eos’constraints’from’nuclear’collec;ve’mo;ons...

33
EoS constraints from Nuclear Collec;ve Mo;ons Neutron Star Ma>er Symposium( October 25, 2013 at Kyoto, Japan) H. Sagawa University of Aizu/RIKEN, Japan 1. Incompressibility and Giant Monopole Resonances 2. Isospin dependence of GMR 3. Mass model and symmetry energy 4. Summary

Upload: others

Post on 10-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

Castle  of  Crane(鶴ヶ城)  in  Aizu  Wakamatsu  2013

     EoS  constraints  from  Nuclear  Collec;ve  Mo;ons                                              『Neutron  Star  Ma>er  Symposium』                                          (  October  25,  2013 at  Kyoto,  Japan)

H.  Sagawa  University  of  Aizu/RIKEN,  Japan

1.  Incompressibility  and  Giant  Monopole  Resonances  2.  Isospin  dependence  of  GMR  3.  Mass  model  and  symmetry  energy    4.  Summary

Page 2: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

Energy  Density  Func/onals  

Esym = !S(!) = E(!," =1)!E(!," = 0)

Page 3: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

[ ] EE ==ΨΨ= effHH Φ Φ ρ Φ Slater  determinant     ⇔ 1-­‐body  density  matrix  ρ

Calcula;ng  the  parameters  from  a   more   fundamental   theory(   Rela;vis;c   Bruckner   HF   or          Chiral  field  theory  and  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐)  

SeYng  the  structure  by  means  of  symmetries  (spin,   isospin  -­‐-­‐)  and  fiYng  the  parameters  

Allows  calcula;ng  nuclear  ma>er  and  finite  nuclei  (even  complex  states),  by  disentangling  physical  parameters.    

HF/HFB  for  g.s.,  RPA/QRPA  for  excited  states.  

Possible  both  in  non-­‐rela;vis;c  and  in  rela;vis;c  covariant  form.  

Well-­‐known  basics  on  EDF’s  

Page 4: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

SHF  

RMF  

Nuclear  Ma>er  

Incompressibility  K

Page 5: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

Nuclear  Ma>er    EOS  

Incompressibility  K  

Isoscalar  Giant  Monopole  Resonances  

Isoscalar  Compressional  Dipole  Resonances  

イメージを表示できません。メモリ不足のためにイメージを開くことができないか、イメージが破損している可能性があります。コンピューターを再起動して再度ファイルを開いてください。それでも赤い x が表示される場合は、イメージを削除して挿入してください。

{

Self  consistent  HF+RPA  calcula;ons  

Self  consistent  RMF+RPA    calcula;ons  

イメージを表示できません。メモリ不足のためにイメージを開くことができないか、イメージが破損している可能性があります。コンピューターを再起動して再度ファイルを開いてください。それでも赤い x が表示される場合は、イメージを削除して挿入してください。

,( , ) experimtentα α

Supernova  Explosion  

Page 6: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

We can give credit to the idea that the link should be provided microscopically through the Energy Functional E[ρ].

IT PROVIDES AT THE SAME TIME K∞ in nuclear matter (analytic)

EISGMR (by means of self-consistent RPA calculations)

K∞ [MeV] 220 240 260

Eexp

Extracted value of K∞

RPA

EISGMR

Skyrme

Gogny

RMF

The  nuclear  incompressibility  from  ISGMR  

Page 7: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

The incompressibility of nuclear matter ∞KThe incompressibility of nuclear matter can not be measured directly, it can be deduced from the response of ISGMR in heavy nuclei, such as 208Pb.

5 10 15 20 250.0

0.1

0.2

0.3

0.4

Fraction  E0  EW

SR/M

eV

E (MeV )

 E xp.  S K I3(258)  S L y5(230)  S K P (201)

208P b

 

 

K=217MeV  for  SkM*  

K=256MeV  for  SGI  

K=355MeV  for  SIII  

Page 8: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

K=217MeV  for  SkM*  

K=256MeV  for  SGI  

K=355MeV  for  SIII  

Page 9: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

G.Colo, N. Van Giai, J. Meyer, K. Bennaceur, P. Bonche, Phys. Rev. C70, 024307 (2004)

α =  1/6  implies  K  around  230-­‐240  MeV     α =  1/3  implies  K  around  250  MeV    

Constraint  from  the  ISGMR  in  208Pb  :    

EGMR  constrains  K∞  =  240  ±  10  MeV.  The  error  comes  from  the  choice  of  the  density  dependence                                                

Page 10: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

What  can  we  learn  about  neutron  EOS  from  nuclear  physics?  

Nuclear  MaWer    EOS  

Incompressibility  K  

Isoscalar  Monopole  Giant  Resonances  in  208Pb  

Isoscalar  Compressional  Dipole  Resonances  

Symmetry  energy  S   Neutron  EOS  

Size    ~10fm   Neutron  star  ~10km  

{

size  difference  ~   1810

(G.  Colo  ,2004)

(Lalazissis,2005)

(P.  Ring,2007)  

K=(240  +/-­‐10  +/-­‐  10)MeV

Not  only  T=0  but  also  T≠0

K ! (240±10) MeV for Skyrme ! (230±10) MeV for Gogny ! (250 ±10) MeV for RMF ! (230±10) MeV for Point Coupling

Page 11: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

EDF’s  

The   isoscalar   GMR   constraints   the  curvature   of   E/A   in   symmetric  ma>er,  that  is,     symmetry   energy  

=  S  

Page 12: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

Symmetry  Energy

What  can  we  learn  about  neutron  EOS  from  Giant  resonances  and  mass  formulas?  

               Isospin  dependence  of  GMR  

               Dipole  polarizability    in  208Pb  (Tamii)  

S(!) (=Esym (!) / !) = 12!2 (" / !)!# 2 where #=(!n " !p ) / !

S(!) = J + L ! ! !0

3!0

"

#$

%

&'+

12Ksym

! ! !0

3!0

"

#$

%

&'

2

where J=S(!0 ), L=3!0(S(! !0

,Ksym = 9!20(2S(!2

!0

Page 13: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes
Page 14: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

Isospin  dependence  of  GMR  in  Sn  and  Cd  isotopes

Page 15: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

Results  for  Sn  isotopes  Exp  at  RCNP  

MeVSKPMeVSKMMeVSLy

2022172305

*

Page 16: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

 

Why  Tin  is  so  soh?    

Or    

Why  Pb  is  so  hard?    

New  problem  is  appeared.

Page 17: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

Based  on  the  HFB+QRPA  calcula;on,  the  ISGMR  energies  in  Sn  Isotopes  are  obtained  using  different  Skyrme  interac;on,  but    There  is  No  sa;sfied    conclusion  according  to  those  calcula;on  Because  the  calcula;ons  are  not  fully  self-­‐consistent,  such  as    The  two-­‐body  spin-­‐orbit  interac;on  is  dropped  .      J.  Li  et.al.,PRC78,064304(2008)    Or  the  HF+BCS+QRPA(QTBA).  The  spin-­‐orbit  interac;on  is  dropped.  V.  Tselyaev,  PRC  79,  034309  (2009)        T.  Sil,  et.al.,  Phys.  Rev.  C73,  034316  (2006).  The  spin-­‐orbit  residual  interac;on  in  HF+RPA  produces  an  a>rac;ve  effect  on  the  ISGMR  strength,  the  energies  are  pushed  down  by  about  0.6MeV.    No  pairing.  

Residual interaction :full Skyrme force, two-body spin-orbit, two-body Coulomb, and also the pairing in particle-particle channel

The  strength  func;on  of  QRPA  is  obtained  by  fully  self-­‐consistent  HF+BCS+QRPA  model  with    

Page 18: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes
Page 19: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes
Page 20: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes
Page 21: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

•  We have studied the ISGMR in Cd, Sn and Pb isotopes based on the fully self-consistent HF+BCS plus QRPA calculations. The SLy5, SKM*, and SKP and different pairing interactions are used in our calculations.

•  We found that the pairing plays a role in producing the ISGMR properties.

•  The SLy5 interaction (K∞=230MeV) together with the effect of pairing can give better description on ISGMR in Pb isotopes, but it has some discrepancies between experiments in Cd and Sn isotopes.

•  SKM* (K∞=217MeV) can produce the experimental data in Cd and Sn isotopes, but is not satisfactory to describe Pb isotopes.

•  SKP(K∞=202MeV) fails for all isotopes because the incompressibility is too low.

•  K∞=(225 +/- 10)MeV is consistent with Pb, Sn and Cd data.

Summary  for  Incompressibility    

Page 22: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

Extrac/ng  Kτ  from  data  

Using this formula globally is dangerous and should not be done (cf. M. Pearson, S. Shlomo and D. Youngblood) but one can use it locally. KCoul can be calculated and ETF calculations point to Ksurf ≈ –K∞.

Kτ  =  -­‐500  ±  50  MeV  

Page 23: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes
Page 24: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes
Page 25: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

Correlation between Isospin GMR and nuclear matter properties

1. Nuclear  incompressibility  K  is  determined  empirically  with  the  ISGMR  in  208Pb    to  be    

   K~230MeV(Skyrme,Gogny),      K~250MeV(RMF).  

2.    Combining  ISGMR  data  of  Sn  and  Cd  isotopes(RCNP)    

3.                                                                                                  is  extracted  from  isotope  dependence  of  ISGMR.  

4. This  value  provides  further  the  isovector  proper;es                      

           J=(36+/-­‐2)MeV,  L=(100+/-­‐20)MeV,  Ksym=  -­‐(0+/-­‐40)MeV  

           by  using  the  mean  field  correla;ons  

5.  How  much  we  can  trust  to  extract  Ktau    by  a  single  set  od  data      Ni  isotopes  

         (Maya/Ganil/Orsay)      (E.  Khan)  

             

K (500 50)MeVτ = − ±

K=(240  +/-­‐10  +/-­‐  10)MeV

K=(225  +/-­‐10)MeV

Page 26: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

Mass  model  and  EoS

S(!) = J + L ! ! !0

3!0

"

#$

%

&'+

12Ksym

! ! !0

3!0

"

#$

%

&'

2

where J=S(!0 ), L=3!0(S(! !0

,Ksym = 9!20(2S(!2

!0

S(!) = 12!2 (" / !)!# 2 where #=(!n " !p ) / !Symmetry  Energy

Page 27: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

The  state  of  the  art  achievement

Page 28: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes
Page 29: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

J=32.5+/-­‐0.5MeV        L=70+/-­‐15MeV      (54+/-­‐15MeV)

Page 30: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

40

50

60

70

80

90

100

30 31 32 33 34 35

SHFRMF

L (

MeV

)

J ( MeV )

210 < K < 270

Kinfinity=240+/-­‐30MeV    (  94  Skyrme  interac;ons  and  7RMF  Lagrangians)

J=32.5+/-­‐0.5MeV        L=70+/-­‐15MeV    (L=54+/-­‐15MeV)

Page 31: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

Tamii  and  Zenihiro,  JPS  journal(2014)

Page 32: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

Courtesy  of  Tamii(2013)

Isospin  GMR

Sotani  (2013)  Tor;onal  Oscilla;on  100<L<130MeV

L=3!0!S!! !0

"S = c#rnp#rnp = 0.16 ~ 0.20 fm L = (60$80)MeV#rnp = (0.302± 0.175) fm (Jefferson Lab) L ~ (100$120)MeV

Page 33: EoS’constraints’from’Nuclear’Collec;ve’Mo;ons ...lambda.phys.tohoku.ac.jp/nstar/content/files/20131025-NSsympo/Sa… · •We have studied the ISGMR in Cd, Sn and Pb isotopes

                                                                   Summary  of  Symmetry  Energy  Studies    1. Micro-­‐macroscopic  model  (FRDM)  is  further  improved  taking  

into  account  the  op;miza;on  of  symmetry  energy  coefficients  J  and  L:  

                                   J=32.5  +/-­‐0.5  MeV                                                  L=70        +/-­‐15    MeV                                                    (55+/-­‐15  MeV  with  high-­‐order  effect  of    fluctua;ons)  2.  Isospin  dependence  of  GMR  gives  somewhat  larger  J  and  L  

which  should  be  confirmed  further  by  new  experiments  in  RIKEN/CNS    (L=100+/-­‐20MeV  which  is  close  to  torsional  oscilla;on      analysis  by  Sotani).  

3.   Effec;ve  Hamiltonians  and  Lagrangians  (for  examples,  SkT1,  SLy5,  TW99,  DD-­‐ME2)    sa;sfy  the  condi;ons  from  ISGMR  and  Mass  model  studies.