    p d)q(e

    = t

    0

    p de

    = [p

    e

    p-

    p

    12

    ep

    ]

    =p

    te

    pt-

    p

    12

    ept

    - [ 0 -p

    12

    ]

    =p

    te

    pt-

    p

    12

    ept

    +p

    12

    Theref or e, eq(23) becomes

    x(t) = e-pt

    [ xo

    +p

    te

    pt-

    p

    12

    ept

    +p

    12

    ]

    x(t ) = ( xo

    +p

    12

    ) e-pt

    + (p

    t-

    p

    12

    )

    Page 14

    t

    0