ess-bilbao initiative workshop. low energy transport and space-charge compensation schemes

69
Low Energy Transport and Space Charge R. Duperrier Front End Ion source Theory More electrodes Codes LEBT Electrostatic Solenoids sc neutralisation Codes RFQ Basics Beam dynamics Current limits Codes Conclusions Low Energy Transport and Space Charge Compensation Schemes Romuald Duperrier Laboratoire d’Étude et de Développement pour les Accélérateurs CEA/IRFU/SACM Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 1 / 47

Upload: ess-bilbao

Post on 18-Dec-2014

643 views

Category:

Technology


3 download

DESCRIPTION

Low Energy Transport and space-charge compensation schemes. Romuald Duperrier (CEA-SACLAY)

TRANSCRIPT

Page 1: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Low Energy Transport and Space ChargeCompensation Schemes

Romuald Duperrier

Laboratoire d’Étude et de Développement pour les AccélérateursCEA/IRFU/SACM

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 1 / 47

Page 2: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Outline

1 Main parts of a Front End

2 The ion source extraction system

3 The LEBT line

4 The RFQs

5 Conclusions

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 2 / 47

Page 3: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Outline

1 Main parts of a Front End

2 The ion source extraction system

3 The LEBT line

4 The RFQs

5 Conclusions

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 3 / 47

Page 4: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Typical scheme for the front end

For a H+ front end, ECRIS are now the preferredsolution and allow to reach a few 10s to more than100 mA with a good emittance (< 0.2πµrad).A LEBT line is used to match the beam into the RFQ.It can also be used to pulse the beam with a slowchopper (r. t. of ∼ 100 ns) instead of pulsing thesource (r. t. of ∼ 2 ms). Monitoring diagnostics aresometimes inserted (CCD cams, DCCT).The RFQ creates the bunch structure etpre-accelerates the beam up to a few MeV.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 4 / 47

Page 5: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Outline

1 Main parts of a Front End

2 The ion source extraction system

3 The LEBT line

4 The RFQs

5 Conclusions

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 5 / 47

Page 6: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Theoretical basics

[Langmuir & Blodgett, Phys. Rev. 24]

[Schneider et al, PAC’07]

Let us consider first a diodesystem extractor.To model the flow of ions inthe system, L. & B. proposedto solve the Poissonequation in a system ofdelimited by concentricspheres. For obviouspratical reasons, thesolution is reduced to afinite solid angle.The limit current is then:

I = 8πε09

(2qm

)1/2∆V 3/2 1−cosθ

−α2

with α a series of thefunction log(rb/ra).

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 6 / 47

Page 7: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

The current dependancy

It turns out that the geometry is linked to thecurrent and the ratio q/m for a given voltage.To illustrate, for heavy ions, it has been proposed toadjust the gap with a moveable electrode.The minimum of the divergence is then a strongfunction of q/m or I. This has to be integrated forthe current ramp up during the commissioning.

[Zaim & Alton, PAC’01]

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 7 / 47

Page 8: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

A hollow beam

Integrating spherical aberrations in the motionequation leads to solve D.E. like:

d2rdt2 = q

m

[G(z)r + G3(z)r3 + ...

]It turns out that extreme particles are more focusedand that a particular radius is more populated.Considering non linearities in the LEBT line, this pointis more advantage than a drawback.

[Batygin et al, PAC’95]Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 8 / 47

Page 9: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

A electron barrier electrode

[Sherman, PAC’07]

In diode system, LEBT electrons tend to go back upto the plasma electrode and may induce sparksand then voltage breakdowns.This effect can be suppressed by adding oneelectrode which is negatively polarized and asecond one at the ground to create a barrier.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 9 / 47

Page 10: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

A fifth electrode?

[Delferrière et al, Rev. Sci. Instr. 79]

In case of nonmoveableelectrodes, it isalso to tune theextraction with afifth intermediateelectrode.This could helpfor tuning severalcurrents or otherchangingconditions.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 10 / 47

Page 11: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Benchmark with experiments(adjustment of unknown parameters)

In order to adjust parameters like the initial iontemperature in the simulation, benchmarks withexperiences are performed with a certain degreeof success...

[Delferrière et al, Rev. Sci. Instr. 75]

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 11 / 47

Page 12: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Optimisation with PIC codes

Several commercial codes (2D, 2.5D or 3D) can beused for extraction system optimisation: PBGUN,IGUN, AXCEL, SCALA (see below), KOBRA.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 12 / 47

Page 13: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Outline

1 Main parts of a Front End

2 The ion source extraction system

3 The LEBT line

4 The RFQs

5 Conclusions

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 13 / 47

Page 14: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

LEBT line based on electrostatic lenses

LEBT lines based on electrostatic einzel lensespermit very compact systems which can becombined with the source extraction.By splitting the lenses and playing with the differentpolarization, it is possible to provide beam steeringand fast chopping.

[Reijonen et al, LINAC’00]

Such system operatesat SNS for a H− peakcurrent of 35 mA.To compensate theeffect of the electronextractor (dipole), thesource is tilted withrespect to the LEBTaxis.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 14 / 47

Page 15: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Limits

[Han & Stockli, PAC’07]

For such currents, the beam size is very closed tothe lenses apertures, this induces emittancegrowths due to the high order terms and beamlosses (sparks).If the current is greater than 100 mA, there is aconsensus that this scheme is not suitable.For the SNS power upgrade, the peak current hasto be increased up to 59 mA. It is planned to use amagnetic focusing system (better acceptance, ...).

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 15 / 47

Page 16: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Solenoids and space charge

The effects of S. C. and solenoid aberrations on thebeam have been investigated theoretically andexperimentally by Loschialpo et al in 1984.Due to the combined action of the nonlinear lensand the S.C., the initially uniform density becomeshollow or peaked (depending on distance).

[Loschialpo et al, J. Appl. of Phys. 57]

To cure this effect,long lenses [Bailey,EPAC’98] orcompact line toget a small beamsize are usualtechniques.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 16 / 47

Page 17: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

A plasma lens

If we integrate the residual gas presence (ex.: H2) in thevacuum chamber, we can get the production of pairselectrons / ions (H+

2 ) via the ionization process:

p+H2→ p+e−+H+2

we assume that χ=Nbeam/ Ngas�1 with Nbeam thebeam density.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 17 / 47

Page 18: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Illustration

Example for a uniform beam of 100 mA @ 100 keV

0

2000

4000

6000

8000

10000

12000

14000

0 0.02 0.04 0.06 0.08 0.1

r(m )

E(V/m)

puits de potentiel

0

100

200

300

400

500

600

700

800

0 0.02 0.04 0.06 0.08 0.1

r(m)

V(v)

champ électrique

The e− are trapped in the beam and the ions H+2 are

repelled to the pipe. An electrical neutralization isobtained

⇒ space charge compensation

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 18 / 47

Page 19: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Illustration

Example for a uniform beam of 100 mA @ 100 keV

0

2000

4000

6000

8000

10000

12000

14000

0 0.02 0.04 0.06 0.08 0.1

r(m )

E(V/m)

puits de potentiel

0

100

200

300

400

500

600

700

800

0 0.02 0.04 0.06 0.08 0.1

r(m)

V(v)

champ électrique

The e− are trapped in the beam and the ions H+2 are

repelled to the pipe. An electrical neutralization isobtained

⇒ space charge compensation

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 18 / 47

Page 20: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Illustration

Example for a uniform beam of 100 mA @ 100 keV

0

2000

4000

6000

8000

10000

12000

14000

0 0.02 0.04 0.06 0.08 0.1

r(m )

E(V/m)

puits de potentiel

0

100

200

300

400

500

600

700

800

0 0.02 0.04 0.06 0.08 0.1

r(m)

V(v)

champ électrique

The e− are trapped in the beam and the ions H+2 are

repelled to the pipe. An electrical neutralization isobtained

⇒ space charge compensation

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 18 / 47

Page 21: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Illustration

Example for a uniform beam of 100 mA @ 100 keV

0

2000

4000

6000

8000

10000

12000

14000

0 0.02 0.04 0.06 0.08 0.1

r(m )

E(V/m)

puits de potentiel

0

100

200

300

400

500

600

700

800

0 0.02 0.04 0.06 0.08 0.1

r(m)

V(v)

champ électrique

The e− are trapped in the beam and the ions H+2 are

repelled to the pipe. An electrical neutralization isobtained

⇒ space charge compensation

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 18 / 47

Page 22: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Illustration

Example for a uniform beam of 100 mA @ 100 keV

0

2000

4000

6000

8000

10000

12000

14000

0 0.02 0.04 0.06 0.08 0.1

r(m )

E(V/m)

puits de potentiel

0

100

200

300

400

500

600

700

800

0 0.02 0.04 0.06 0.08 0.1

r(m)

V(v)

champ électrique

The e− are trapped in the beam and the ions H+2 are

repelled to the pipe. An electrical neutralization isobtained

⇒ space charge compensation

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 18 / 47

Page 23: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Illustration

Example for a uniform beam of 100 mA @ 100 keV

0

2000

4000

6000

8000

10000

12000

14000

0 0.02 0.04 0.06 0.08 0.1

r(m )

E(V/m)

puits de potentiel

0

100

200

300

400

500

600

700

800

0 0.02 0.04 0.06 0.08 0.1

r(m)

V(v)

champ électrique

The e− are trapped in the beam and the ions H+2 are

repelled to the pipe. An electrical neutralization isobtained

⇒ space charge compensation

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 18 / 47

Page 24: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Illustration

Example for a uniform beam of 100 mA @ 100 keV

0

2000

4000

6000

8000

10000

12000

14000

0 0.02 0.04 0.06 0.08 0.1

r(m )

E(V/m)

puits de potentiel

0

100

200

300

400

500

600

700

800

0 0.02 0.04 0.06 0.08 0.1

r(m)

V(v)

champ électrique

The e− are trapped in the beam and the ions H+2 are

repelled to the pipe. An electrical neutralization isobtained

⇒ space charge compensation

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 18 / 47

Page 25: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Illustration

Example for a uniform beam of 100 mA @ 100 keV

0

2000

4000

6000

8000

10000

12000

14000

0 0.02 0.04 0.06 0.08 0.1

r(m )

E(V/m)

puits de potentiel

0

100

200

300

400

500

600

700

800

0 0.02 0.04 0.06 0.08 0.1

r(m)

V(v)

champ électrique

The e− are trapped in the beam and the ions H+2 are

repelled to the pipe. An electrical neutralization isobtained

⇒ space charge compensation

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 18 / 47

Page 26: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Illustration

Example for a uniform beam of 100 mA @ 100 keV

0

2000

4000

6000

8000

10000

12000

14000

0 0.02 0.04 0.06 0.08 0.1

r(m )

E(V/m)

puits de potentiel

0

100

200

300

400

500

600

700

800

0 0.02 0.04 0.06 0.08 0.1

r(m)

V(v)

champ électrique

The e− are trapped in the beam and the ions H+2 are

repelled to the pipe. An electrical neutralization isobtained

⇒ space charge compensation

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 18 / 47

Page 27: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Illustration

Example for a uniform beam of 100 mA @ 100 keV

0

2000

4000

6000

8000

10000

12000

14000

0 0.02 0.04 0.06 0.08 0.1

r(m )

E(V/m)

puits de potentiel

0

100

200

300

400

500

600

700

800

0 0.02 0.04 0.06 0.08 0.1

r(m)

V(v)

champ électrique

The e− are trapped in the beam and the ions H+2 are

repelled to the pipe. An electrical neutralization isobtained

⇒ space charge compensation

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 18 / 47

Page 28: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Illustration

Example for a uniform beam of 100 mA @ 100 keV

0

2000

4000

6000

8000

10000

12000

14000

0 0.02 0.04 0.06 0.08 0.1

r(m )

E(V/m)

puits de potentiel

0

100

200

300

400

500

600

700

800

0 0.02 0.04 0.06 0.08 0.1

r(m)

V(v)

champ électrique

The e− are trapped in the beam and the ions H+2 are

repelled to the pipe. An electrical neutralization isobtained

⇒ space charge compensation

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 18 / 47

Page 29: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Illustration

Example for a uniform beam of 100 mA @ 100 keV

0

2000

4000

6000

8000

10000

12000

14000

0 0.02 0.04 0.06 0.08 0.1

r(m )

E(V/m)

puits de potentiel

0

100

200

300

400

500

600

700

800

0 0.02 0.04 0.06 0.08 0.1

r(m)

V(v)

champ électrique

The e− are trapped in the beam and the ions H+2 are

repelled to the pipe. An electrical neutralization isobtained

⇒ space charge compensation

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 18 / 47

Page 30: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Illustration

Example for a uniform beam of 100 mA @ 100 keV

0

2000

4000

6000

8000

10000

12000

14000

0 0.02 0.04 0.06 0.08 0.1

r(m )

E(V/m)

puits de potentiel

0

100

200

300

400

500

600

700

800

0 0.02 0.04 0.06 0.08 0.1

r(m)

V(v)

champ électrique

The e− are trapped in the beam and the ions H+2 are

repelled to the pipe. An electrical neutralization isobtained

⇒ space charge compensation

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 18 / 47

Page 31: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Illustration

Example for a uniform beam of 100 mA @ 100 keV

0

2000

4000

6000

8000

10000

12000

14000

0 0.02 0.04 0.06 0.08 0.1

r(m )

E(V/m)

puits de potentiel

0

100

200

300

400

500

600

700

800

0 0.02 0.04 0.06 0.08 0.1

r(m)

V(v)

champ électrique

The e− are trapped in the beam and the ions H+2 are

repelled to the pipe. An electrical neutralization isobtained

⇒ space charge compensation

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 18 / 47

Page 32: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Time scale

In a first approach, it can be estimated with theclassical formulation (DC beam):

τn = 1σNgasβc

with σ the ionization cross section, Ngas = P/kTroomand β the beam reduced speed.Evolution of neutralization degree, as a function oftime for a proton beam of 100 mA and 100 keV in adrift (1,5D PIC code computations):

Non lineartranscient phase:ion inertia, Te− .This rise time hasto be evaluatedfor pulsedoperation. [Ben Ismail et al, Phys. Rev STAB 10]

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 19 / 47

Page 33: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

The ion slowness

Proton beam of 100 mA and 100 keV in a drift forseveral pressures:

Non linear transcient due to the ion inertia isnon-existent at the beginning if P < 10−5 hPa.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 20 / 47

Page 34: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

The solenoid combined with the spacecharge neutralisation

(H+ beam, 100 mA, 100 keV)

Ion density Electron density

Magnetic mirror at the edges.Transversal drift inside.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 21 / 47

Page 35: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Gas : nature and pressure (experiment)

[Gobin et al, Rev. Sci. Instr.,99]

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 22 / 47

Page 36: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Gas : nature and pressure (experiment)

[Gobin et al, Rev. Sci. Instr.,99]

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 22 / 47

Page 37: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Electrical field comparison

(PIC code computation)

-80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80-12,50

-10,00

-7,50

-5,00

-2,50

0,00

2,50

5,00

7,50

10,00

12,50

Mass 100 @ 4e-4 hPa

Mass 100 @ 4e-5 hPa

Mass 4 @ 4e-4 hPa

Mass 4 @ 4e-5 hPa

R (mm)

Ex

(kV

/m)

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 23 / 47

Page 38: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Emittance evolution

(PIC code computation)

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

1

1,2

1,4

1,6

1,8

2

2,2

2,4

2,6

2,8

3

Masse 100 @ 4e-4 hPaMasse 100 @ 4e-5 hPaMasse 4 @ 4e-4 hPa

Masse 4 @ 4e-5 hPa

z (m)

Gro

ssis

sem

ent

ém

itta

nce

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 24 / 47

Page 39: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Gas : nature and pressure (conclusion)

Emittance enhancement with an increasing of thepairs production rate (pressure and/or crosssection).The enhancement with the heavy gas is due to across section which is multiplied by a factor 5 and agreater mass.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 25 / 47

Page 40: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Gas : nature and pressure (conclusion)

Emittance enhancement with an increasing of thepairs production rate (pressure and/or crosssection).The enhancement with the heavy gas is due to across section which is multiplied by a factor 5 and agreater mass.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 25 / 47

Page 41: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Gas : nature and pressure (conclusion)

Emittance enhancement with an increasing of thepairs production rate (pressure and/or crosssection).The enhancement with the heavy gas is due to across section which is multiplied by a factor 5 and agreater mass.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 25 / 47

Page 42: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

The recombination

Above, the transmission of 2 m LEBT line with10−5 hPa of H2 and 4.10−5 hPa of Kr.The choice is then a compromise between loss inthe LEBT, loss in the RFQ and the rise time.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 26 / 47

Page 43: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

The electron repeller

Let’s consider a dualsolenoid LEBT.A computation of thes. c. potential withthe correct boundaryconditions leads tothis steady state.For beam tuning, aDCCT is located atthe RFQ entranceand it may beperturbed by aelectron flow.A cleaning electrodemay help too forbeam tuning.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 27 / 47

Page 44: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

The electron repeller

Let’s consider a dualsolenoid LEBT.A computation of thes. c. potential withthe correct boundaryconditions leads tothis steady state.For beam tuning, aDCCT is located atthe RFQ entranceand it may beperturbed by aelectron flow.A cleaning electrodemay help too forbeam tuning.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 27 / 47

Page 45: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

The electron repeller

Let’s consider a dualsolenoid LEBT.A computation of thes. c. potential withthe correct boundaryconditions leads tothis steady state.For beam tuning, aDCCT is located atthe RFQ entranceand it may beperturbed by aelectron flow.A cleaning electrodemay help too forbeam tuning.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 27 / 47

Page 46: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

The electron repeller

Let’s consider a dualsolenoid LEBT.A computation of thes. c. potential withthe correct boundaryconditions leads tothis steady state.For beam tuning, aDCCT is located atthe RFQ entranceand it may beperturbed by aelectron flow.A cleaning electrodemay help too forbeam tuning.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 27 / 47

Page 47: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Codes

The WARP code developed at Berkeley can beused to simulate the sc neutralisation in a LEBT. Thiscode is also used for e-clouds modeling.The SOLMAXP code developed at Saclay which isbased on a classical algorithm for modeling ofplasma coupled with a Maxwell solver permits suchsimulations too.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 28 / 47

Page 48: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Outline

1 Main parts of a Front End

2 The ion source extraction system

3 The LEBT line

4 The RFQs

5 Conclusions

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 29 / 47

Page 49: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

A bit of history

In the early days, the injection of ions wasperformed with high voltage systems whichtypically produced continuous beam of ∼ 700 keV.

The bunch structure wasmade with one or severalbunchers. The efficiencywas between 60 to 70 %(Beijing proton linac).

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 30 / 47

Page 50: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

The principle

RFQ was invented by Kapchinsky from ITEP in thelate 60s. Teplyakov of the same instituteconstructed a first cavity.Important contributions to the RFQ have also beenmade by the LANL (POP in 1980). Since then, thisstructure has become very popular.

The features of the RFQ are that it bunches,focuses and accelerates charged particles byusing RF fields only.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 31 / 47

Page 51: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

The cavity

A TE210 mode is used.The equivalent circuitof a 4 vanes RFQ.Typical view of a 4vanes RFQ (TRASCO).For a better stability,quadrants may becoupled (more RFpower cons.).For heavy ionsmachine, lowfrequencies arerequired (a few 10s ofMHz), inductancebased on stems arepreferred (Tokyo RFQ).

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 32 / 47

Page 52: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

The cavity

A TE210 mode is used.The equivalent circuitof a 4 vanes RFQ.Typical view of a 4vanes RFQ (TRASCO).For a better stability,quadrants may becoupled (more RFpower cons.).For heavy ionsmachine, lowfrequencies arerequired (a few 10s ofMHz), inductancebased on stems arepreferred (Tokyo RFQ).

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 32 / 47

Page 53: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

The cavity

A TE210 mode is used.The equivalent circuitof a 4 vanes RFQ.Typical view of a 4vanes RFQ (TRASCO).For a better stability,quadrants may becoupled (more RFpower cons.).For heavy ionsmachine, lowfrequencies arerequired (a few 10s ofMHz), inductancebased on stems arepreferred (Tokyo RFQ).

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 32 / 47

Page 54: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

The cavity

A TE210 mode is used.The equivalent circuitof a 4 vanes RFQ.Typical view of a 4vanes RFQ (TRASCO).For a better stability,quadrants may becoupled (more RFpower cons.).For heavy ionsmachine, lowfrequencies arerequired (a few 10s ofMHz), inductancebased on stems arepreferred (Tokyo RFQ).

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 32 / 47

Page 55: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

4 subsections

1 At the RFQ entrance, a short section which rampsthe field amplitude performs the transition static totime focusing.

2 A delicate section called “gentle buncher”bunches adiabatically the beam.

3 Once the bunch is made, it is accelerated bydecreasing the synchronous phase and rampingthe modulation factor. Sometimes, the voltage isalso increased.

4 To help the matching in the MEBT line, the length ofthe last part of the cavity (“Fringe Field Section”)can be adjusted.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 33 / 47

Page 56: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

The potential

A general solution of theLaplace equation whichobeys to the RFQsymmetries is detailed byWeiss in CAS proceedings[CAS 95-06].

This solution contains all the harmonics in infiniteseries but only a few harmonics are necessary towell describe a real RFQ. To facilitate the analysis,we shall consider a two terms potential:

U(r ,θ ,z) = V2

[A01r2cos2θ + A10I0(kr)cos(kz)

]with k = 2π/βλ

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 34 / 47

Page 57: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

The transverse focusing

By linearizing the transverse field componentsderived from the previous potential (smallamplitude), the equation of motion can besimplified to the following form:

d2xdτ2 + [Bsin2πτ + ∆rf ]x = 0

with 2πτ = ωt + φ and :

B = λ 2qVmc2R2

0and ∆rf = qπ2|sinφs |A10V

2mc2β 2s

At first order, the solution of this Mathieu equationis:

x(τ) = C0ejσt τ (1 + Csin2πτ)

with:σ2

t ∼B2

8π2 + ∆rf and C ∼ B4π2

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 35 / 47

Page 58: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

The longitudinal focusing

With the same technique (linearization for smallamplitude), Weiss show in the same reference thatthe second order equation of the evolution of∆φ = φ −φs can be written:

ddτ

(β 2

sddτ

∆φ

)+ π2qA10V |sinφs |

mc2 ∆φ = 0

Solving this oscillator D.E., one finds that the phaseadvance per period is:

σl(τ) =[

π2qA10V |sinφs |mc2β 2

s

]1/2

Let us note that:σl(τ) ∝ β

−1s

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 36 / 47

Page 59: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Acceptances

In the same reference, it is given the expression ofthe hamiltonian for large amplitude oscillationsfrom which it is extracted the limit of the separatrix:

∆Wmax =±√

mc2β 2s qA10V (φscosφs− sinφs) ∝ βs

It has to be noticed that adding the space chargecontribution will lead to a smaller acceptance butalso provide a smaller emittance!For the transverse plane, the mean beam size isgiven by:

Rbeam =√

εt ,gβsλ

σt

Replacing by the expression for σt and settingRbeam = R0, one finds for a pure RF quadrupole(A10 = 0):

εt ,n = λqVmc2 6= f (R0)

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 37 / 47

Page 60: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Space charge field

The space charge field for a uniformly chargeellipsoidal bunch can be calculated analytically[Lapostolle, CERN Report SG 65-15, 1965]:

Esx = 3Iλ(1−f )4πε0c(rx+ry )rz

xrx

Esy = 3Iλ(1−f )4πε0c(rx+ry )rz

yry

Esz = 3Iλ f4πε0crx ry

zrz

with f(p) for p<1 and f(1/p)when p>1 and p = γrz/rx ry

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 38 / 47

Page 61: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Transverse current limit

Once these new field components are included inthe motion equation, it can be find that the newtransverse phase advance per focusing period is:

σt =

[q2λ 4V 2

m2c2R40 8π2 −

π2qA10V |sinφs |2mc2β 2

s− 3qIλ 3(1−f )

4πε0mc3(rx+ry )rx rz

]1/2

Solving for σt = 0, one finds:

It =

[qλV 2

mc2R40 8π2 −

π2qA10V |sinφs |2β 2

s λ 3

]4πε0c(rx+ry )rx rz

3(1−f )

See Wangler’s book for a more detailed analysis(Wiley series).

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 39 / 47

Page 62: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Longitudinal current limit

The same approach allows to find the longitudinalcurrent limit expression:

Il =8π3ε0cA10V |sinφs |rx ry rz

3β 2s λ 3f

If we use the approximation for f = 1/3p, assumethat:

rz ∼ 3|φs|βλ/4π

and maximize the transverse beam size rx/y ∼ R0,one can find:

Il = 3πε0cA10V |sinφs |φ2s R0

Usually, the longitudinal current limit is lower thanthe transverse one. This induces that thebottleneck in a RFQ uses to be in the longitudinalplane. But this bottleneck does not always occurat the end of the gentle buncher.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 40 / 47

Page 63: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Current Limit for several RFQsTo illustrate thispoint, here agraph whichshows thelongitudinalcurrent limitnormalized bythe designpeak currentfor severalRFQs.

RFQs with a constant voltage give a minimum for Ilat the end of the acceleration section.The reduction of the product A10V |sinφs|φ2

s is notsufficiently damped by increasing the modulationfactor when the voltage is kept constant.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 41 / 47

Page 64: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Safety factors for several RFQs

Below, a report of these minimums (values beforethe gentle buncher end are ignored).

It has to be emphasized that the current limit is notthe only figure of merit in a RFQ (RF power, length,cost, ...) and the requirements for the beam losstolerance are a strong function of the duty cycle.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 42 / 47

Page 65: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Resonances

The space charge couples the three planes. Thiscoupling may induce emittance exchangebetween the planes if (simple approach):

σtσl

= pq with p and q ∈ N

This exchange could be seen from different pointsof views. This could lead to a undesirableemittance growth in a particular plane or, at theopposite, a way to define it.Personal opinion: this kind of game assumes thatyou know perfectly the transverse emittance thatyou inject in the RFQ and that the space chargecoupling is well predicted in the design phase→ dangerous game.

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 43 / 47

Page 66: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

RFQ codes

Several codes are available: PARMETQM-z/t(LANL), LIDOS (MRTI), RFQTRACK (Chalk River),TOUTATIS (CEA/Saclay) and RFQSIM (RAL).

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 44 / 47

Page 67: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Outline

1 Main parts of a Front End

2 The ion source extraction system

3 The LEBT line

4 The RFQs

5 Conclusions

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 45 / 47

Page 68: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Conclusions

The main front end sections have their specifictechniques to manage the space charge:

ECRIS extraction system: geometry, voltage andnumber of electrodes,LEBT: plasma lens, length and aperture lens andcleaning electrode,RFQ: injection β , phase law, voltage law, ...

It has to be emphasized that a few parameters fordifferent sections couple these sections: boundaryconditions of the LEBT line, the β (recombination,longitudinal emittance, pressure, neutralisation risetime).

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 46 / 47

Page 69: ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compensation schemes

Low EnergyTransport

and SpaceCharge

R. Duperrier

Front End

Ion sourceTheory

More electrodes

Codes

LEBTElectrostatic

Solenoids

sc neutralisation

Codes

RFQBasics

Beam dynamics

Current limits

Codes

Conclusions

Many thanks to ...

Olivier Delferrière , Nicolas Chauvin

for their help!

Low Energy Transport and Space Charge March 17, 2009- Bilbao workshop 47 / 47